This application claims priority under 35 U.S.C. §119 to German Patent Application No. 10 2008 044895.8-55 filed Aug. 29, 2008, the entire disclosure of which is herein expressly incorporated by reference.
The invention relates to a signal branch for use in a communication system, in particular a reflector antenna for transmitting microwave signals. The invention further relates to a method for processing a received signal fed into a signal branch.
Due to their very narrow beam characteristic, large reflector antennas require a very precise alignment relative to a transmitter and/or receiver, generally a remote station. A beacon signal emitted by the remote station is used for the alignment. In order to analyze the beacon signal by means of the reflector antenna, an alignment diagram is required with a zero point in the primary beam direction. If the beacon signal deviates from the primary beam direction, an additional signal is received that can be used to correct the directional deviation. The transmission, separation, and analysis of the beacon signal occurs in addition to the transmission of the actual communication signal. In so doing, the beacon signal may not influence the communication signal.
A reflector antenna for the transmission of microwave signals typically comprises a signal branch that has a common signal wave guide for transferring a transmission signal and a received signal. The common signal wave guide comprises one first and one second end as well as an exterior and an interior. A horn is connected to the first end of the common signal wave guide, by way of which the transmission signal departing the common signal wave guide is decoupled and the transmission signal in the common signal wave guide is coupled. As a rule, a plurality of signal wave guides is provided along with the common signal wave guide for feeding the transmission signal and for decoupling the received signal. The signal wave guides are, for example, disposed in a symmetrically distributed fashion on the exterior of the common signal wave guide and are each connected to the common signal wave guide in a communicative manner.
In particular, the signal branch has the task of processing a mode mixture of modes of the received signal in such a way that a differentiation occurs between the original communication signal and correction data for the communication signal. At the same time, the signal branch must correctly transfer a transmission signal fed into the plurality of signal wave guides to be decoupled by the horn. The ensuing conflict of objectives between correctly distributing the received signal with regard to its communication and correctly distributing the correction information and decoupling the transmission signal with the desired polarization from the reflector antenna has not always been satisfactorily resolved up to now.
The signal branch shown on page 54 of “Corrugated Horns for Microwave Antennas” by P. J. B. Clarricoates and A. D. Oliver has the disadvantage that separation of transmission and received signals is not possible, such that the signal branch is only suitable for receiver antennas.
U.S. Pat. No. 6,714,165 B2 discloses an orthomode transducer (orthomode transducer OMT) having a circular coaxial wave guide supply system. In this arrangement, the correction information necessary for correcting the communication signal, known as tracking modes, are not propagable in the reception path, so that the correction signal cannot be acquired.
The same problem is present in the signal branch disclosed in U.S. Pat. No. 6,657,516 B1. Here, the signal branch comprises a wave guide structure having one exterior and one interior wall, which form one exterior and one interior wave guide chamber. These chambers are connected in a communicative manner with the horn on one end of the signal branch. The exterior wall comprises one cylindrical section and one conical section, with the cylindrical section and the interior wall being oriented coaxially relative to one another. Moreover, symmetrically disposed signal wave guides are formed in one reception path around the cylindrical section, which are also coupled to the exterior chamber in a communicative fashion by means of impedance adapter blinds matching irises.
The publication “An X-band single horn autotrack antenna feed system” by Yodokawa, T. and Hamada, S. in Antennas and Propagation Society International Symposium, 1981, June 1981, vol. 19, pages 86-89, discloses a multi-mode coupler. This coupler uses the modes TE11 and TM01 to effect a correction of a circularly polarized communication signal. However, the method described by this publication allows the processing of only a “tracking” mode (TM01). The term “tracking” is to be understood as the processing of correction information in order to increase the precision of the communication signal. Moreover, the polarization effects directly degrade the orientation accuracy to be attained in orienting the reflector antenna as an error. Thus, the method described is not suitable for applications requiring high degrees of accuracy.
The antenna system described in the publication “Modal analysis and design of the dual-band orthomode junction” by J. Bornemann and J. Uher, Proc. ANTEM 2002, pages 303-306, Montreal, Canada, July/August 2002, has the disadvantage that the required tracking modes are not propagable in the reception path. Thus, it is not possible to acquire a correction signal. For this reason, the method described there is not suitable for a tracking application.
The object of the present invention is therefore to provide a signal branch for use in a communication system, particularly a reflector antenna, for the transmission of microwave signals that allows an improved correction of the directional deviation of the reflector antenna. The further object of the present invention is to provide a method for processing a received signal fed into a signal branch that allows improved precision for correcting the directional deviation.
These and other objects are attained by a signal branch in a communication system, particularly a reflector antenna, for the transmission of microwave signals, as well as a method for processing a received signal fed into the signal branch, in accordance with the present invention.
The invention proposes a signal branch for use in a communication system, particularly a reflector antenna, for transmitting microwave signals. This signal branch comprises a common signal wave guide for transmitting a transmission signal and a received signal having one first end and one second end as well as an exterior and an interior; the common signal wave guide is also referred to as a “common gate.” The signal branch additionally comprises a plurality of transmission signal wave guides for feeding the transmission signal, with the transmission signal wave guides being disposed in a symmetrically distributed manner on the exterior of the common signal wave guide and each being connected in a communicative manner to the common signal wave guide. The transmission signal wave guides are also referred to as a “transmission gate.” In addition, a plurality of receiver signal wave guides is provided for transmitting the received signal, with the receiver signal wave guides being symmetrically adjacent to the second end of the common signal wave guide and each being connected to the common signal wave guide in a communicative manner. The plurality of receiver signal wave guides is also referred to as a “receiver gate.”
The signal branch according to the invention may be used in a reflector antenna used for transmitting and receiving purposes. In so doing, the signal branch allows the correction information necessary for correcting the communication signal to be generated from the received signal. In this manner, the signal branch according to the invention allows the directional deviation of the reflector antenna into which the signal branch has been integrated to be determined with a high degree of precision. This is made possible by virtue of the fact that the transmission signal and received signal are separated.
In particular, the common signal wave guide and the reception signal wave guide form a receiving path, which blocks a transmission signal that is fed into the transmission signal wave guide and which allows the propagation of a base mode with a communication signal (TE11) and two higher modes (TM01, TE21) with correction information for the communication signal if a received signal is fed into the common signal wave guide. The two higher modes (TM01, TE21) are also referred to as “tracking modes.” The correction information is also referred to as “tracking information.”
Moreover, the processing unit is designed for the purpose of generating cumulative signals and differential signals while processing the correction information (tracking) and to provide these signals under the same conditions, particularly at the same temperature. This embodiment allows a phase error due to different temperatures in the high frequency paths to be prevented.
A refinement of the invention proposes that the processing unit should be designed to provide the cumulative and differential signals only after the separation of the transmission and received signals. In this manner, disruptions of the transmission signal by a tracking mode coupler are prevented.
According to another embodiment, any polarization may be set by selecting the amplitudes and phases of the transmission signal fed into the transmission signal wave guide on the common signal wave guide. In particular, a polarization may be achieved that is vertical, horizontal, rotating in a circular fashion to the left and right, or rotating in an elliptical fashion to the left and the right.
For the improved decoupling of the transmission path from the reception path, a filter is provided in each of the transmission signal wave guides.
In another embodiment, a cone is provided for guiding the signal in the common signal wave guide on the second end and extending in the direction of the first end. This cone serves to “redirect” the transmission signal fed into the transmission signal wave guide, such that it is able to propagate in the common signal wave guide in the direction of the horn disposed on the first end of the signal wave guide.
The common signal wave guide may be embodied as a round wave guide or as a rectangular wave guide, particular as a square wave guide. In one concrete embodiment, the transmission signal wave guides have a rectangular cross section with one long and one short side edge. Here, in a first variant, the long side edges of each transmission signal wave guide may extend parallel to an axial direction of the common signal wave guide. In a second variant, the short side edges of each transmission signal wave guide may extend parallel to the axial direction of the common signal wave guide. In contrast, the receiver signal wave guides extend in the axial direction of the common signal wave guide.
The dimensions of the receiver signal wave guide are determined such that no modes may be propagated in the receiver signal wave guides at the transmission frequencies of the transmission signal. This measure provides the high degree of precision in the correction of the directional deviation of the reflector antenna discussed at the outset.
According to another embodiment, the signal branch is designed such that the received signal fed into the common signal wave guide is evenly distributed over the receiver signal wave guides. This means that the communication signal and the two modes are evenly distributed over the receiver wave guides. Here, the amplitudes in the receiver wave guides are equal; however, each mode has its specific phase pattern.
An additional embodiment provides for the signal branch to be coupled to a network of 90° and 180° hybrid couplers for breaking down and/or recombining a mode mixture of the modes of the received signal. On the one hand, the communication signal is separated from the tracking signals in this manner. On the other hand, a tracking signal is generated that receives the information regarding the value and direction of the alignment deviation.
In a concrete embodiment, the signal branch represents a turnstile branch.
The invention also creates a method for processing a received signal fed into a signal branch embodied according to the description above in which the received signal is divided into a base mode with a communication signal (TE11) and two higher modes (TM01, TE21) with correction information for the communication signal.
The method according to the invention has the same advantages as are described above in conjunction with the signal branch according to the invention.
In a refinement of the method according to the invention, two independent differential signals are provided by the processing of the correction information, whereby the tracking method for any polarization may be performed.
An additional embodiment provides for cumulative and differential signals to be generated during the processing of the correction information and for these signals to be provided under the same conditions, in particular at the same temperature. As explained above, this may prevent phase errors caused by different temperatures in the high frequency paths.
The invention further proposes that the cumulative and differential signals not be provided until after the separation of the transmission signal from the received signal.
According to an additional embodiment, by selecting the amplitudes and phases of the transmission signal fed into the transmission signal wave guides, a desired polarization is set at the common signal wave guide, in particular one that is that is vertical, horizontal, rotating in a circular fashion to the left and right, or rotating in an elliptical fashion to the left and the right.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of one or more preferred embodiments when considered in conjunction with the accompanying drawings.
The invention shall be described in greater detail in the following with reference to the exemplary embodiments shown in the drawings. Shown are:
a to 1d illustrate a first exemplary embodiment of a signal branch according to the invention in two perspective depictions from above and below, in a cross section, and in a side view,
a to 2d illustrate a second exemplary embodiment of a signal branch according to the invention in two perspective depictions from above and below, in a cross section, and in a side view,
a to 3d illustrate a third exemplary embodiment of a signal branch according to the invention in two perspective depictions from above and below, in a cross section, and in a side view,
The signal branch 1 according to the invention for use in a communication system, particularly for use in a reflector antenna, for the transmission of microwave signals comprises a common signal wave guide 2 for transmitting a transmission signal and a received signal. The common signal wave guide 2 comprises a first end 3 (
In the interior of the common signal wave guide 2, a cone 15 (
The common signal wave guide 2 (common gate) may selectively be embodied as a round wave guide (as in the exemplary embodiments shown in
In the exemplary embodiment according to
The cross-sectional design of the receiver gate in the exemplary embodiments in
By means of the structural designs of the turnstile branch described in the three exemplary embodiments, a transmission signal and a received signal may be separated. Here, the receiver path formed by the common signal wave guide and the receiver signal wave guides 11, 12, 13, 14 is provided such that the frequency of the transmission signal is blocked. The dimensions of the receiver signal wave guide are determined such that no modes may be propagated in the receiver signal wave guides at the transmission frequencies of the transmission signal, which provides a high degree of precision in the correction of the directional deviation of the reflector antenna. However, the propagation of received frequencies as well as a base mode with communication signals (TE11) as well as two higher modes (TM01 and TE21) with the correcting or tracking information required for the correction of the communication signal is made possible. Two independent differential signals are provided for the tracking, i.e., for the processing of the correction information. This guarantees that the tracking method may be performed for any polarizations and alignment errors resulting from a depolarization in the atmosphere are prevented. The cumulative and differential signals required for the tracking are decoupled under the same conditions. Particularly, decoupling occurs at the same temperature. In this manner, phase errors caused by different temperature in the high frequency (HF) paths are prevented. The (tracking) signals are not decoupled until after a separation of the transmission and received signals has occurred. In this manner, disruptions of the transmission signal by the tracking mode coupler may be prevented.
In the transmission case, the transmission signal is fed via the four transmission signal wave guides 7, 8, 9, 10 disposed laterally on the common signal wave guide. By a suitable selection of the amplitudes and phases on these four transmission signal wave guides, any polarization, i.e., vertical, horizontal, rotating in a circular fashion to the left and right, or rotating in an elliptical fashion to the left and the right, may be generated. For the improved decoupling of the transmission path, comprising the common signal wave guide 2 and the transmission signal wave guides 7, 8, 9, 10, from the receiving path, filters (not shown in
In the receiving case, the horn provided on the first end of the common signal wave guide 2 couples a mixture of the modes TE11 (communication) as well as TM01 and TE21 (tracking) into the common signal wave guide 2 of the turnstile branch. This mode mixture is routed within the turnstile branch to the receiver signal wave guides 11, 12, 13, 14 leading to the rear of the wave guide 2. The dimension of the back four receiver signal wave guides 11, 12, 13, 14 are selected such that no modes are propagable at the frequencies of the transmission signal. The communication signal in the received signal and the two tracking modes (TM01 and TE21) are distributed over the four receiver signal wave guides 11, 12, 13, 14. Here, the amplitudes in the four receiver signal wave guides are equal; however, each mode has its specific phase pattern.
This is shown by way of example in
Using the signal branch according to the invention, it is possible using a suitable network of 90° and 180° hybrid couplers (
The turnstile branch according to the invention may be used for linearly polarized signals and circularly polarized signals.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 044 895 | Aug 2008 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3566309 | Ajioka | Feb 1971 | A |
4052724 | Takeichi et al. | Oct 1977 | A |
6657516 | Junker et al. | Dec 2003 | B1 |
6714165 | Verstraeten | Mar 2004 | B2 |
6937202 | Chandler | Aug 2005 | B2 |
20030222733 | Ergene et al. | Dec 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20100052816 A1 | Mar 2010 | US |