1. Field of the Invention
The present invention is related to a signal denoising method, and more particularly, to a signal denoising method based on a wavelet-based method for time-domain noise reduction of a charge detection frequency-scan/voltage-scan quadrupole/linear/rectilinear ion trap mass spectrometer.
2. Description of the Prior Art
Denoising is an important data processing method in improving the signal-to-noise ratio (S/N) of a spectrum. Most denoising approaches currently adopted in mass spectrometry are to smooth spectra or average the noises in mass-to-charge (m/Ze) domain.1-8 Barclay et al. compared various methods for smoothing in processing spectra, including orthogonal transform (Fourier transform), windowed smoothing algorithms (Savitzky-Golay or Kalman averaging) and discrete wavelet decomposition or discrete wavelet packet decomposition.9 They found that the wavelet-based methods result in minimal distortion of original data. Li et al. later showed that by proper selection of wavelet functions and decomposition levels, the noise embedded in the mass spectrometry data can be substantially removed.6 However; these denoising approaches did not characterize the modules of noise features, and unavoidably lead to distortion of original signals when they are transformed from the time domain to the m/Ze domain. Hence, there is a desire to develop methods to remove the noises without domain transformation.10 Xu proposed to perform distortion-free harmonic interference noise cancellation in the time domain with a wavelet-based method and demonstrated its feasibility by using a simulated piecewise smooth signal and a real and irregularly pulsating signal.11,12 The method provides a useful alternative to improve S/N ratios.
For a signal observed in a mass spectrum, it is typically composed of three parts:11-13
S()=Sx()+Nh()+Nw() (1)
where S() is the observed signal, is the time, Sx() is the original signal without noise interference, Nh() is the harmonic interference induced by the AC power source, and NW() is the zero-mean Gaussian white noise. The last term is encountered whenever electrons cross the pn interfaces in electronic circuits and can be reduced by using a Boxcar averaging method or low pass filters.14 Many researches use notch filters and comb-shaped filters15-21 to remove Nh() but they cause distortion of original signals.11,12 Xu has shown that it is possible to remove Nh() by a harmonic interference cancellation algorithm, which cancels the Nh() completely, reduces Nw() and retains the signal without distortion.11 In this study, we apply the algorithm to remove the time-domain electronic noises in the ion signals acquired with a home-built laser desorption/ionization charge detection ion trap mass spectrometer (LDCD-ITMS).22-27
In analyzing the mass spectra, we notice that Eq. (1) is not enough to describe the signal components because the applied radio-frequency (RF) driving voltage for the ion trap is high and will inevitably interfere (NRF()) with the signal (S()). We know of no methods reported to remove the NRF() due to coupling of Sx() with the RF driving voltage. Here, we present an orthogonal wavelet packet decomposition (OWPD) method to achieve the task and show that NRF() is the dominant noise in the mass spectra obtained with LDCD-ITMS.22-29 The removal of NRF() is critically important in our application of the CD-ITMS technique to measure the masses of nanometer-sized particles, of which higher RF frequencies are required for the trapping. Using trapping frequencies higher than 1 kHz gives rise to distinct noises superimposed on the signals, as clearly observed in detection of 0.7 μm polystyrene spheres. Our denoising method successfully removes the noises without any distortion and hence improves the S/N ratios.
With the denoising program developed in this work, we are able to reduce substantially the levels of Nh() and NRF(), which makes the further reduction of white noise of the charge detector possible. Currently, the mass resolution of our frequency-scan ion trap mass spectrometer is −12. The reduction of electronic white noise will not only improve the resolution of the mass spectrometer but also enhance its detection sensitivity for detecting nanoparticles.
An embodiment of the present invention discloses a signal denoising method for a charge detection frequency-scan ion trap mass spectrometer and a charge detection voltage-scan rectilinear/linear ion trap mass spectrometer. The method comprises reading a signal raw data array observed in the spectrometer. Process the signal raw data array by Boxcar averaging method to obtain a first signal array. Process the first signal array by a harmonic interference cancellation method to obtain a second data array. Process the second signal array by a radio frequency (RF) interference reduction method and reconstruct a third signal array without the background induced from driving voltage of ion trap according to the second signal array.
Another embodiment of the present invention discloses an RF interference cancellation method. The method comprises reading a raw signal in time domain and reading hopping frequencies. Predict ideal waveform of frequency scanned by the hopping frequencies. Calculate phase differences between the raw signal and the ideal waveform at each hopping frequency. Calculate true phases at each sampling points of the raw signal. Input a number i of phases N for resampling, beginning with i=0. Resample the raw signal at phase[i]=2*pi*i/N, wherein pi is the ratio of a circle's circumference to its diameter. Determine the baseline[i] of resampled signals by using wavelet decomposition and reconstruction. Check if i is equal to N; if not, i=i+1 and redo previous two steps; if so, continue. Find an amplitude A by fitting baseline[i] with a function A*sin(phase [i]). Construct background at each sampling points by a function A*sin(true phases). Subtract the background from the raw signal and output signal without the background induced from driving voltage of ion trap.
Another embodiment of the present invention discloses an RF interference cancellation method for a voltage-scan ion trap mass spectrometer. The method comprises reading a signal S in time domain and reading an input driving frequency f. Resample the signal S with a sampling rate f*2̂J, wherein J is a deepest decomposition level. Decompose the signal S by wavelet packet decomposition to level J, wherein the wavelet packet decomposition coefficients are D0, D1 . . . D2J-1. Set a number i=1. Fit D with a liner function and subtracting the linear function from Di. Set i=i+1. Checking if i is equal to 2J−1; if not, redo previous two steps; if so, continue. Get a denoised signal from reconstruction of the wavelet packet decomposition coefficients; and write the denoised signal.
Another embodiment of the present invention discloses an RF interference cancellation method for a voltage-scan ion trap mass spectrometer. The method comprises combining a charge detector and rectilinear/linear ion trap for detecting high mass ions. A waveguide cavity surrounding the rectilinear/linear ion trap is provided to reduce induced radio frequency interference from the rectilinear/linear ion trap. An orthogonal wavelet packet decomposition (OWPD) based algorithm is used to remove radio frequency interference substantially without any signal distortion. The method further comprises reading a signal S in time domain and reading an input driving frequency f. Resample the signal S with a sampling rate f*2̂J, wherein J is a deepest decomposition level. Decompose the signal S by wavelet packet decomposition to level J, wherein the wavelet packet decomposition coefficients are D0, D1 . . . D2J-1. Set a number i=1. Fit D with a liner function and subtracting the linear function from Di. Set i=i+1. Checking if i is equal to 2J−1; if not, redo previous two steps; if so, continue. Get a denoised signal from reconstruction of the wavelet packet decomposition coefficients; and write the denoised signal.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
a-i show (a) Raw signal of test pulse in time domain. The rf frequency is set at 14 kHz and the amplitude is scanned from 18 V to 90 V. (b) Approximated wavelet decomposition coefficients of (a). (c-i) detail wavelet decomposition coefficients at pth frequency sub-band of (a), those are d30, d31, d32, . . . , and d37, respectively.
a-b show processing results of
a-d show (a) Raw mass spectrum of C60. (b) Denoising result of (a). (c) Raw mass spectrum of cytochrome C. (d) Denoising result of (c).
Orthogonal wavelet packet decomposition (OWPD) filtering approach to cancel harmonic interference noises arising from an AC power source in time domain and remove the resulting RF voltage interference noise from the mass spectra acquired by using a charge detection frequency-scan quadrupole ion trap mass spectrometer is adopted. With the use of a phase lock sampling technique, the transform coefficients of the RF interference in signals become a constant, exhibiting a shift of the baseline in different RF phases. The RF interference is therefore removable by shifting the baselines back to zero in OWPD coefficients. The approach successfully reduces the time-domain background noise from 1367 electrons (rms) to 408 electrons (rms) (an improvement of 70%) and removes the high frequency noise components in the charge detection ion trap mass spectrometry. Unlike other smoothing or averaging methods commonly used in the mass-to-charge (m/Ze) domain, our approach does not cause any distortion of original signals.
A problem associated with the frequency scan is that the amplitude of the RF field varied with the frequency during the scan. To solve this problem, the DAQ card 124 also recorded the voltage (after attenuation) applied to the ring electrode to calibrate both the gain margin and phase margin. Both the function generator 116 and the DAQ card 124 were synchronized by PCI eXtensions for instrumentation (PXI) module 114(National Instrument).
The electronic calibration for the charge detector was carried out by applying an electrical pulse of known amplitude and shape to the “test pulse input” connector of the detector. The test data is collected under the frequency scan mode while the amplitude of the RF voltage was set as 850 V0-p. The test pulse voltage was attenuated by two resistors with a factor of 1/100, and then fed to a 1 pF capacitor; the other terminal of the capacitor was virtually grounded to the amplifier input. The test pulse induced a charge Q in the Faraday plate as follows:
where Vtest is the amplitude of the test pulse.
The real data are signals obtained by using LDCD-ITMS with polystyrene microparticles as the test samples. Polystyrene microparticles with the sizes of 2, 4, 6, 8 and 9 μm in diameter were purchased from Sigma-Aldrich, polystyrene microparticles with the size of 3.0 μm were obtained from the National Institute of Standards and Technology of the United States, and polystyrene microparticles with the size of 0.7 μm were obtained from Spherotech. All the polystyrene beads were thoroughly washed twice with deionized water and loaded onto the silicon wafer and air-dried.
Both the data were processed and algorithms were written by using LabVIEW (Professional, Version 8.6 for Windows, National Instrument). The computer configuration was an Intel Core i5 M450 at 2.4 GHz with 3.2 GB of RAM.
Orthogonal Wavelet Packet Decomposition and Reconstruction30 (OWPD) is a mathematic tool useful for the development of denoising programs. In this method, the wavelet ψjp is split into a pair of wavelets whose spaces are orthogonal with each other by a pair of conjugate mirror filters g[n] and h[n]:
We denote djp[n] as the wavelet decomposition coefficients of the signal S() in space Wjp, calculated as
d
j
p
[n]=
S()|ψjp(t−2jn)) (5)
where | is an inner product. Similarly, the original signal S() could be calculated by reconstruction until p=0 and j=0 by
d
j
p
[n]={hacek over (d)}
j+1
2p
★h[n]+{hacek over (d)}
j+1
2p+1
★g[n] (6)
where {hacek over (d)} is the data array obtained by inserting a zero between each two samples of d, and the symbol ★ meant discrete convolution.
By using Equations (3), (4), and (5), the signal could be decomposed to wavelet packet decomposition coefficients in different spaces which are orthogonal with each other. The noises of the signals are estimated and rejected in wavelet packet decomposition.
A model to describe the signal of LDCD-ITMS is as follows:
S()=Sx()+Nh()+NRF()+Nw() (7)
where the signal S() obtained from LDCD-ITMS can be decomposed as a sum of four components: the signal without noises Sx(), the harmonic interference induced by the AC power source Nh(), RF interference from the applied driving voltage of the ion trap NRF() and the zero-mean Gaussian white noise Nw(). Nw() is random and disordered. Here we concentrate on the discussion of the model of Nh() and NRF().
γi, νi and φi are the amplitude, frequency and the initial phase of th harmonic. is the highest order of harmonics, and νi=×ν1, where ν1 is base frequency of the harmonics. Symbol is time.
The RF interference (NRF()) is induced by applied RF driving voltage of QIT (VRF()), and we assume that NRF() is linearly proportional to VRF().
N
RF()=εVRF()=ε sin(2π()) (9)
where ε is the coefficient of interference, the value of ε depends on the RF strength, is the amplitude of the RF driving voltage, and () is the phase of driving voltage of QIT. The gain margin of can be ignored because the effect is negligible in NRF. Since we generate the frequency scan waveform by phase-continuous frequency hopping, the () is described as
where Δ is the duration that stays at a certain frequency, └ ┘ is the round down operator, fk is the frequency at stepwise sweep frequency step k, φf
The number of steps is set as , the frequencies of a linear frequency stepwise scan are described as
fi and ff are the initial frequency and the final frequency in a frequency scan.
Using above feature model of noises, a denoising program has developed to remove Nh and NRF, and reduce Nw. The flow chart of the denoising program 500 is shown in
The denoising program 500 includes of three major algorithms: Boxcar averaging, harmonic interference cancellation, and RF interference reduction.
With regard to Boxcar averaging algorithm, before we do the OWPD, the size of datasets is reduced by Boxcar averaging to enhance the computing speed and reduce the white noise. The sampling rate of raw data sets after Boxcar averaging should keep four hundred times of the initial frequency during a frequency scan, which can ensure raw datasets have enough resolution to reconstruct the RF interference array.
With regard to Harmonic Interference Cancellation, Harmonic interference cancellation was mentioned by Xu11. The first step is to resample raw signals with sampling rate frs.
f
rs=ν1×2J (12)
where ν1 is the base frequency of harmonics and J is the decomposition level, frs is the resampling rate which is the closest number to sampling rate after Boxcar averaging.
The signal with OWPD is decompose to level J. The decomposition coefficients of the signal and those four components of Eq. (7) are described as
d
J
p
[n]=dS
x
p
[n]+dN
h
p
[n]+dN
RF
p
[n]+dN
w
p
[n] (13)
The model of harmonic interference has been discussed in Eq. (8). It is found only ½J of samples of Nh() are retained by dNh
The Eq. (14) shows that the harmonics becomes a nonzero baseline in OWPD coefficients dJp but the other three coefficients (dSx
With regard to RF Interference Reduction algorithm, the flow chart of the RF interference reduction method 200 is shown in
where 101 and 102 are indexes of row and column. We calculate the time stamp array rs[101 , 102 ] by doing linear interpolation of Eq. (10) using rs[, ]. Then we interpolate the signal (S) with timestamp rs [, ], i.e.
S[
,
]=S(rs[,]) (16)
where the RF interference in two-dimension array S[, ] is as
NRF[, ] is a constant in a signal if the phases of the driving voltage are the same. In other words, S[, ] has a nonzero baseline, which is induced by NRF, in each row. The resampling signal S[, ] is shown in
As for how to remove the RF interference in signals, each row of S[, ] by OWPD until J=2 of dJp in Eq. 5 for baseline estimation. The decomposition coefficients are d[, ]20, d[, ]21, d[, ]22, and d[, ]23. The scaling function h[n] is a low pass filter and d[, ]20 is operated by h[n] with two times. We refer d[, ]20 to an approximated coefficient. We estimate the baseline b[] in d[, ]20 by fitting with a horizontal linear line, and then remove the nonzero baseline back to zero as
d[
,
]
2
0
=d[
,
]
2
0
−b[
] (18)
Now the S[, ] is reconstructed by using the new decomposition coefficient d[, ]20
Shown in
To discuss the noise components of the charge detector, the test pulse is used to measure the response signals. The noise intensity of NRF obtained in experiment is about 32 mV (V0−p), which is converted to 22.6 mVrms (1283 electrons) in root-mean-square value as shown in
In another embodiment, RF interference reduction method 700 may be applied to voltage-scan ion trap mass spectrometer. The flow chart of RF interference reduction method 700 is shown in
The signal S and the input frequency f are read at electrodes of the voltage-scan ion trap mass spectrometer. The signal S is resampled by linear interpolation with a resampling rate and J is the deepest decomposition level of wavelet packet decomposition. D0 is an approximated coefficient of OWPD and the D1 . . . D2J-1 are detail coefficients of OWPD. The wavelet packet decomposition coefficients are reconstructed back to J=0 so as to get a signal without RF interference.
In summary, a denoising program based on an OWPD method to effectively remove the interference induced by the applied RF driving voltage which is inevitably present in LDCD-ITMS is developed. The program shows high efficiency in eliminating the RF-induced noise, removing the harmonics from the AC power source, and reducing the white noise level by Boxcar averaging with wavelet decomposition coefficient threshold. Tested with the induced RF signals from the charge detector, the method successfully reduces the noise level in charge detection from 1367 to 408 electrons and improves the detection sensitivity limit by about 70%. The approach is expected to be useful to remove the interferences from the applied high RF voltages used in various types of mass spectrometers, including quadrupole ion trap, linear ion trap, Fourier transform ion cyclotron resonance, and orbitrap mass spectrometers34,35, and may be applied to both frequency-scan and voltage-scan ion mass spectrometers.
In another embodiment, RF interference is removed from a charge detection voltage-scan rectilinear (linear) ion trap mass spectrometer as follows.
A linear ion trap (LIT) is a popular trap device on account of its high ion trapping capacity and MSn ability.1-3 It is widely used in hybrid instruments, such as a Fourier transform ion cyclotron resonance mass spectrometer and an Orbitrap mass analyzer for biomolecular mass analysis.4-7 Currently, the detection mass range of an LIT is only mass-to-charge ratio of 4,000 as its RF driving frequency is typically set at 1 MHz and its poor secondary electron conversion efficiency leads to insufficient signals of high mass ions. In order to extend the detection mass range of an LIT, Chen et al. developed a frequency-scan LIT mass spectrometer to lower the RF driving frequency and used secondary charge detector to generate ion signals at very high voltage (˜30 kV).8 While using a secondary charge detector, strong arcing and low secondary electron efficiency will limit its detection of high mass ions.
To deal with the above two problems, a charge detector was introduced to couple with a quadrupole ion trap (QIT)9-16, which shows no poor detection efficiency in detecting high mass ions and suitable to detect single cells, polystyrene particles and IgM ions. However, QIT cannot provide high ion trapping efficiency with simple geometry and enough mass resolution due to a low space charge effect while a rectilinear ion trap (RIT)1, 17, 18 a kind of LIT, can. IA charge detection rectilinear ion trap (CD-RIT) mass spectrometry is proposed that couples a charge detector and an RIT/LIT that demonstrates the promising detection of high mass ions. It was found that the coupled charge detector and RIT/LIT faces a serious RF field interference problem. If the RF interference is solved, the desired coupling of a charge detector and RIT is possible. Therefore, in this section, the RF problem when coupling charge detector and RIT is addressed.
In order to overcome the RF problem, a shielding case with guarding mesh is added to reduce the strong RF field by waveguide cavity theory.19 The waveguide cavity can confine the strong RF field inside the trap and will not saturate the charge detector. However, this strong RF field cannot be fully reduced with the cavity only. Therefore, an algorithm based on orthogonal wavelet packet decomposition (OWPD) theory is developed to completely remove the RF interference without any signal distortion.20,21
To reduce all noise interferences from a voltage-scan CD-RIT mass spectrometer. An observation model of time domain signal S is described as
S=S
x
+N
rf
+N
h
+N
w (19)
where Sx is the signal induced by ions, Nrf is the interference induced by RF field, Nh is the sum of harmonics induced by AC power source, and Nw is white noise. Both Nh and Nw are common noises in instruments, these two noises can be minimized by suitable cable connection and instrumentation design. The rejection of Nh and Nw by signal processing methods were widely studied.20, 22-28 Therefore, in this study, we focus to build a denoising model of Nrf. We assume Nrf is proportional to the intensity of RF electric field and the Nrf is written as following
where t is time, ρi(t) is RF interference which is proportional to the RF driving voltage of ith electrode at time t.21 As shown in equation 20, Nrf is a superposition result of interferences from the RF voltages at each electrode. In voltage-scan mode, ρi(t) in equation (20) is a product of a straight line and a sinusoidal wave of RF driving voltage (frf). In general, the Nrf can be reduced by band-stop filters (i.e. notch filters) but those will cause distortions in Sx.22, 29 Those distortions will be even seriously and enlarged when the RF frequency is close to the frequency of Sx.29 Since the detection of high mass ions will employ lower RF trapping frequency which is close to the signal frequency and thus the signal could not be retrieved by conventional band-stop filters. Besides band-stop filters cannot be used to reject RF interference completely with only finite signal length.29 An even worse result is that distortion will destroy the peak sharp of signal from the charge detector. Therefore the absolute charge number of ions will be measured wrong.
To get a distortion-free signal from a voltage-scan CD-RIT mass spectrometer, an algorithm based on orthogonal wavelet packet decomposition (OWPD) theory is proposed. The OWPD is widely used in digital signal processing to decompose the raw signal to different levels of band-pass filtered results in time domain. A specific setting on sampling rate of signal makes Nrf easily estimated and removed after OWPD. We therefore can reconstruct the decomposed signals back to the raw signal without distortions and RF interference.20 By employing both a waveguide cavity and the RF removal algorithm, mass spectra of C60 and cytochrome C (cyt C) without any distortions can be obtained. Results demonstrate that CD-RIT mass spectrometer can detect high mass MALDI ions without RF interference and might be beneficial for high mass analysis using LIT and LIT-hybrid instruments.
The data acquisition work flow is shown in
The amplitude of an RF sinusoidal signal is provided by function generator which amplitude is modulated from the analog output of DAQ card. The RF signal is amplified by a power amplifier which is consisted of a current amplifier and a transformer, and then applied to the electrodes of RIT. The charge detector is consisted of three parts: a Faraday plate, a charge integral circuit, and a band-pass filtering circuit. An image charge is induced while the ions are closing to Faraday plate. The charge integral circuit senses the image charges and outputs a voltage signal which is filtered by a band-pass filtering circuit. RF voltage is set at low level in the trapping period and cooling period, and RF amplitude is set to scan linearly. The charge detector senses an induced imaging charge signal when the ejected ions hit the detector plate. Ion signals are recorded by a DAQ card and the acquired mass spectra are stored in a computer.
In
A test pulse is used to calibrate the output signal and image charge induced by charge detector 830.10 The test pulse voltage is attenuated by two resistors with a factor of 1/100, and then fed to a 1 pF capacitor; the other terminal is coupled with 1 pF capacitor to the Faraday plate. The induced charge from test pulse Vtest in Faraday plate is
When analyzing high mass ions, RF driving frequency must be set to a lower frequency, however, the induced RF interference will be very hard to be removed completely by traditional band-stop filters. OWPD approach, on the other hand does not face this difficulty. To compare the difference between band-stop filters and OWPD, we simulate the signal by inputting a test pulse of square wave (20 Hz 500 mVp-p) into the charge detector 830 in a voltage-scan condition, where the driving RF frequency is set at 14 kHz and scanned from 18 V to 90 V. Both band-stop filter and OWPD methods are demonstrated to remove the RF interference using test pulse.
The protein, cytochrome C from horse (12327 Da), was purchased from Sigma. All analytical grade reagents, MALDI matrices and fullerene (C60, purity >99%, with C70 as major impurity) were purchased from Aldrich. All analytes were used as received. Deionized water was purified to 18.2 MΩ/cm by Milli-Q water purification system (Millipore, Billerica, Mass.).
Herein, we used Li's two-layer sample preparation method31 to prepare protein samples in which the matrix solution with concentration of 6 mg/mL in 60% Methanol/acetone (v/v) of sinapinic acid (SA) was placed and dried on a sample probe to form a microcrystal as the first layer. Then a solution containing both analytes and matrix was added to the top of the matrix layer as the second layer. The second matrix layer solution was prepared in 50% acetonitrile/water (v/v) which contained 0.1% trifluoroacetic acid with concentration of 1 mg/100 μL for SA.
Saturated fullerene (C60) solution was prepared in toluene which is used as mass calibration standard. Roughly, 8 μL mixture of sample and matrix was added onto the stainless sample probe (8 mm diameter) and then air-dried.
The trapping voltage for C60 is 60 V and then scanned to 300 V at RF frequency of 180 kHz. The trapping voltage of cyt C is 112 V and then scanned to 560 V at RF frequency of 80 kHz.
The data were processed and algorithms were written by LabVIEW (Professional, version 8.6 for Windows, National Instrument, Austin, Tex.). The computer configuration was an Intel Core i5 M450 at 2.4 GHz with 3.2 GB of RAM.
Orthogonal wavelet packet decomposition (OWPD) is a math tool which is used in developing an RF interference cancellation algorithm. According to the OWPD, a signal Y in space Vjp is decomposed in a pair of orthogonal subspaces which are an approximated space Vj+12p and a detail space Vj+12p+1 where j is the decomposition level and the (j,p) is the pth node at level j, j≦J where J is the deepest level of decomposition.20 The Vjp admits an orthonormal basis . The root space of binary decomposition V00 is the space of original signal which admits a canonical basis of Diracs
29 The basis Ψjp of Vjp is decomposed to two orthonormal bases Ψj+12p of Vj+12p and Ψj+12p+1 of Vj+12p+1 by a pair of conjugate mirror filters g[n] (low-pass filter) and h[n] (high-pass filter) as following20:
The decomposition result of signal Y in space Vjp is
where the bases Ψjp work as band-pass filters, therefore, the djp are the wavelet decomposition coefficients in the pth frequency sub-band at level j. The dj0 is the approximated coefficients at level j, while the djp(0<p<2j) are the detail coefficients in the pth detail sub-bands at level j. Equation (23) shows that Y is subsampled by factor 2j, only 1/2j of the samples of Y is retained by djp.
The original signal Y can be reconstructed by following reconstruction equation at each p and j until d00=Y is obtained
d
j
p
[m]={hacek over (d)}
j+1
2p
★g[m]+{hacek over (d)}
j+1
2p+1
★h[m] (24)
where {hacek over (d)} is the data array obtained by inserting a zero between each two samples in d, and the symbol ★ is discrete convolution.
According to equation (23), the decomposition coefficient dJp of signal S at level J is following
d
J
p
=dS
x
p
+dN
rf
p
+dN
h
p
+dN
w
p (25)
where the coefficients dJp are the wavelet decomposition coefficients, whereas dSx
Transform coefficients ρi′ are referred as the filtering result of the ρi (RF interference induced by ith electrode) through the ΨJp, therefore, the formula of dNrf
where ai′ (tn) is a linear function which is proportional to the voltage scan of RF field, frf is the driving frequency of rf, φi′ is the initial phase of ρi′, and tn is discrete time at sample n which is written as
where fs is the sampling rate which is set as
f
s=2J·frf (28)
Inserting equations (28) and (27) into equation (26) which leads to
where α is a linear function of scan time.
In equation (29), the dNrf
The signal processing result by OWPD method is shown in
a and
We have developed for the first time by coupling charge detector with rectilinear ion trap mass spectrometer to detect high mass ions. Two key technologies, i.e. waveguide cavity is built to reduce the induced RF interference from RIT and OWPD based algorithm is developed to completely remove the RF interference without any signal distortion. The current CD-RIT MS technology can help develop LIT and LIT-hybrid instruments to detect high mass ions in the future.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/648,630 entitled “Wavelet-based Method for Time-Domain Noise Analysis and Reduction in a Frequency-Scan Ion Trap Mass Spectrometer”, filed May 18, 2012, and included herein by reference in its entirety for all intents and purposes.
Number | Date | Country | |
---|---|---|---|
61648630 | May 2012 | US |