The subject matter disclosed herein relates to a remote detonator system for explosive charges and in particular to a remote detonator system having wireless communications between a transmitter and a detonator.
Explosive charges are used in a wide variety of applications, such as mining operators, building demolition and in military and police operations. The initiation of the explosive charge is performed by a detonator device that typically uses an electrical charge to ignite a small explosive such as a blasting cap for example. Traditionally, the blasting cap was physically connected to an ignition switch using a conductor such as copper cable. To initiate the detonator, the operator connects the conductor to the switch once the area where the explosive charge is clear of personnel and actuates the switch. The use of a physical conductor provides a number of advantages in reliability and safety.
However, physical conductors also introduce a number of issues. In applications such as mining, many explosive charges may be set and configured to detonate in a desired sequence. The use of physical conductors to connect with each of the charges is labor intensive and dependent on the accuracy and attention of the operator to ensure the large number of conductors are properly installed and coupled to the switch. A misconnected conductor increases the risk of detonating the explosives in the wrong sequence. In other applications, such as military operations, the use of a physical wire is undesirable as it increases the weight of equipment the personnel have to carry and may expose the personnel to opposing forces while the conductor is being disbursed and is subject to damage prior to actuation of the detonator. Further, physical wires are susceptible to induced currents due to radio frequency electromagnetic fields created by radios and other wireless communications devices. This induced current may in certain circumstances cause a premature detonation of the explosive charge.
Other types of physical connections have also been proposed, such as but not limited to shock tubes, optical cables, low energy detonating cord (LEDC) and the like. While each of these has its own advantages, since the connections are physical, care must still be taken by the operator during installation. Further, physical connections may also become a tripping hazard for friendly forces or provide a means for an opposing force to locate either the explosive charge or personnel.
To avoid these issues, wireless detonator systems have been proposed. The use of a wireless system solves the labor issue of the having to install a conductor and also reduces the installation time for military personnel. However wireless detonator systems have provided their own challenges. First, since there is no physical conductor, the detonator needs to include an energy source to initiate the detonator. This presents a risk of inadvertent detonator actuation. Further, many of these systems use radio frequency (RF) communications. An RF based communications system uses an antenna to acquire the signal. This can be problematic in some applications, such as a battlefield where the RF spectrum is heavily used. Since RF signals are an electromagnetic wave, stray (and directed) RF signals may induce an electrical current in the antenna, which presents a risk of inadvertent detonator actuation. Further, RF communication is susceptible to electromagnetic jamming by both friendly and opposing forces, which could prevent initiation of an explosive charge.
Other wireless systems, such as optical or laser systems have also been proposed. These resolve the issue of interference, induced voltage and jamming. However an optical based system requires a line of sight connection with no obstacles for communicating the signal from the switch to the detonator. This situation may not be possible in some applications, such as urban warfare where the operator may be several rooms away from the explosive charge. Further, a line of sight system may expose the operators to opposing forces or otherwise reveal their position.
Accordingly, while existing detonator systems are suitable for their intended purposes the need for improvement remains particularly in providing a wireless communication system between a detonation transmitter and a detonator that does not utilize radio frequency communications.
According to one aspect of the invention, a remote detonator is provided. The remote detonator includes a first receiver and a transmitter. The first receiver includes a first transducer configured to receive an ultrasonic acoustic signal, the first transducer being electrically coupled to a first controller, the first controller having a processor responsive to executable computer instructions for detonating a first charge in response to the first transducer receiving the ultrasonic acoustic signal. The transmitter includes a second transducer configured to selectively emit the ultrasonic acoustic signal in response to an actuation by an operator.
According to another aspect of the invention, a method of detonating an explosive charge is provided. The method includes coupling a first receiver to an transmitter. A predetermined code is transmitted from the transmitter to the first receiver. The first receiver is positioned with the charge remote from the transmitter. An ultrasonic acoustic signal is transmitted from the transmitter, the ultrasonic acoustic signal including at least the predetermined code. A plurality of acoustic signals are received with the first receiver. It is determined whether he received plurality of acoustic signals includes the ultrasonic acoustic signal. The explosive charge is detonated with the first receiver.
According to yet another aspect of the invention, A remote detonator is provided. The remote detonator includes a receiver and a transmitter. The receiver includes a housing with a projection on one side and a first acoustic transducer on an opposite side, the projection including a detonator, the first acoustic transducer configured to receive an ultrasonic acoustic signal, the first acoustic transducer being electrically coupled to a first controller disposed in the housing, the first controller having a processor responsive to executable computer instructions for transferring an electrical charge in response to the first acoustic transducer receiving the ultrasonic acoustic signal. The transmitter is removably coupled to the receiver, the transmitter having a body with an opening sized to receive and electrically couple with the projection, wherein the transmitter configured to emit the ultrasonic acoustic signal in response to a actuation by an operator.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Embodiments of the present invention provide for a remote detonation system for detonating explosive charges without the use of a physical connection between the operator and the detonator device. Embodiments of the invention provide advantages in allowing the operator to initiate the detonation wirelessly with no or low risk of the signal being blocked (jamming) by opposing forces or stray signals inducing a voltage in the detonator. Still further embodiments of the invention provide advantages in providing reliable communications between the operator and the detonator device in the presence of contaminating signals, such as sound, light and a broad range of electromagnetic or other radio frequency emissions.
Referring now to the FIGs. a wireless remote detonator system 20 is provided. The detonator system 20 includes a receiver 22 and a transmitter 24. As will be discussed in more detail herein, the receiver 22 is adapted to couple with an explosive charge, such as a blasting cap for example, that detonates an explosive charge in response to receiving an acoustic signal that includes a predetermined detonation code. In the exemplary embodiment, the acoustic signal is transmitted in the ultrasonic or higher frequency range.
The receiver 22 includes a housing 26 having a projection 28 extending from one side (
The receiver 22 further includes a circuit 38 arranged within the housing 26. The circuit 38 includes the energy storage device 30 coupled to a control circuit 40 and a pair of switches 42, 44. In the one embodiment, the energy storage device 30 is a capacitor and is capable of holding the charge for at least four (4) hours. The control circuit 40 moves between an open and closed position. The switches 42, 44 separate the energy source 30 from the detonator 45 to prevent the flow of electrical current when the switches 42, 44 are open and the detonator 45 is shunted. The switches 42, 44 are actuated by the safety pin 34 such that the switches 42, 44 are open when the safety pin 34 is installed and closed when the safety pin 34 is removed. It should be appreciated that the safety pin 34 may be reinserted after removal to open the switches 42, 44 and prevent detonation of the explosive charge.
The receiver 22 includes control circuit 40 shown in
It should be appreciated that while embodiments herein describe the desired frequency as being about 25 kHz, the claimed invention should not be so limited. In other embodiments, the desired frequency may be other frequencies or the frequency may be determined during the synchronization process. In still other embodiments, the desired frequency may be operator defined.
As will be discussed in more detail below, the ultrasonic acoustic signal is encoded with a predetermined code, which when present in the acoustic signal enables the microprocessor 58 to close the control switch 60. If the safety pin 34 has been removed and the processor 58 closes the control switch 60, electrical current will flow from the energy storage device 30 into the projection 28 to initiate the detonator 45.
In one embodiment, the receiver 22 is configured to allow bidirectional communication with the transmitter. In one embodiment, the energy storage device 30 is sized to provide power for the bidirectional communication. It is estimated that the energy storage device 30 would need to store an additional 4.2 joules of energy in addition to the energy for initiating detonation in order to transmit 100 feet.
The transmitter device 24 shown in
In other embodiments, the body 62 may include straps or other mounting hardware that allows the transmitter 24 to be mounted on an operator (e.g. on an arm or belt) or to a firearm (e.g. on a stock or barrel).
One embodiment of the control circuit 72 of the transmitter 24 is shown in
Referring now to
With the explosive charge in place, the safety pin 34 is removed in block 102 and the receiver is ready to detonate the explosive charge. The personnel move a safe distance away and transmit the ultrasonic acoustic signal in block 104. As discussed above the receive receives the ultrasonic acoustic signal and determines if the signal is at the desired frequency and includes a code that is the same as the predetermined code transmitted to the receiver 22 in block 94. If the received code matches the predetermined code, the switch 60 closes and the electrical current flows to the projection 28 and the explosive charge is detonated.
The use of an acoustic signal provides a number of advantages. Since an acoustic signal is used, the issue of induced currents from stray signals is eliminated. Further, the ultrasonic acoustic signal may be transmitted between rooms. It was found that transmission was completed through a closed solid fire rated wooden door. Ultrasonic signals provide improved penetration of obstacles that would otherwise impede an RF signal, such as but not limited to wet materials and metallic barriers (i.e. shipping containers). The ultrasonic acoustic signal provides still further advantages in allowing for reliable transmission of the signal in a noisy environment, such as a battlefield. Testing was performed during live fire of an AR-15 rifle with a 20″ barrel firing a M855 equivalent ammunition. During this testing, the transmitter transducer was positioned 50 feet and 100 feet from the rifle being fired and the receiver transducer was placed 5-10 feet behind the rifle muzzle Under these conditions, the data received 4 out of 4 times at 50 feet. With the transmitter transducer placed at the muzzle of the rifle being fired, data was received 3 out of 4 times at 100 feet and 2 out of 4 times at 50 feet. It is contemplated that the receiver 22 may be configured to activate during localized low pressure periods to avoid having the pressure wave from the rifle over drive the transducer. Further, it is contemplated that by using digital signal processing techniques to increase communications speed, the data transmission may occur during the window of decreased pressure. To further increase reliability, a higher speed transmission system may be used to transmit the ultrasonic acoustic signal multiple times.
In other embodiments, the transmitter 24 may be configured to synchronize with multiple receivers 22 allowing an operator to detonate multiple charges with the transmission of a single ultrasonic acoustic signal. In other embodiments, the receiver 22 may be configured to synchronize with multiple transmitters 24 to provide redundancy in case a primary transmitter becomes damaged or the operator disabled. In still further embodiments, the receiver 22 includes a timer that delays detonation of the explosive charge for a period of time, such as 17 milliseconds to 10 seconds for example. In one embodiment, the delay period is fixed while in another embodiment the delay period is set by the operator.
It should be appreciated that while the systems and method of communicating using an ultrasonic acoustic signal has been described with respect to a detonation system, the claimed invention should not be so limited. In other embodiments, the ultrasonic acoustic communications arrangement may be used in other applications, including but not limited to coded identification transmissions to friendly forces in real time, secure coded communication between submarines and surface ships, garage door openers, automobile keyless entry systems, and residential/commercial alarm systems. In still other applications, the acoustic communications arrangement may be used for close quarters, non-line-of-sight stealth communication between military personnel or law enforcement officers. The acoustic communications arrangement may also be used for communication between distributed sensor arrays such as those used in area denial weapons or area intrusion alarms. Still further applications may include communications for robots, unmanned ground vehicles (UGVs) or unmanned underwater vehicles (UUV's) particularly for robots that operate in “swarms” of actively or passively coordinated activity in a local area. This could work well in battlefield environments or for disaster response robots in areas cluttered with debris or water that degrades traditional radio frequency communication.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
The present Application is a divisional application of U.S. application Ser. No. 14/197,935, filed on Mar. 5, 2014, entitled “Signal Encrypted Digital Detonator System,” which is a non-provisional application of U.S. Provisional Application Ser. No. 61/774,613, filed on Mar. 8, 2013, entitled “Signal Encrypted Digital Detonator System,” the contents of both of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3226670 | Richard | Dec 1965 | A |
3648636 | Mentcher | Mar 1972 | A |
3780654 | Shimizu et al. | Dec 1973 | A |
3971317 | Gemmell | Jul 1976 | A |
4031826 | Gemmell | Jun 1977 | A |
4037538 | Andrews et al. | Jul 1977 | A |
4478149 | Backstein | Oct 1984 | A |
4495849 | Cooke et al. | Jan 1985 | A |
4616590 | Albertini et al. | Oct 1986 | A |
4680584 | Newsom et al. | Jul 1987 | A |
4685396 | Birse et al. | Aug 1987 | A |
4805657 | Carman | Feb 1989 | A |
4884506 | Guerreri | Dec 1989 | A |
5041622 | LeSuer | Aug 1991 | A |
5229541 | Will | Jul 1993 | A |
5488908 | Gilpin et al. | Feb 1996 | A |
5668342 | Discher | Sep 1997 | A |
5894103 | Shann | Apr 1999 | A |
6227114 | Wu et al. | May 2001 | B1 |
6247408 | Andrejkovies et al. | Jun 2001 | B1 |
6481329 | Porter | Nov 2002 | B2 |
6763883 | Green et al. | Jun 2004 | B2 |
6802237 | Jones | Oct 2004 | B1 |
7383882 | Lerche et al. | Jun 2008 | B2 |
7810430 | Chan et al. | Oct 2010 | B2 |
9568294 | Morris | Feb 2017 | B2 |
20070195646 | Govindswamy | Aug 2007 | A1 |
20080302264 | Hummel et al. | Dec 2008 | A1 |
20090193993 | Hummel et al. | Aug 2009 | A1 |
20130000908 | Wlaters et al. | Jan 2013 | A1 |
20160223310 | Morris | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
0375872 | Jul 1990 | EP |
2011038449 | Apr 2011 | WO |
Entry |
---|
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US14/21674; dated Oct. 16, 2014; dated Nov. 18, 2014; 12 pages. |
Number | Date | Country | |
---|---|---|---|
61774613 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14197953 | Mar 2014 | US |
Child | 15430918 | US |