The present invention is related to a signal feedback apparatus, in particular, to signal feedback apparatus used in a surge protection device (SPD).
Electronic components of surge protection devices, terminal blocks and relay etc. are commonly used in electric circuits in households, office places and factory sites, and they are mainly used for preventing damages of electrical equipment caused by transient overvoltage. When peak current or voltage is generated on the electric loop or telecommunication circuit due to external interferences, a surge protection device is able to guide and shunt the current within an extremely short period of time in order to prevent surge from damaging other equipment in the loop.
In a common surge protection device, it typically comprises an element of Metal Oxide Varistor (MOV) (i.e., a voltage dependent resistor). After a long period of use, the voltage dependent resistor tends to age and generates heat. To prevent accidents such as fire caused by increase of temperature, the surge protection device typically includes a trip mechanism. The trip mechanism is in series connection with the voltage dependent resistor such that when the temperature increases, the voltage dependent resistor is disengaged from the circuit.
For a currently existing SPD telesignaling device, it typically includes a microswitch installed therein for each level. In addition, these microswitches are connected to the telesignaling terminal block via corresponding circuits such that the mechanism moves through actions on each microswitch. Each level performs action independently, and the device is of complicated structure while requiring greater number of components; consequently, its manufacturing process is complicated in practice.
In view of the above drawbacks of the currently existing technologies, the inventor seeks to provide a reasonable design capable of effectively improving the aforementioned drawbacks after years of researches along with utilization of academic theories and principles.
The present invention provides a signal feedback apparatus capable of utilizing the opening and closing of a microswitch to achieve the telesignaling monitoring on the states of the functional modules.
To achieve the aforementioned objectives, the present invention provides a signal feedback apparatus, comprising a base, a telesignaling linkage member, sliding plate and switch module. The telesignaling linkage member is moveably installed on the base. The sliding plate is installed corresponding to the telesignaling linkage member and is configured to generate a movement along with the telesignaling linkage member. The switch module comprises a microswitch. The microswitch is arranged corresponding to the sliding plate and is configured to operably open or close the microswitch based on the movement of the sliding plate.
Preferably, the telesignaling linkage member comprises a linkage shaft, the linkage shaft includes a driving oblique surface, and the sliding plate includes a driven oblique surface such that when the functional rotating member presses onto the protruding column, the driven oblique surface of the sliding plate is blocked by the driving oblique surface of the linkage shaft. When the functional rotating member rotates to allow the protruding column of the linkage member to be released, the driving oblique surface pushes the driven oblique surface such that the sliding plate moves along the sliding slot to press onto the microswitch. The arrangement of the driven oblique surface and driving oblique surface allow the telesignaling linkage member sliding member to slide more stably.
Preferably, a resultant force of all of the sliding plate springs is smaller than the elastic force of one single linkage shaft spring. Accordingly, it is able to ensure that after the tripping of the SPD at any level, the signal feedback apparatus is able to send out signal in order to ensure that each tripping is effectively fed back to the control end; therefore, the safety and reliability of SPD are increased while the number of components required is reduced.
Preferably, the signal feedback apparatus includes a top cover, and the top cover is of a U-shape plugging socket. The inner wall of the U-shape plugging socket includes a locking slot, the electrical unit includes an outer casing, and the outer casing includes a latch such that when the electrical unit is inserted onto the base, the latch is locked onto the locking slot at the inner wall of the U-shape socket. Therefore, the connection between the signal feedback apparatus and the electrical unit is convenient and fast, which is also able to prevent the electrical unit from loose connection or disengagement; consequently, the product safety is increased.
Preferably, the base includes an electrical connector, and the electrical connector includes a metal clamp and a lead wire. The metal clamp and the lead wire are soldered onto each other. The metal clamp is clamped onto the first electrical connection pin and the second electrical connection pin of the tripping mechanism in order to form a conductive circuit.
Preferably, the base includes a limiting point, and the linkage shaft includes a protrusion such that when the linkage shaft is installed inside the base, the protrusion is locked onto the limiting portion in order to prevent the linkage shaft from being ejected by the spring after the installation thereof.
The signal feedback apparatus of the present invention uses one microswitch only, and it is able to utilize one sliding plate for linking surge protection modules of multiple levels together. Each level is provided with a telesignaling linkage shaft linked to the sliding plate and the surge protection module such that when the surge protection module of any one level is of malfunctioned tripping, the telesignaling device is able to send out signals. The present invention utilizes the mechanical connection structure of independent linkage for each level such that the mechanical connection is table, the component quantity required is small, the manufacturing process in practice is facilitated and the cost is relatively lower. In addition, the present invention is able to ensure that each tripping can be effectively fed back to the control end in order to increase the safety and reliability of an SPD.
The following provide a detailed description on the preferred embodiments of a signal feedback apparatus of the present invention along with the accompanied drawings.
As shown in
The base 10 is generally of an elongated shape and includes a plurality of hooks 11 formed at a middle region thereof. Each hook 11 is arranged spaced apart from each other, and a sliding slot 12 is formed at a lower edge among each hook 11. One side of the hook 11 is formed of an end surface 13. The middle region of the base 10 includes an installation hole 14 formed thereon. In this embodiment, the quantity of the installation hole 14 is two. One side of each one of the installation holes 14 includes a groove formed thereon, and a top edge of the groove is formed of a limiting point 15. The base 10 at the rear end of the sliding slot 12 is formed of a blocking wall 16. The two side regions of the base 10 include a plurality of receiving slots 17 formed thereon respectively.
The telesignaling linkage member 20 is received inside the installation hole 14. In this embodiment, the quantity of the telesignaling linkage member 20 is two, and each telesignaling linkage member 20 comprises a linkage shaft 21 and a linkage shaft spring 22. The linkage shaft 21 includes a cylindrical member 211 and a protruding column 212 extended upward from the top end of the cylindrical member 211, such that the cylindrical member 211 and the protruding column 212 are integrally connected along a longitudinal direction of the cylindrical member 211 and the protruding column 212. One side of the cylindrical member 21 is formed of a driving oblique surface 213 and another side thereof is formed of a protrusion 214. In addition, the internal of the cylindrical member 211 is formed of an inner hole 215. The linkage shaft spring 22 is longitudinally received inside the inner hole 215 and the installation hole 14. The protrusion 214 is received inside the aforementioned groove. The limiting point 15 is used for blocking the protrusion 214 in order to ensure that the linkage shaft 21 is not ejected by the linkage shaft spring 22 after the installation thereof.
The sliding plate 30 is generally a rectangular plate. The middle region of the sliding plate 30 and the front side thereof include a rectangular hole 31 and a notch 31A formed thereon respectively. The rectangular hole 31 and the notch 31A include a side wall formed of a driven oblique surface 311 respectively. The bottom surface of the sliding plate 30 includes a microswitch triggering piece 32 protruded therefrom. Two sides of the rear of the sliding plate 30 include a securement column 33 formed thereon respectively and provided for a sliding plate spring 34 to be mounted thereon; wherein a resultant force of the two sliding plate springs 34 is smaller than the elastic force of one single linkage shaft spring 22. The two left and right sides of the sliding plate 30 include a positioning retainer 35 formed thereon respectively. The sliding plate 30 is moveably received inside the sliding slot 12 and uses the positioning retainer 35 to abut against the end surface 13. One end of the sliding plate spring 34 abuts against the blocking wall 16 in order to allow the blocking wall 16 to provide a continuous push force to the sliding plate 14. Furthermore, one side the rectangular hole 31 is formed of an anti-misfit hole 36.
The switch module 40s installed at a corner of the base 10. The switch module 40 comprises a microswitch 41, a circuit board 42, a terminal block 43 and a telesignaling connection terminal 44. The microswitch 41 includes a microswitch button 411. The microswitch 41 and the terminal block 43 are soldered onto the circuit board 42, and the microswitch 41 is arranged corresponding to the aforementioned microswitch triggering piece 32 such that the microswitch 41 can be operably opened or closed based on the movement of the sliding block 30.
The signal feedback apparatus of the present invention further comprises a plurality of electrical connectors 50. Each electrical connector 50 is installed inside each receiving slot 17 of the base 10. Each electrical connector 50 comprises a lead wire 51 and a metal clamp 52 electrically connected to the lead wire 51.
The signal feedback apparatus of the present invention further comprises a top cover 60 for covering onto the base 10 correspondingly. The top cover 60 includes a U-shape socket opening, and a locking slot 61 is formed at corresponding location of the two side plates respectively. In addition, the bottom plate is formed of an insertion slot 62 corresponding to the aforementioned metal clamp 52; furthermore, a through hole 63 is formed at a location corresponding to the aforementioned anti-misfit insertion hole 36; moreover, a perforation 64 is formed at a location corresponding to the aforementioned protruding column 212 in order to allow the protruding column 212 to penetrate therethrough.
As shown in
In view of the above, the signal feedback apparatus of the present invention is able to achieve the expected purpose of use and to overcome the drawbacks of prior arts. The present invention is of novelty and inventive step to comply with the patentability of invention patents. The scope of the present invention shall be determined based on the claims defined hereafter, and the scope of the present invention shall cover all equivalent modifications such that it shall not be limited to the descriptions provided above.
This application is a continuing application of U.S. patent application Ser. No. 15/634,544, filed on Jun. 27, 2017, and entitled “SIGNAL FEEDBACK APPARATUS”. The entire disclosures of the above application are all incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4380693 | Kuhlmann | Apr 1983 | A |
4431884 | Flumignan | Feb 1984 | A |
4973807 | Stabler | Nov 1990 | A |
10121615 | Wu | Nov 2018 | B1 |
Number | Date | Country |
---|---|---|
201466705 | May 2010 | CN |
104810814 | Jul 2015 | CN |
105790244 | Jul 2016 | CN |
205595786 | Sep 2016 | CN |
206023205 | Mar 2017 | CN |
206819951 | Dec 2017 | CN |
2012152111 | Nov 2012 | WO |
Entry |
---|
Office Action dated Apr. 17, 2019 of the corresponding China patent application of US parent patent. |
Number | Date | Country | |
---|---|---|---|
20190035575 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15634544 | Jun 2017 | US |
Child | 16143462 | US |