The present invention relates to a signal generating apparatus, and more particularly to a phase-locked loop based transmitter with an open loop modulation compensation scheme, wherein the modulation compensation scheme calibrates a compensation filter according to an output frequency of a controllable oscillator of the signal generating apparatus, and a method thereof.
Please refer to
However, it is well-known that the loop bandwidth of the phase locked loop circuit 11 is sensitive to the transfer function of the phase locked loop circuit 11. To deal with this problem, some conventional techniques have been disclosed, such as U.S. Pat. Nos. 7,103,337, 7,068,112, 6,724,265, and No. 6,806,780.
One of the objectives of the present invention is to provide a phase-locked loop based transmitter with an open loop modulation compensation scheme, wherein the modulation compensation scheme calibrates a compensation filter according to an output frequency of a controllable oscillator of the signal generating apparatus and method thereof.
According to an embodiment of the present invention, a signal generating apparatus is disclosed. The signal generating apparatus generating a synthesized signal according to an input signal, comprising a phase-locked loop device, a control unit, a detecting device, a filtering device, and a modulating device. The phase-locked loop device comprises: a phase/frequency detector for generating a detected signal according to a reference oscillating signal and a feedback signal; a control signal generator coupled to the phase/frequency detector for generating a control signal according to the detected signal; a voltage controlled oscillator coupled to the control signal generator for generating the synthesized signal according to the control signal; and a divider coupled to the voltage controlled oscillator for dividing the synthesized signal according to a dividing factor for generating the feedback signal. The control unit is coupled to the control signal generator for controlling the control signal generator to adjust the control signal in a calibration mode to thereby adjust a frequency of the synthesized signal, wherein the phase/frequency detector does not output the detected signal to the control signal generator in the calibration mode. The detecting device is coupled to the voltage controlled oscillator for detecting the synthesized signal to generate a calibrating signal in the calibration mode. The filtering device is coupled to the detecting device for filtering the input signal and be calibrated by the calibrating signal generated by the detecting device. The modulating device is coupled to the filtering device and the divider for modulating the filtered signal to generate the dividing factor.
According to another embodiment of the present invention, a signal generating method is disclosed. The signal generating method generates a synthesized signal according to an input signal, the signal generating method comprises the steps of: utilizing a phase-locked loop device to generate the synthesized signal, wherein the phase-locked loop device comprises a phase/frequency detector for generating a detected signal according to a reference oscillating signal and a feedback signal; a control signal generator coupled to the phase/frequency detector for generating a control signal according to the detected signal; a voltage controlled oscillator coupled to the control signal generator for generating the synthesized signal according to the control signal; and a divider coupled to the voltage controlled oscillator for dividing the synthesized signal according to a dividing factor for generating the feedback signal; controlling the control signal generator to adjust the control signal in a calibration mode to thereby adjust a frequency of the synthesized signal, wherein the phase/frequency detector does not output the detected signal to the control signal generator in the calibration mode; detecting the synthesized signal to generate a calibrating signal in the calibration mode; calibrating the filtering device according to the calibrating signal and filtering the input signal to generate a filtered signal; and modulating the filtered signal to generate the dividing factor. These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” The terms “couple” and “couples” are intended to mean either an indirect or a direct electrical connection. Thus, if a first device couples to a second device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
Please refer to
Please refer to
Furthermore, the control signal generator 102b comprises a discharging current source 1021, a first switch 1022, a charging current source 1023, a second switch 1024, a bias current source 1025, and an impedance unit 1026. The discharging current source 1021 generates a discharging current Idn. The first switch 1022 is coupled to the discharging current Idn for selectively coupling the discharging current source 1021 to an output node M of the control signal generator 102b, wherein the first switch 1022 is controlled by the detected signal Sd in a normal mode and controlled by the control unit 104 in the calibration mode. Please note that, in order to describe the spirit of the present invention more clearly, the loop filter 102c is not shown in
As known by those skilled in this art, the open-loop transfer function Top(s) of the phase-locked loop device 102 can be shown as the following equation (1):
Wherein, Kpfd is the transfer function from the phase detector 102a to the control signal generator 102b, Kvco is the sensitivity of the voltage controlled oscillator 102d, and N is the dividing factor of the divider 102e. Therefore, the closed-loop transfer function T(s) of the phase-locked loop device 102 can then be the following equation (2):
T(s)=KG*L(s)/(1+KG*L(s)). (2)
After the signal generating apparatus 100 is fabricated, and as is well known by those skilled in this art, the compensation transfer function Comp(s) of the filtering device 108 can be shown as the following equation (3):
wherein “′” means the real value after fabrication, and Gcal is the calibrating factor of the filtering device 108. Accordingly, in order to let the filtering device 108 have the transfer function that fits to the real response of the phase-locked loop device 102, the calibrating factor Gcal can be set as the following equation:
Gcal=(N′/K′pfd*K′vco)/(N/Kpfd*Kvco). (4)
Thus, the compensation transfer function Comp(s) of the filtering device 108 becomes:
Comp(s)=(1/T′op(s))
wherein T′op(s) is the open-loop transfer function of the phase-locked loop device 102, K′pfd is the transfer function from the phase detector 102a to the control signal generator 102b, K′vco is the sensitivity of the voltage controlled oscillator 102d, and N′ is the dividing factor of the divider 102e after fabrication.
Then, the following paragraph is focused on the operation to obtain the calibrating factor Gcal of the signal generating apparatus 100. Please refer to
Fvco1=Ffree+(Ibias−Idn)*R*Kvco=Fr*N1, (5)
wherein Ffree is the frequency only generated by the bias current Ibias, Fr is the reference frequency inputted to the frequency detector 106a, and R is the resistance of the impedance unit 1026. Accordingly, the frequency detector 106a generates the first counting value N1 corresponding to the first synthesized signal Fvco1. Then, the control unit 104 controls the second switch 1024 to couple the charging current Iup to the output node M of the control signal generator 102b and opens the first switch 1022, then the second control signal Sc2 is outputted to the voltage controlled oscillator 102d to make the voltage controlled oscillator 102d generate the second synthesized signal Fvco2, i.e.,
Fvco2=Ffree+(Ibias+Iup)*R*Kvco=Fr*N2. (6)
Accordingly, the frequency detector 106a generates the second counting value N2 corresponding to the second synthesized signal Fvco2. Therefore, the difference frequency between the first synthesized signal Fvco1 and the second synthesized signal Fvco2 is:
wherein, for brevity, setting Iup=Idn=Ichp.
Similarly, in the real case, which is the case that after the signal generating apparatus 100 is fabricated, the control unit 104 controls the first switch 1022 to couple the discharging current Idn′ to the output node M of the control signal generator 102b and opens the second switch 1024, then the first control signal Sc1′ is outputted to the voltage controlled oscillator 102d to make the voltage controlled oscillator 102d to generate the first synthesized signal Fvco1′, i.e.,
Fvco1′=Ffree′+(Ibias′−Idn′)*R′*Kvco′=Fr*N1′, (7)
wherein “′” means the real value after fabrication. Accordingly, the frequency detector 106a generates the first counting value N1′ corresponding to the first synthesized signal Fvco1′. Then, the control unit 104 controls the second switch 1024 to couple the charging current Iup′ to the output node M of the control signal generator 102b and opens the first switch 1022, and the second control signal Sc2′ is outputted to the controllable oscillator 102d to make the voltage controlled oscillator 102d generate the second synthesized signal Fvco2′, i.e.,
Fvco2′=Ffree′+(Ibias′+Iup′)*R′*Kvco′=Fr*N2′. (8)
Accordingly, the frequency detector 106a generates the second counting value N2′ corresponding to the second synthesized signal Fvco2′. Therefore, the difference frequency between the first synthesized signal Fvco1′ and the second synthesized signal Fvco2′ is:
similarly, for brevity, setting Iup′=Idn′=Ichp′.
Furthermore,
then, according to the equation (4),
Please note that, as the dividing factors N, N′ of the divider 102e are the known factors in the calibration mode and ΔNc is predetermined, the computing unit 106c only computes the difference value ΔNc1 and sets the calibrating signal Scab to be the calibrating factor Gcal.
Please refer to
Similar to the above-mentioned embodiment control signal generator 102b, in the ideal case, before the signal generating apparatus 100 is fabricated, the control unit 104 controls the second switch 1034 to couple the charging current Ichp to the output node M″ of the control signal generator 103b and opens the first switch 1032, then the control unit 104 adjusts a percentage P of the adjustable impedance unit 1036 to generate the first impedance value R1″ and the second impedance value R2″. Accordingly, the controllable oscillator 102d generates a first difference frequency ΔF, i.e.,
wherein R″*P=R2″−R1″.
Similarly, in the real case, which is the case that after the signal generating apparatus 100 is fabricated, the control unit 104 controls the second switch 1034 to couple the charging current Ichp′ to the output node M″ of the control signal generator 103b and opens the first switch 1032, then the control unit 104 adjusts a percentage P′ of the adjustable impedance unit 1036 to generate the first impedance value R1′″ and the second impedance value R2′″. Accordingly, the voltage controlled oscillator 102d generates a first difference frequency ΔF′, i.e.,
wherein R′″*P′=R2′″−R1′″, and “″” means the real value after fabrication.
Furthermore,
Accordingly, the calibrating factor Gcal can be obtained, i.e.,
Gcal=(ΔNc/ΔNc′)*(N′/N).
Please note that, in other embodiments of the present invention, the control signal generator 102b can be implemented by replacing the bias current source 1025 with an adjustable bias current source, which is controlled by the control unit 104. Those skilled in this art can easily understand the operation of this embodiment after reading the disclosure of the present invention, thus the detailed description is omitted here for brevity.
Furthermore, in another embodiment of the present invention, the control signal generator 102b can be implemented by replacing the impedance unit 1026 with an adjustable impedance unit, which is controlled by the control unit 104. Those skilled in this art can easily understand the operation of this embodiment after reading the disclosure of the present invention, thus the detailed description is omitted here for brevity.
Please refer to
In step 404, when the control unit 104 disables the phase/frequency detector 102a, the control signal generator 102b is not affected by the detected signal Sd of the phase/frequency detector 102a. In other words, the signal generating apparatus 100 is an open loop under the calibration mode.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6724265 | Humphreys | Apr 2004 | B2 |
6806780 | Fontaine et al. | Oct 2004 | B2 |
7068112 | Gotz et al. | Jun 2006 | B2 |
7103337 | Uozumi et al. | Sep 2006 | B2 |
7224237 | Hirano et al. | May 2007 | B2 |
20040041638 | Vilcocq et al. | Mar 2004 | A1 |
20050156676 | Wang et al. | Jul 2005 | A1 |