Information
-
Patent Grant
-
6313588
-
Patent Number
6,313,588
-
Date Filed
Wednesday, September 22, 199925 years ago
-
Date Issued
Tuesday, November 6, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Ostrolenk, Faber, Gerb & Soffen, LLP
-
CPC
-
US Classifications
Field of Search
US
- 315 302
- 315 322
- 315 320
- 315 307
- 315 209
- 315 DIG 4
- 315 149
- 315 158
-
International Classifications
-
Abstract
A signal generating circuit coupled to an AC supply, the circuit comprising at least one first switch device coupled to the AC supply, at least one triggerable switch device coupled to the first switch device, operation of the first switch device causing said triggerable switch device to trigger in response to the AC supply at a predetermined voltage, thereby providing at least a portion of a waveform of the AC supply as a control signal and wherein the control signal terminates within a predetermined period of time after operation of the first switch device terminates. A circuit for detecting and responding to the signals generated by the signal generator is also disclosed.
Description
FIELD OF THE INVENTION
The present invention relates generally to a signal generator capable of producing a plurality of control signals and a sensing circuit for detecting the control signals produced by the signal generator. Even more particularly, the invention relates to signal generators that can be produced at low cost.
BACKGROUND OF THE INVENTION
Remote signal generators capable of sending command signals are known.
FIG. 1
shows an electric lamp wall box dimmer
12
coupled to a remote signal generator
10
through two conductors
14
and
16
. A wallbox dimmer and remote signal generator are available from the assignee of the present application and known as the Maestro dimmer and accessory dimmer. The wall box dimmer comprises a signal detector
32
capable of receiving and decoding three discrete signals generated by the signal generator
10
. The signals are generated when a user actuates momentary contact switches “T”, “R” or “L”. The “R” switch generates the signal shown in
FIG. 2A
when actuated which causes the dimmer to increase the light intensity of the coupled load
20
. The “L” switch generates the signal shown in
FIG. 2B
when actuated which causes the dimmer to decrease the light intensity of the coupled load
20
. The “T” switch generates the signal shown in
FIG. 2C
when actuated which causes the wall box dimmer
12
to turn on to a preset light intensity, go to full light intensity, fade off slowly or fade off quickly. Each time the switch “T” is actuated, the signal generated and sent to the signal decoder
32
is always the same. To cause the dimmer to react differently to the closure of switch “T”, the user must actuate the “T” switch differently. When a user actuates switches “R”, “L” or “T” the signal detector
32
actually receives a string of signals because the user is usually not capable of actuating and releasing the switches in less than one line cycle (16 mSec on a 60 Hz line). The signal is only generated as long as the switch is closed.
A microcomputer
28
in the wall box dimmer
12
is capable of determining the length of time the switch “T” has been actuated and if the switch “T” has been actuated and released a plurality of times in quick succession. The microcomputer is programmed to look for the presence or absence of an AC half cycle signal from the signal detector
32
a fixed period of time after each zero cross of the AC line, preferably 2 mSec. The microcomputer only looks once during each half cycle. The advantage of the signal generator of the prior art is its low cost. The drawback to this type of signal generator is that there are a limited number of signals that can be generated without requiring the user to actuate the same actuator repeatedly or actuate the actuator for an extended period of time in order to perform additional functions. Details of a signal generator according to the prior art are disclosed in issued U.S. Pat. No. 5,248,919, the entire disclosure of which is hereby incorporated by reference. There is a need for a low cost signal generator that does not require the user to actuate the same actuator in different ways to initiate multiple functions.
Also known are phase control lamp dimmers which use a semiconductor device to control the phase of an AC waveform provided to an electric lamp thereby to control the intensity of the lamp. These phase control dimmers are not ordinarily considered to be signal generators of the type contemplated herein. Further, such phase control dimmers, until turned off, produce a phase shaped AC waveform continuously unlike the signal generator described above in connection with FIG.
1
.
Other signal generators of the prior art can generate a plurality of control signals, but require a microprocessor in the signal generator which converts the actuator actuations into digital signals for processing by another microprocessor. The drawback to his type of signal generator is the added cost of the microprocessor and its associated lower supply.
Accordingly, there is a need for a low cost signal generator that overcomes the drawbacks of the prior art.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a signal generator which is capable of producing a plurality of different control signals.
Yet still a further object of the present invention is to provide a signal generator which can be manufactured at low cost.
It is yet still a further object of the present invention is to provide a signal generator which produces unique control signals based upon portions of alternating current waveforms.
Yet still a further object of the present invention is to provide a sensing circuit for detecting the control signals produced by the signal generator circuit according to the present invention.
Yet still a further object of the present invention is to provide a signal generator which requires only two wires for connection to a sensing circuit.
The above and other objects are achieved by a signal generator comprising a switch in series with at least one of a zener diode and a diac, the signal generator producing an output when the switch is actuated, the output having a region where the current is substantially constant.
The above and other objects are also achieved by a signal generator comprising at least one of a zener diode and a diac, the signal generator producing an output when a switch in series with the at least one of a zener diode and diac is actuated, the output having a region where the current is substantially constant.
The above and other objects are also achieved by a signal detector circuit coupleable to an AC source comprising a sense circuit, and a control circuit, the control circuit producing a signal when the sense circuit receives an AC signal having a region where the current is substantially constant.
The above and other objects are also achieved by a signal generating circuit coupled to an AC supply, the circuit comprising at least one first switch device coupled to the AC supply, at least one triggerable switch device coupled to the first switch device; operation of the first switch device causing said triggerable switch device to trigger in response to the AC supply at a predetermined voltage, thereby providing at least a portion of a waveform of the AC supply as a control signal and wherein the control signal terminates within a predetermined period of time after operation of the first switch device terminates. The triggerable switch device can be a zener diode, a diac or may be a semiconductor switching device having a control electrode, e.g., a triac, SCR or transistor, or an opto coupled version of such switching devices.
The above and other objects are also achieved by a circuit for sensing one of a voltage and current from a signal generator circuit producing a plurality of unique control signals based on an AC supply voltage, the sensing circuit comprising a detector detecting one of a voltage level and current level in a line coupling the sensing circuit and the signal generator and producing a sensed signal; a controller for causing said detector to detect one of the voltage level and current level at a plurality of times in a half cycle of the AC supply voltage; the controller providing a control signal based on the sensed signal.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing summary, as well as the following detailed description of the preferred embodiments is better understood when read in conjunction with the appended drawings. For the purposes of illustrating the invention, there is shown in the drawings an embodiment that is presently preferred, in which like numerals represent similar parts throughout the several views of the drawings, it being understood, however, that the invention is not limited to the specific methods and instrumentalities disclosed. In the drawings:
FIG.
1
. is a block diagram of a signal generator coupled to a wall box dimmer according to the prior art.
FIGS. 2A
,
2
B, and
2
C are plots of the outputs of the signal generator of FIG.
1
.
FIG.
3
. is a simplified schematic diagram of a first embodiment of a signal generator and a block diagram of a signal decoder according to the present invention.
FIGS. 4A
,
4
B,
4
C,
4
D and
4
E are plots of the outputs of the signal generator of FIG.
3
.
FIG. 5
is a simplified schematic diagram of a second embodiment of a signal generator according to the present invention.
FIGS. 6A
,
6
B,
6
C,
6
D and
6
E show further embodiments of signal generators according to the present invention.
FIGS. 7A
,
7
B,
7
C,
7
D and
7
E show waveforms of the circuits of
FIGS. 6A
,
6
B,
6
C,
6
D and
6
E, respectively.
FIGS. 8A and 8B
show how the control unit decodes the control signals produced by the signal generator for two examples.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
With reference again to the drawings,
FIG. 3
shows a remote signal generator
100
coupled to a control unit
200
with conductors
112
and
114
. The control unit
200
may be, as shown, a motorized window shade motor unit that controls a coupled window shade. However, the control unit
200
may be a control unit controlling other electrical devices, as desired. The control unit
200
is provided AC power (24VAC) from a transformer
400
.
The remote signal generator
100
comprises a plurality of momentary switches
102
A-
102
H. A signal is provided to the control unit
200
only when one or more of the switches
102
A-
102
H has been actuated. Each switch can be a momentary contact mechanical switch, touch switch, or any another suitable switch. For example, the switches may be tactile feedback or capacitance touch switches. The switches could also be semiconductor switches, e.g., transistors, themselves controlled by a control signal. In series with switch
102
A is a diode
104
A with the anode coupled to the sense circuit
202
and the cathode coupled to the switch. In series with switch
102
B is a diode
104
B with the cathode coupled to the sense circuit
202
and the anode coupled to the switch. There are no diodes in series with switch
102
C. In series with switch
102
D is a diode
104
D with the anode coupled to the switch and a zener diode
106
D with the anode coupled to the sense circuit
202
. In series with switch
102
E is a diode
104
E with the cathode coupled to the switch and a zener diode
106
E with the cathode coupled to the sense circuit
202
. In series with switch
102
F is a zener diode
106
F with the anode coupled to the sense circuit
202
and the cathode coupled to the switch. In series with switch
102
G is a zener diode
106
G with the cathode coupled to the sense circuit
202
and the anode coupled to the switch. In series with switch
102
H are two zener diodes
106
H
1
and
106
H
2
with the anode of zener diode
106
H
1
coupled to the sense circuit
202
and the anode of zener diode
106
H
2
coupled to the switch. In the preferred embodiment, diodes
104
A,
104
B,
104
D, and
104
E are type 1N914 and zener diodes
106
D,
106
E,
106
F,
106
G, and
106
H
1
and
106
H
2
are type MLL961B with a break over voltage of 10V.
Alternatively zener diodes
106
D,
106
E,
106
F,
106
G,
106
H
1
and
106
H
2
can be replaced with suitable value diacs in order to practice the present invention.
The control unit
200
comprises a sense circuit
202
, a control circuit
204
controlling, e.g., a motor
206
, a source voltage monitor circuit
208
, a power supply
210
, and optional local switches
212
provided for control functions, such as the same control functions controlled by the signal generator
100
and/or additional functions. The sense circuit
202
senses the current flowing between the AC source
400
and the signal generator
100
.
The sense circuit
202
senses the direction of this current, i.e., whether a forward current, reverse current or substantially zero current. When current flows through the sense circuit
202
, the sense circuit sends a signal to the control circuit
204
on line
250
. In one embodiment, the sense circuit
202
senses the current. Alternatively, the sense circuit
202
could sense the voltage. The source voltage monitor
208
signals the control circuit
204
when the control circuit
204
should read the sense circuit. In the preferred embodiment, the source voltage monitor signals the control circuit
204
on line
256
to read the sense circuit twice during each half cycle. The sense circuit is first read before the transformer
400
voltage is high enough to turn on a zener diode in the signal generator
100
. The sense circuit is then read after the transformer
400
voltage is high enough to turn on a zener diode in the signal generator
100
. In this way, a determination can be made of the shape of the waveform from the signal generator circuit
100
. In the preferred embodiment, the source voltage monitor signals the control circuit
204
to read the sense circuit at predefined times after each zero crossing, for example, two times after each zero crossing, when the AC supply is at 4.7 v and again when it reaches 18.0 v.
Based on this specification, circuits for implementing the techniques for detecting and processing the signals received from the signal generator
100
described herein can be readily constructed by those of skill in the art, and therefore, a detailed discussion of the circuitry of the control unit
200
is omitted.
In an embodiment controlling a motor, it is most preferred that the control circuit
204
includes a microprocessor operating under the control of a stored software program to produce output signals on line
252
to the motor
206
to cause it to rotate in a forward or reverse direction. In the preferred embodiment, the microprocessor is a Motorola MC68HC705C9A.
The control circuit
204
is powered from a suitable power supply
210
coupled to the AC source. The source voltage monitor circuit
208
provides a signal to the control circuit
204
concerning which half cycle (positive or negative) of the AC source is present at a particular time and a signal representative of the start of each half cycle.
The waveforms produced when switches
102
A,
102
B and
102
C are actuated are the same as those shown in
FIGS. 2A
,
2
B and
2
C respectively. The waveform produced when switch
102
A is actuated is a half sine wave only in the positive half cycle and the waveform produced when switch
102
B is actuated is a half sine wave only in the negative half cycle. The waveform produced when switch
102
C is actuated is a full sine wave. In the preferred embodiment of the present invention operating from a 60 Hz supply, a pulse 8.33 mSec in length during the positive half cycle can be produced when switch
102
A is actuated and a pulse 8.33 mSec in length during the negative half cycle can be produced when switch
102
B is actuated. Consecutive pulses 8.33 mSec in length can be produced when switch
102
C is actuated. The microcomputer
210
needs to look at the incoming signal over several line cycles in order to properly determine which switch or switches have been actuated. Although the drawing figures only show one half cycle or a full cycle, it is understood that the signal generator
100
will repeatedly produce the signals
2
A,
2
B or
2
C as long as the switch is actuated.
The waveforms produced when switches
102
D,
102
E,
102
F,
102
G and
102
H are actuated are shown in
FIGS. 4A
,
4
B,
4
C,
4
D, and
4
E, respectively. The waveform produced when switch
102
D is actuated is a half sine wave only in the negative half cycle delayed a time period after the zero crossing and ending a time period prior to the next zero crossing. See FIG.
4
A. The waveform produced when switch
102
E is actuated is a half sine wave only in the positive half cycle starting a delayed time period after the zero crossing and ending a time period prior to the next zero crossing. See FIG.
4
B. The peak current as illustrated is approximately 12.5 mA.
The waveform produced when switch
102
F is actuated is a half sine wave in the positive half cycle followed by a half sine wave in the negative half cycle delayed a time period after the zero crossing and ending a time period prior to the next zero crossing. See FIG.
4
C. The peak current in the positive half cycle is approximately 20 mA and the peak current in the negative half cycle is approximately 12.5 mA.
The waveform produced when switch
102
G is actuated is a half sine wave in the positive half cycle delayed a time period after the zero crossing and ending a time period prior to the next zero crossing followed by a half sine wave in the negative half cycle. See FIG.
4
D.
The waveform produced when switch
102
H is actuated is a half sine wave in the positive half cycle delayed a time period after the zero crossing and ending a time period prior to the next zero crossing followed by negative half cycle delayed a time period after the zero crossing and ending a time period prior to the next zero crossing. See FIG.
4
E.
In the case of
FIGS. 4A
to
4
E, each waveform has a region of substantially constant current, and in particular, a region of zero current before the zener diode switching device switches on at its break-over voltage. Further, like
FIGS. 2A
to
2
C, the waveform shown or a portion thereof is repeated as long as the switch is actuated.
FIG. 5
shows a simplified schematic diagram of another low cost signal generator
300
. The signal generator
300
operates in a similar fashion to the signal generator shown in FIG.
3
. The difference is that the signal generator
300
does not have any switches. The signal generator receives switch closures or control signals from an external source as shown at
301
.The external source may be a plurality of remotely located switches or may be another controller sending control signals. For example, a fire detector or burglar alarm system could send a signal to the signal generator
300
to control a device. As an example, in the case of a fire, all motorized window shades could be raised.
FIGS. 6A-6E
show further embodiments of signal generator circuits according to the present invention. These circuits use semiconductor switching devices having control electrodes controlled by a trigger circuit.
FIG. 6A
shows a signal generator circuit employing a triac
401
and a trigger circuit comprising diac
402
, a capacitor
404
and resistors R
1
and R
2
each coupled to a momentary contact switch
406
and
408
, respectively. In this circuit, triac
401
is fired at a given phase in the AC waveform to provide unique current waveforms. Changing of the values R
1
and R
2
varies the time at which triac
401
is latched on. Capacitor
404
and resistors R
1
and R
2
form time constant circuits. When either of momentary switches
406
or
408
are activated, the voltage at the junction of capacitor
404
and the resistors increases gradually according to the time constant determined by the resistance R
1
or R
2
and capacitance of capacitor
404
. Once the voltage reaches a value sufficient to trigger diac
402
, the diac conducts causing the triac
401
to conduct. Because the triac is bidirectional, the triac will conduct both for positive and negative half cycles. The waveforms generated by this circuit when switches
406
or
408
are actuated are shown in
FIG. 7A
for two different resistance values as illustrated in FIG.
7
A(
a
) and FIG.
7
A(
b
). The onset of conduction depends upon the value of the resistance. In contrast to the circuit of
FIG. 3
, the circuit of
FIG. 6A
produces a waveform having steep rising edges at the time the triac begins to conduct. Both however have a region where the current is substantially constant.
FIG. 6B
shows another portion of a signal generator circuit according to the invention. In this signal generator circuit, a zener diode
502
triggers a triac
501
when a momentary contact switch
506
is actuated and a signal is generated. The waveform for the circuit of
FIG. 6B
is shown in FIG.
7
B. Once the zener break-over voltage is reached, the triac
501
conducts. The waveform of
FIG. 7B
shows that there is a sharp rising edge for the positive half cycle which occurs when the zener break-over voltage is reached. During the negative half cycle, zener diode conducts like a conventional diode, so triac
501
is turned on for the entire negative half cycle. The triac turn-on time can be changed and accordingly, the location of the steep rising edge of the waveform of
FIG. 7B
changed, thus producing different control signals, by changing the zener diode used, i.e., using a zener diode having a different break-over voltage.
FIG. 6C
shows another embodiment using a triac
601
and a number of diodes and zener diodes. A zener diode
602
and a momentary contact
606
are connected in series to the gate of the triac
601
. Further connected to the gate of the triac
601
is a diode
610
and further zener diode
612
and a momentary contact
608
in series. The actuation of the switch
606
generates the signal of FIG.
7
C(
a
). The time when the triac turns on can be delayed by using zener diodes having varying break-over voltage.
When the switch
608
is actuated, only the positive half cycle with a steep rising edge is produced because the diode
610
prevents any current flow when the negative half cycle of the AC waveform is present. See FIG.
7
C(
b
).
FIG. 6D
shows the use of a zener diode in a signal generating circuit to turn on an SCR. The circuit comprises an SCR
701
and a zener diode
702
. A momentary contact
704
is provided. When the momentary contact
704
is actuated, the SCR is triggered once the break over voltage of the zener diode
702
is exceeded during the positive half cycle.
FIG. 7D
shows the waveform generated by the signal generating circuit of FIG.
6
D. In contrast to the triac circuit, because the SCR is unidirectional, only the positive half cycle is generated. To generate the negative half cycle, the conductive direction of the SCR
701
would be reversed and the zener diode would be polarized oppositely to that shown in FIG.
6
D.
FIG. 6E
shows another signal generating circuit according to the invention utilizing SCR
801
two zener diodes
802
and
804
, and momentary contacts
806
and
808
. The zener diodes
802
and
804
have break-over voltages of V and 2V, respectively. Accordingly, the SCR
801
conducts when the momentary switches
806
or
808
are actuated at times determined by the break-over voltage of the zener diodes. The waveforms generated are shown in FIG.
7
E(
a
) and (
b
). The waveform caused by actuation of switch
808
would have a delayed rising edge as compared to the waveform for the switch
806
. In order to generate a signal during the negative half cycle, the zener diodes and SCR would be polarized oppositely.
Zener diodes
502
,
602
,
604
,
702
,
802
and
804
can alternatively be replaced with suitable value diacs in order to practice the present invention.
FIGS. 8A and 8B
show examples of operation of the sensing circuit
202
under control of the control circuit
204
and source voltage monitor circuit
208
.
FIG. 8A
shows an example of a control signal from the signal generating circuit of FIG.
6
A. The waveform shown has a period T. This circuit produces a control signal which has a steep rising edge once the triac
401
conducts. As discussed, the sensing circuit
202
can be controlled by the control circuit
204
to sense or sample the current or voltage in the line
112
, once prior to triggering of the triac
401
, at a time t1 and once after triggering of the triac at a time t2 in each half cycle. The timing may be controlled to be at predefined times after the zero crossings. Accordingly, at a time prior to triggering of the triac, the sensing circuit would sense that there is no voltage or current on line
112
. After the triac triggers at a time t2, the sensing circuit
202
would sense a voltage or current present on line
112
. Similarly, at time t3 and t4, the sensing circuit
202
would sense no signal present at t3 and a negative signal present at t4. The sensing circuit would thus be able to detect the presence of the unique signal provided by the signal generating circuit of FIG.
6
A. If the signal generating circuit of
6
A were used in conjunction with the other signal generating circuits of
FIGS. 6B
,
6
C,
6
D,
6
E or those of
FIG. 3
, in each case, the signal sensing circuit
202
would detect a unique signal which could be used to control a particular function.
Turning to
FIG. 8B
, for example, which shows the control signal like the signal of
FIG. 4D
generated by actuation of a switch
102
G coupled in series with a zener diode
106
G of FIG.
3
. At a time t1, before zener diode
106
G has triggered, no signal would be sensed. At a time t2, after zener diode
106
G has triggered, a signal would be sensed. At times t3 and t4, a negative signal would be sensed since the zener diode
106
G would be conducting for the negative half cycle. Accordingly, the unique signal provided by a control circuit having a zener diode
106
G and a momentary contact
102
G coupled in series as shown in
FIG. 3
could be uniquely determined by the sensing circuit
202
and utilized by the control circuit
204
to control a specified function.
The source voltage monitor circuit
208
is used to inform the control circuit
204
of the appropriate times for sampling, i.e., the source voltage monitor circuit
208
can determine the zero crossings thus allowing the control circuit
204
to implement the samples at the times t1, t2, t3 and t4, as shown.
Similarly, for each of the unique control signals shown in
FIGS. 7A-7E
as well as
2
A-
2
C and
4
A-
4
E, the sensing circuit
202
is able to uniquely determine the presence of the uniquely coded signal and thus control the appropriate function as controlled by that control signal.
As fully described above, the present invention provides a novel circuit that can produce a plurality of control signal over only two wires and a circuit that can decode these control signals. The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof, and accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.
Claims
- 1. A circuit for sensing one of a voltage and current from a signal generator circuit producing a plurality of unique control signals based on an AC supply voltage, the sensing circuit comprising:a detector detecting one of a voltage level and current level in a line coupling the sensing circuit and the signal generator and producing a sensed signal; a controller for causing said detector to detect one of the voltage level and current level at a plurality of times in a half cycle of the AC supply voltage; the controller providing a control signal based on the sensed signal; and wherein the signal generator circuit employs a triggered device to generate a signal and the detector detects one of the voltage-level and current level once before the triggered device triggers and once after the triggered device triggers.
- 2. The sensing circuit of claim 1, wherein the plurality of times is two.
- 3. The sensing circuit of claim 1, further comprising a source voltage monitor circuit for monitoring the AC supply voltage to cause the controller to provide a signal to the detector to detect one of the voltage level and current level of the AC supply voltage.
- 4. The sensing circuit of claim 3, wherein the source voltage monitor circuit detects zero crossings of the AC supply voltage and the controller causes the detector to detect one of the voltage level and current level at predefined times after a zero crossing is detected.
- 5. The sensing circuit of claim 4, wherein the predefined times are determined by monitoring the voltage level of the AC supply voltage.
US Referenced Citations (12)