The present invention relates to a method and apparatus for determining the level of a signal corrupted by background noise and impulsive interference, and is particularly, but not exclusively, well suited to detecting a signal reflected from a small object in the presence of interfering signals backscattered by the dynamically disturbed sea surface.
In many practical applications, a signal of interest is corrupted by a mixture of noise with essentially Gaussian characteristics (e.g., thermal noise) and interference of impulsive nature. The probability distribution of such combination will often exhibit so-called ‘heavy’ tails, and various statistical models have been developed to characterize non-Gaussian phenomena. For example, the magnitude of a microwave signal reflected from the sea surface is often characterized in terms of Weibull, log-normal or K distribution.
Microwave sensors operating in a maritime environment are expected to reliably detect various small objects of potential interest in the presence of unwanted signals reflected from the sea surface, often referred to as sea clutter. Small objects to be detected include boats and rafts, buoys, various debris and small fragments of icebergs. Some of those objects may pose a significant threat to safe ship navigation, whereas other objects are of interest in search-and-rescue missions, coastal surveillance, homeland security etc.
Non-Gaussian sea clutter can negatively affect the detection performance of many sensors, often designed for optimum operation in Gaussian noise. Accordingly, over the many years, different solutions have been offered to the problem of detecting small signals in sea clutter.
A representative example of a practical non-coherent system capable of detecting objects in sea clutter is presented in U.S. Pat. No. 7,286,079, 23 Oct. 2007: Method and Apparatus for Detecting Slow-Moving Targets in High-Resolution Sea Clutter.
In accordance with the above disclosure, a comparator is used to convert radar returns from each range cell into a stream of binary data. If a reflected signal exceeds a predetermined threshold, the signal is represented by a binary ‘one’; otherwise, the signal is represented by a binary ‘zero’. This operation is depicted schematically in
Next, a range-extent filter processes the binary data to indicate the presence of clusters comprising ‘ones’ that appear in adjacent range cells. These clusters are regarded as being indicative of a presence of an object extended in range.
Finally, persistence in time of a hypothetical object is examined over a predetermined time interval. Object detection is declared if the output of a suitable persistence integrator exceeds a preselected threshold. This operation is depicted schematically in
The detection performance of the above system is analyzed in more detail in: S. D. Blunt, K. Gerlach and J. Heyer, “HRR Detector for Slow-Moving Targets in Sea Clutter”, IEEE Transactions on Aerospace and Electronic Systems, vol. 43, July 2007, pp. 965-975. This publication discusses the relevant theoretical background, and also various assumptions and simplifications leading to a practical implementation of the detector.
For example, it is shown that the step-like characteristic of a comparator employed by the detector is only a convenient and practical approximation of an optimal non-linear characteristic obtained from a theoretical analysis. Furthermore, it appears that combining the observations in
It would therefore be desirable to provide a method and an apparatus for determining the level of a corrupted signal in a nonlinear and robust manner.
In particular, it would be desirable, but not essential, for this method and apparatus to be able to detect small objects in spiky sea clutter in a more efficient way than that provided by the prior art techniques.
According to the present invention, there is provided a method of processing signal values to determine a level of the signal values, the method comprising a signal processor performing processes of:
mapping each of a plurality of signal values to a respective point on an arc of at least part of a circle;
using the values of at least one of the coordinates defining the points to determine a mean value; and
determining whether the signal values exceed a threshold by:
By determining the mean value in this way, the present inventor has found that the mean value is a more robust estimator of the signal level because the mean value is much less affected by one or more large signal values (such as a large value resulting from an impulse noise spike) than other types of mean (for example arithmetic mean).
As a result, the detection of signals in a noisy background with impulsive noise can be improved.
The present invention further provides apparatus for performing the method above.
a depicts two mapping functions constructed in accordance with a third embodiment of the invention.
b shows the transformation of signal values into angular positions.
c depicts the mapping of signal values onto a unit semicircle
An analysis of signal detection in impulsive noise has shown that utilizing a conventional arithmetic mean as a measure of signal values such as those shown in
In accordance with embodiments of the invention, each value p of a set of observed values of a signal (e.g., envelope, magnitude or power) is transformed to a point in two-dimensional space which has two coordinates on orthogonal axes (x,y) defining a position on an arc of a circle. The arc subtends an angle which is less than, or equal to, 180° (or the equivalent in other units). Preferably, the arc is that of a semicircle. A respective mean is calculated separately for the x coordinates and the y coordinates of the transformed points. The two resulting means are then used to calculate a mean direction θMD of the transformed points in the two-dimensional space. This mean direction θMD is then used to compare the observed signal values against a threshold. In a first technique, this comparison is performed by applying a reverse transform M−1 to map the mean direction θMD back into the signal domain of the observed values, to give what is termed herein a circular mean pCM, and then comparing the circular mean with a threshold value in the signal domain. In a second, alternative but equivalent, technique, the comparison is performed by comparing the mean direction θMD with a threshold value in the two-dimensional space of the semicircle. This threshold value may be defined in that two-dimensional space at the outset or it may be defined in the signal domain of the observed values and transformed into the two-dimensional space of the semicircle using the same transformation as that used to transform the signal values.
In an alternative embodiment, each value of the set of observed values p of the signal is transformed to a point on an arc of a circle in two-dimensional space. A mean is calculated of the values of one of the two coordinates x,y (but not both). This mean is then used to compare the observed signal values against a threshold using one of the two techniques set out above.
In accordance with a first embodiment of the invention, a circular mean pCM is calculated by applying a procedure comprising the following three steps (which are also schematically illustrated in
Step 1—Observed values p of a signal mapped onto a unit semicircle with the use of a mapping function M(p). As a result, each value pk from a predetermined range (PL, PH) of interest will be represented by a corresponding point placed on a unit semicircle at angular position θk.
Accordingly, K observed values of a signal
{pk}={p1,p2, . . . , pK−1,pK}; pk∈(PL,PH)
will be represented by a corresponding set of K angles
{θk}={θ1,θ2, . . . , θK−1,θK}; θk∈(α,α+π)
where α is an arbitrary initial angle.
Step 2—To determine the x and y coordinates of each mapped point pk in the two-dimensional space of the semicircle, the sines and cosines of the angles {θk} are calculated. The calculated values are then averaged separately to obtain two respective means:
Then, the mean direction θMD of the set of angles is obtained from
θMD=tan−1(YK/MK)
Step 3—The circular mean pCM of the underlying set of K signal values
{pk}={p1,p2, . . . , pK−1,pK}; pK∈(PL,PH)
is obtained by applying an inverse mapping M−1(θ) to the mean direction θMD to transform it back into the signal domain of the observed signal values p. Subsequently, the circular mean pcm is compared to a threshold value in the signal domain (or, alternatively, the mean direction θMD is compared with a threshold value in the two-dimensional space of the semicircle).
In order to facilitate the understanding of the first embodiment and its advantages, a simple illustrative example is given below.
The first step is to transform the measured values of p to values p* that fall into a (0, 180) degree interval. Suppose that the measured values of p are:
p1=p2=p3=p4=p5=260; p6=500
A linear shifting operation then subtracts 200 from each value to give:
p1s=p2s=p2s=p4s=p5s=60; p6s=300
A linear scaling operation then divides each value by 2 to give:
p
1
*=p
2
*= . . . =p
5*=30; p6*=150
These transformed values p* of the signal values p now fall into a (0,180)-interval. The transformed signal values p* and their corresponding angular position θ, expressed in degrees, have equal numerical values.
It should be noted that this method for shifting and scaling the data is just one example of many methods that can be used for this operation.
The arithmetic mean pAM of the above set of transformed values, p*, is
p
AM=(5×30+150)/6=50
As seen, the single relatively large observation p6*=150 (e.g., an interfering noise spike) shifts the mean (30) of the remaining five observations, p1*-p5*, in a significant manner.
In the second step of processing in this embodiment, the mean direction θMD of the transformed values, p1*-p6*, is determined from
Hence, the mean direction θMD of the observed values is equal to 41, whereas the arithmetic mean pAM in the circular domain was equal to 50. As will be understood, the mean direction θMD is a more robust estimator of the mean level of the values p, because it is much less affected by a single larger observation (namely p6*).
In the third step of the processing, the present embodiment transforms the mean direction θMD=41° back to the same domain as the measured signals p using an inverse mapping M−1.
Therefore, the transformed value pCM=(41×2)+200=282.
On the other hand, the arithmetic mean of the signal values p in the signal domain is [(5×260)+500]/6=300.
Accordingly, the circular mean pCM produced by the present embodiment is a more robust indication of the mean level of the values p in the signal domain than the conventional arithmetic mean. This is because the value of the circular mean pCM is less effected by the spurious value p6 than the arithmetic mean.
An apparatus for performing the above calculation of pCM is shown in
The calculator shown in
A positive input signal PP, such as envelope, magnitude or power, is passed through the sift and scale unit 502 which maps each value of the input signal to a value within a range of values with a span of 180, thereby generating a normalized signal NP.
The normalized signal level NP is applied in a parallel fashion to the two nonlinear converters, SNL 503 and CNL 504. The outputs, SS and CC, of the converters are obtained from the common input NP by utilizing two suitably selected mapping functions; in the considered case
SS=sin NP, CC=cos NP
As described previously, the values SS and CC define the x and y coordinates of the value NP in two-dimensional space.
The signals SS and CC propagate along their respective tapped delay lines, DLS 505 and DLC 506: K samples of the signal SS are available at the outputs of delay cells, S1, S2, . . . , SK, whereas K samples of the signal CC are available at the outputs of delay cells, C1, C2, . . . , CK.
The averaging circuit AVE 507 produces at its output a value AS proportional to the sum of its inputs obtained from the cells S1, S2, . . . , SK. Similarly, the averaging circuit AVC 508 produces at its output a value AC proportional to the sum of its inputs obtained from the cells C1, . . . , C2, CK. These two values, AS and AC, are utilized by the arithmetic unit ATU 509 to determine a circular mean CM.
The calculated circular mean CM is then compared against a threshold value in a comparison unit (not shown in
In the first embodiment described above, signal values p were transformed into angle values θ by employing a linear operation of the ‘shift-and-scale’ type. However, in practical applications, it may be advantageous to apply first a nonlinear (e.g., logarithmic) transformation to the observed signal values in order to adjust their dynamic range non-linearly, and then map such transformed data onto a unit semicircle. An embodiment which performs such processing is described below.
For example, a useful nonlinear mapping is of the form
θk=H(γ log10 p)
where the clipper function H(•) limits the minimum and maximum values of its argument to −π/2 and π/2, respectively; γ is a scaling factor used to further adjust the dynamic range of the signal being processed.
For example, if the range of observed values p extends from 0.01 to 100, then a γ=π/4 would place all values of p within (−π/2, π/2), with values lying on both of the extremities. If a new value of p was subsequently detected that fell outside of the 0.01 to 100 range, then, in order for the same value of γ to be used for the new p value, the clipper function H would be required to limit the new mapped value of p to the (−π/2, π/2) range. In practice, if the p values mostly fell within the 0.01 to 100 range, and rarely were at or beyond these limits, then the clipper function H would not usually be utilised.
Applying a logarithmic transformation prior to mapping onto a semicircle may be preferred to using other nonlinear transformations for the following reasons:
The calculator comprises the following functional units:
Accordingly, compared with the calculator shown in
A positive input signal PP, such as envelope, magnitude or power, is passed through the logarithmic converter LGI 601 to produce a signal LP being a logarithmic measure of the level of the input signal PP, hence
LP=log10 PP
The signal LP is then normalized in the subtractor SET 602 by subtracting from the signal LP a logarithm EL of some reference level BG of interest
For example, in signal detection problems, the reference level may be the average level of background noise, obtained from long-term observations. The action of subtracting the value EL from LP maps the value of LP to a point on a unit semicircle having an angular range (−π/2, π/2). It is equivalent to the scaling provided by the factor γ.
The normalized signal level NP is applied in a parallel fashion to the two nonlinear converters, SNL 503 and CNL 504. The outputs, SS and CC, of the converters are obtained from the common input NP by utilizing two suitably selected mapping functions; in the present embodiment
SS=sin NP, CC=cos NP
The signals SS and CC propagate along their respective tapped delay lines, DLS 505 and DLC 506: K samples of the signal SE are available at the outputs of delay cells, S1, S2, . . . , SK, whereas K samples of the signal CC are available at the outputs of delay cells, C1, C2, . . . , CK.
The averaging circuit AVS 507 produces at its output a value AS proportional to the sum of its inputs obtained from the cells S1, S2, . . . , SK. Similarly, the averaging circuit AVC 508 produces at its output a value AC proportional to the sum of its inputs obtained from the cells C1, C2, . . . , CK. These two values, AS and AC, are utilized by the arithmetic unit ATU 609 to determine a circular mean CM.
The calculated circular mean is then compared against a threshold value in a comparison unit (not shown in
In the above embodiments, a signal value p is mapped to a point on unit semicircle and then trigonometric operators are applied to determine the two coordinates in the two-dimensional space of the semicircle which define the position of the point. These coordinates are then used to calculate the mean direction θMD and, if required, the circular mean pCM. However, the initial mapping of the signal value p onto the semicircle may be performed in such a way that the mapping directly gives the two coordinates of the resulting point an the semicircle. Accordingly, it is then not necessary to calculate the coordinates by performing the trigonometric operations of the first and second embodiments.
An embodiment which performs such processing is described below.
In general, the mapping of a signal value p to a semicircle can be performed with the use of two mapping functions, S(p) and C(p), constructed in a suitable manner. Because the mapping is required to produce a semicircle, the mapping functions must satisfy the condition
S
2(p)+C2(p)=b
where b is a constant. In the case of a unit semicircle b=1.
In accordance with the third embodiment of the invention, a first mapping function S(p) is to be a monotonically increasing continuous function: it assumes its minimum value, −1, for the smallest signal level PL, and reaches its maximum equal to +1 at the largest signal level PH. There are infinitely many such functions, and a suitably selected segment of a sinewave is one of the many choices; another useful function will be discussed in the following.
Next, a second mapping function C(p) is obtained from the mapping function S(p) as follows
C(p)=√{square root over (1−S2(p))}
Hence, the mapping operation M[S(p),C(p)], utilizing two mapping functions, S(p) and C(p), may be viewed as a non-linear transformation of a one-dimensional p-space into a two-dimensional (S,C)-space. Each signal value p is consequently mapped directly to a point on a unit semicircle, such that one coordinate of the point is defined by S(p) and the other coordinate of the point is defined by C(p). An arithmetic average can then be applied directly to S(p) and C(p) to obtain the parameters for the mean direction.
More particularly, the mean direction θMD is calculated from
Then, the mean direction θMD can be compared to a threshold value. Alternatively, if required, the circular mean pCM of the signal values p is found by applying an inverse mapping M−1(θ) to the mean direction θMD, and the circular mean pCM is compared against a threshold. The inverse mapping M−1 can be determined either by calculating and evaluating the mathematical function defining M−1 or by using a numerical technique (such as iterative processing) to obtain the required value.
The hyperbolic functions, tan h w and l/(cosh w) can be advantageously exploited by the mapping functions S(p) and C(p).
More particularly, since
the mapping [tan h w, 1/(cosh w)] will put a point representing a value w on a unit semicircle.
For normalization purposes, it will be convenient to use a logarithmic transformation before performing the two hyperbolic transformations, tan h w and l/(cosh w), so that w=ln(p). In this case, a functional block diagram of a circular-mean calculator has a similar structure as that shown in
S=tan h NP, CC=1/(cos h NP)
It is also possible to combine the logarithmic and hyperbolic transformations thereby simplifying the structure of the circular-mean calculator. Such a simplification can be achieved as follows.
If a hyperbolic transformation tan h(w) is preceded by a logarithmic transformation, w=ln(p), then
Since
As shown in
θ=tan−1[S(p)/C(p)]=tan−1[(p2−1)/(2p)]
c shows the unit semicircle with angular positions θ corresponding to some selected underlying values p of the signal. As seen, for larger values (p>10) of the signal, the corresponding angular positions θ form a cluster close to the limiting value π/2; on the other hand, values of p less than unity generate angular positions θ occupying the whole quadrant (−π/2,0).
When the parameters YK and XK have been determined from the observed values {p1,p2, . . . , pK−1,pK} according to
the circular mean pCM of the signal values p is obtained from
In this arrangement, the outputs, SS and CC, of the converters, SNL 802 and CNL 803, are obtained from the common input CP as follows
Other functions and operations performed by the modified system are similar to those performed by the system of
One of the intended applications of a circular-mean calculator, constructed in accordance with this embodiment of the invention, is the detection of signals in background noise. The following example illustrates such an application the embodiment. In the example, logarithmic and hyperbolic functions are exploited for mapping.
Assume that a random signal of unit power is to be detected in a noisy background comprising a unit-power thermal noise and impulsive interference with occasional spikes exceeding ten times the noise level. Assume also, for illustration purposes, that a detection threshold has been set to 1.9.
Suppose that in the no-signal case, six observed values of background noise are
p1=p2= . . . =p5=1, p6=10
The five equal samples may represent thermal noise level, and sample number six may be generated by impulsive interference. In this case, the arithmetic mean pAM is equal to 2.5. Therefore, if the arithmetic mean pAM were used as a detection statistic, a false alarm would be declared because the value 2.5 is greater than the detection threshold of 1.9.
Suppose now that the circular mean pCM, rather than the arithmetic mean, is used to determine the level of background noise. The parameters Y6 and X6 are
Hence, the circular mean pCM is
As seen, in this case, the circular mean pCM will not exceed the detection threshold, and hence, no false alarm will occur.
Suppose now that a random signal to be detected is present, and let six observed values, in this signal-plus-noise case, be all equal, for example, p1=p2= . . . =p6=2. Obviously, in this case, both the arithmetic mean pAM and the circular mean pCM will be equal, pAM=pCM=2, and both will lead to a correct detection decision.
Therefore, the main advantage of utilizing the circular mean as a detection statistic follows from its ability to attenuate occasional larger observations. In general, such a property is very useful when processing signals corrupted by noise of impulsive nature.
In accordance with a further embodiment of the invention, the circular concentration DCC of points on the unit semicircle is calculated and used to set a detection threshold value against which the circular mean pCM is compared and/or the circular concentration is used to adjust the value of the circular mean before it is compared with the detection threshold value.
The circular concentration DCC of points {θk} that represent values {pk} of a signal level p is determined from
D
CC=√{square root over (XK2+YK2)}
where
and S(pk) and C(pk) are the two functions used for mapping.
The third embodiment is the most appropriate for calculating the values XK and YK as these values are output by the initial mapping of the signal values p onto the semicircle in the third embodiment. However, it will be readily apparent to the skilled reader that XK and YK may be calculated after mapping p onto the semicircle as in the first and second embodiments.
When the points {θK} farm a tight cluster on the semicircle, the value of the circular concentration DCC will be close to one. However, when the points {θk} are widely dispersed, e.g., due to dominant noise, the value of the circular concentration DCC will be significantly smaller. Accordingly, the circular concentration DCC may be used in conjunction with the circular mean to further improve signal detection.
When the circular mean CM alone is utilized for detection purposes, signal presence will be declared if an observed value of circular mean exceeds the decision threshold TH, irrespective of the circular concentration. In this case, the decision region D1 has a rectangular shape extending from the line TH.
However, when the circular mean CM is used in conjunction with the circular concentration DC, the resulting decision region will be augmented by the region D2. When circular concentration values exceed some predetermined threshold C1, the decision threshold TH for circular mean may be gradually reduced to a new lower value T1. Obviously, the area (D1+D2) is greater than the area D1 alone, and an improved detection performance will be achieved, when the threshold TH is replaced by a decision boundary DE.
The circular-mean calculator CMC 1001 provides two output signals, CM and DC, indicative respectively of the circular mean and circular concentration. Those signals are employed by a decision block DET 1011 to decide whether the observed samples PP have been generated by sea clutter alone or by an object buried in clutter. For this purpose a signal DB that defines the decision boundary is applied to input DB of the decision block DET 1011. The output signal SD of the block is the global decision regarding the presence or absence of a signal in clutter.
It should be noted that, in the embodiment described above, the circular concentration DCC is used to adjust the threshold value against which the circular mean pCM is compared (as shown in
Modifications and Variations
The foregoing description of preferred embodiments of the invention has been presented for the purpose of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. In light of the foregoing description, it is evident that many alterations, modifications, and variations will enable those skilled in the art to utilize the invention in various embodiments suited to the particular use contemplated.
For example, in the embodiments described above, the signal values p are mapped to points on a semicircle. However, the use of a full semicircle is not essential and instead a circular arc smaller than a semicircle could be used. More particularly, the signal values p could be mapped to any circular arc subtending an angle of less than, or equal to, that subtended by a semicircular arc, namely π radians (or the equivalent, e.g. 180°).
In all of the embodiments described above, the mean direction θMD is calculated by determining both XK (that is, the mean of the x coordinates of the points on the semicircle) and YK (that is, the mean of the y coordinates of the points on the semicircle) and then using both values to calculate θMD. However, although not as robust, it is not necessary to determine both XK and YK, and instead of calculating the mean direction θMD an alternative mean MALT can be calculated as:
MALT=XK or MALT=YK
More particularly, when the points p are mapped to a unit semicircle covering an angular range 0° to 180° or 180° to 360°, then MALT=XK is used because the cosine values employed to calculate XK have a unique value in this range. That is, there is a 1:1 mapping between the value of the point p on the semicircle with the x-axis. On the other hand, when the points p are mapped to a unit semicircle covering an angular range 90° to 270° or 270° to 90°, then MALT=YK is used because the sine value employed to calculate YK have a unique value in this range.
The alternative mean MALT can then be compared against a threshold or, if required, mapped back into the signal domain and compared against a threshold. For example, in the first and second embodiments, this mapping back may be performed using an inverse cosine mapping (in the case of MALT=XK) or inverse sine mapping (in the case of MALT=YK) to map back to a point on the semicircle, and then applying an inverse mapping M−.
In the fourth embodiment described above, the circular mean pCM is compared against a threshold set in dependence upon the circular concentration DCC (or the circular mean pCM is adjusted in dependence upon the circular concentration DCC). However, instead, the mean direction θMD may be compared with a threshold set in dependence upon the circular concentration DCC (or the mean direction θMD may be adjusted in dependence upon the circular concentration DCC).
Other modifications are, of course, possible.
Number | Date | Country | Kind |
---|---|---|---|
0809168.8 | May 2008 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP09/56062 | 5/19/2009 | WO | 00 | 11/19/2010 |