Signal Management Using Point-In-Time Architecture Databases

Information

  • Patent Application
  • 20210240694
  • Publication Number
    20210240694
  • Date Filed
    February 02, 2021
    3 years ago
  • Date Published
    August 05, 2021
    3 years ago
  • CPC
    • G06F16/2365
  • International Classifications
    • G06F16/23
Abstract
Systems and methods are provided for managing data associated with a point-in-time architecture (PTA) databases. An exemplary method includes: receiving first data from a first PTA database and second data from a second PTA database; validating one or more parameters associated with the first data and the second data; comparing the first data and the second data with one or more reference data; predicting one or more events based on the comparing; generating a data report indicating the first data and the second data leads to the predicted one or more events; performing, based on the data report, surveillance of the first data and the second data during a surveillance period and using a surveillance protocol; receiving an update to at least one of the first data, the second data, or the one or more reference data; and updating at least one of the predicted one or more events.
Description
TECHNICAL FIELD

The present disclosure relates to methods and systems for detecting or obtaining signals and managing, analyzing, and visualizing detected signals.


BACKGROUND

Researchers, scientists, industry players, academics, government regulators, and other stakeholders are increasingly in need of data that is accessible, easy to interpret, analyze, and/or visualize.


SUMMARY

According to one aspect of the subject matter described in this disclosure, a method for managing data associated with a point-in-time architecture (PTA) database is provided. The method includes receiving, using one or more computing device processors, first data from a first PTA database and second data from a second PTA database. Also, the method includes validating, using the one or more computing device processors, one or more parameters associated with the first data and the second data. Using the one or more computing device processors, the first data and the second data are compared with one or more reference data. Moreover, the method includes predicting, using the one or more computing device processors, one or more events based on comparing the information about the first data and the second data with the one or more reference data. Additionally, the method includes generating, using the one or more computing device processors, a data report indicating the first data and the second data leads to the predicted one or more events. The method further includes performing, using the one or more computing device processors, and based on the data report, surveillance of the first data and the second data during a surveillance period and using a surveillance protocol. Also, the method includes, during the surveillance period, receiving, using the one or more computing device processors, an update to at least one of the first data, the second data, or the one or more reference data. Furthermore, the method includes updating, using the one or more computing device processors, and based on the update to the at least one of the first data, the second data, or the one or more reference data, at least one of the predicted one or more events.


According to another aspect of the subject matter described in this disclosure, a system for managing data associated with a PTA database is provided. The system includes at least one PTA database having first data and second data. Also, the system includes one or more computing device processors. The system further includes one or more computing device memories, coupled to the one or more computing device processors. The one or more computing device memories store instructions executed by the one or more computing device processors.


The instructions are configured to: receive the first data from a first PTA database and the second data from a second PTA database; validate the first data and the second data by validating one or more parameters defining the first data and the second data; compare the first data and the second data with one or more reference data; predict one or more events based on comparing the information about the first data and the second data with the one or more reference data; generate a data report indicating the first data and the second data leads to the predicted one or more events; perform, based on the data report, surveillance of the first data and the second data during a surveillance period and using a surveillance protocol; during the surveillance period, receive an update to at least one of the first data, the second data, or the one or more reference data; and update, based on the update to the at least one of the first data, the second data, or the one or more reference data, at least one of the predicted one or more events.


According to another aspect of the subject matter described in this disclosure, a method for managing data associated with a PTA database is provided. The method includes receiving, using the one or more computing device processors, at least first data from at least a first PTA database. Also, the method includes validating, using the one or more computing device processors, one or more parameters associated with the at least first data. The method further includes assessing, using the one or more computing device processors, the at least first data by comparing the at least first data with one or more reference data. Moreover, the method includes predicting, using the one or more computing device processors, one or more events based on comparing the information about the first data and the second data with the one or more reference data. Additionally, the method includes generating, using the one or more computing device processors, a data report indicating the at least first data leads to the predicted one or more events. The method further includes performing, using the one or more computing device processors, and based on the data report, surveillance of the first data and the second data during a surveillance period and using a surveillance protocol. Also, the method includes, during the surveillance period, receiving, using the one or more computing device processors, an update to at least one of the at least first data or the one or more reference data. Furthermore, the method includes updating, using the one or more computing device processors, and based on the update to the at least one of the at least first data or the one or more reference data, at least one of the predicted one or more events.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure is illustrated by way of example, and not by way of limitation in the figures of the accompanying drawings in which like reference numerals are used to refer to similar elements. The various elements shown in the figures that follow may be optional depending on a given embodiment without departing from the principles provided in this disclosure.



FIG. 1 is a high-level network system for accessing, managing, and visualizing structured data, according to one embodiment.



FIG. 2A is a functional block diagram of a computing environment for accessing and visualizing structured data, according to one embodiment.



FIG. 2B is a detailed system diagram of FIG. 2A, according to one embodiment.



FIG. 3 shows an example interface for visualizing statistical data derived from one or more signal sources, according to one embodiment.



FIG. 4 shows an example interface for configuring one or more signals detected from one or more data sources, according to one embodiment.



FIG. 5 depicts an example interface for configuring one or more detected signal for analysis, according to one embodiment.



FIG. 6 shows an example interface for validating one or more detected signals, according to one embodiment.



FIG. 7 shows and example interface for transitioning one or more detected signals from a validation phase to an assessment phase, according to one embodiment.



FIG. 8 shows an example interface for displaying a validated signal undergoing further assessment, according to one embodiment.



FIG. 9 shows an example interface for configuring aspects of a detected signal undergoing further assessment, according to one embodiment.



FIG. 10 shows an example interface for further configuring an assessment phase of a signal, according to one embodiment.



FIG. 11 shows an example interface for displaying a reference document, according to one embodiment.



FIG. 12 shows an example interface for displaying another reference document, according to one embodiment.



FIG. 13 shows an example interface for generating a signal report, according to one embodiment.



FIG. 14 shows a signal report generated using information in the example interface of FIG. 12, according to one embodiment.



FIG. 15 shows an example interface for configuring a detected signal undergoing further regulatory review, according to one embodiment.



FIG. 16 shows an example interface for placing a signal in a continuous state of surveillance, according to one embodiment.



FIG. 17 shows an example flowchart for executing one or more statistical operations on a configured signal, according to one embodiment.



FIG. 18 shows an example partner distribution list of a safety report according to one embodiment.



FIG. 19 shows an example flowchart for protecting sensitive content in an enterprise content management system, according to one embodiment.



FIGS. 20A and 20B each shows an example case preview according to one embodiment.



FIG. 21 shows an example safety report according to one embodiment.





DETAILED DESCRIPTION

The figures and descriptions provided herein may have been simplified to illustrate aspects that are relevant for a clear understanding of the herein described devices, systems, and methods, while eliminating, for the purpose of clarity, other aspects that may be found in typical similar devices, systems, and methods. Those of ordinary skill may recognize that other elements and/or operations may be desirable and/or necessary to implement the devices, systems, and methods described herein. But because such elements and operations are well known in the art, and because they do not facilitate a better understanding of the present disclosure, a discussion of such elements and operations may not be provided herein. However, the present disclosure is deemed to inherently include all such elements, variations, and modifications to the described aspects that would be known to those of ordinary skill in the art.


The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. For example, as used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.


Although the terms first, second, third, etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. That is, terms such as “first,” “second,” and other numerical terms, when used herein, do not imply a sequence or order unless clearly indicated by the context.


System Environment


Illustrated in FIG. 1 is a high level network system 100 for generating interfaces that access, maintain, analyze, and display structured data. In the depicted implementation, the system 100 may include a server 105 communicatively coupled to a plurality of secure computing environments 125 via the network 110. The secure computing environments 125 may in turn be communicatively coupled to a data source 130. While a server 105 is illustrated, the disclosed principles and techniques could be expanded to include multiple servers 105.


The server 105, according to some embodiments, is configured to store a plurality of structured data in a secure environment requiring authentication before access is granted to the structured data. According to one implementation, the structured data includes hierarchical data having varying and connected categories/levels that describe a plurality of aspects of the structured data. In some cases, the structured data in the server 105 is sourced or obtained from third-party scientific sources, and/or from third-party regulatory agencies, and/or from academic sources, and/or from industrial sources, etc. According to one implementation, the structured data includes terminology data associated with Medical Dictionary for Regulatory Activities (“MedDRA”) dictionaries, WHODrug dictionary, or the like. In addition, the server 105 may be configured to manage or otherwise maintain the integrity and/or version updates of the structured data so that a user (e.g., a user of the secure computing environment) does not have to deal with such data maintenance processes as the structured data changes and/or grows. In one embodiment, the server 105 provides (e.g., using a snapshot reference) the most current version of the structured data to a user of the system. In other embodiments, the server 105 can also provide historical versions of the structured data when necessary or needed. Furthermore, the server 105 may include mechanisms that execute operations of data decompression operations, data decryption operations, and data decoding operations associated with the structured data so that the user is effectively isolated from such operations.


Moreover, the server 105 allows for easy associating, tagging, or coding new phenomena/events/cases (e.g., in the medical area or any other area) with structured data from the server 105. In some cases, the tagging or coding is automatically executed by the server 105. In some instances, coding/tagging decisions are snapshotted to the secure computing environment and are not affected by updates occurring at the server 105. In one embodiment, the server 105 enables a user to control version information of the structured data for follow-up cases/events. In addition, the server 105 allows a user (e.g., user of the secure computing environment 125) to transition from accessing structured data from the data source 130 to accessing data from the server 105. In one embodiment, the data accessed from the server 105 and/or from the data source 130 may include one or more signals associated with a specific product. These signals may include statistical data associated with a product, testing data associated with a product, regulatory data associated with a product, usage data associated with the product, etc. In one embodiment, the product includes a pharmaceutical product, a medical product, or a health-related product.


The server 105 may be implemented within a computing device such as a mainframe server, a content server, a communication server, a laptop computer, a desktop computer, a handheld computing device, a virtual machine, a cloud-based computing solution and/or service, and/or the like. The server 105 may include a plurality of computing devices configured to communicate with one another and/or implement the techniques described herein. In some instances, the server 105 may include various elements of a computing environment as described with reference to FIG. 2A and/or 2B. For example, the server 105 may include a processing system 202, a memory 204, an input/output (I/O) system 206, and a communication system 208. A user (e.g., database administrator) may operate/maintain the server 105 either locally or remotely as the case may require.


The server 105 may be configured to have storage logic that is executable to store structured data that is shared across multiple secure computing environments 125. According to one implementation, the server 105 includes a plurality of non-volatile/non-transitory storage media such as solid state storage media, hard disk storage media, virtual storage media, cloud-based storage drives, storage servers, and/or the like. The plurality of storage media may be configured to store data from a plurality of sources. For example, the server 105 may include storage logic that is executable to store structured data derived from, for example, medical data, research data, education data, pharmaceutical data, product data, government data, etc. According to some implementations, the storage logic of the server 105 may be configured to automatically monitor and/or update relevant structured data obtained from a third-party source. For example, the storage logic of the server 105 may periodically monitor updates associated with structured data (e.g., dictionary of medical terms for research and regulatory purposes) from third-party organizations/sources and automatically update different versions of the structured data within one or more storage media of the server 105. In one embodiment, the storage logic of the server 105 manipulates or otherwise formats the structured data such that user interfaces generated by a secure computing environment 125 can seamlessly access/retrieve and present the structured data to a user. In addition, structured data from the server 105 may be accessed on a regulated basis via credential access, for example. This regulated basis may be determined, in part, by licenses, privileges, and other levels of authorization dictated by a user's credentials.


The data store 130 may include storage logic for storing data from third-party sources. The data store 130 may include a plurality of non-volatile/non-transitory storage media such as solid state storage media, hard disk storage media, virtual storage media, cloud-based storage drives, storage servers, and/or the like. According to some embodiments, the data store 130 may include logic that updates data stored within its storage devices based on updates issued by the server 105. In one embodiment, the data store 130 and/or the server 105 may include one or more point-in-time architecture (PTA) databases.


As previously discussed, the network 110 facilitates communication between the server 105 and the secure computing environment 125. The network 110 may also allow different secure computing environments 125 to communicate with each other. According to one embodiment, the network 110 may include a plurality of networks. For instance, the network 110 may include any wired/wireless communication network that facilitates communication between the components of the network system 100. The network 110, in some instances, may include an Ethernet network, a cellular network, a computer network, the Internet, a wireless fidelity (Wi-Fi) network, a light fidelity (Li-Fi) network, a Bluetooth network, a radio frequency identification (RFID) network, a near-field communication (NFC) network, a fiber optics network, a laser-based network, and/or the like.


The secure computing environment 125 is configured to generate one or more user interfaces for accessing, analyzing, and displaying the structured data. The secure computing environment 125 may also be configured to generate and or display interfaces that visualize one or more signals derived from one or more sources. As discussed further below, the interfaces generated by the secure computing environment 125 may include visualizations of statistical data of a product and may allow a user to configure different aspects of the statistical data as needed. According to some implementations, the secure computing environment 125 includes functionalities and/or enhanced security features that allow a user to securely access and/or securely manage structured data and/or manage one or more detected signals. As shown more clearly in the exemplary functional and system diagrams of FIGS. 2A and 2B, the secure computing environment 125 includes a processing system 202, a memory 204, an I/O system 206, and a communication system 208. The processing system 202, the memory 204, the I/O system 206, and the communication system 208 may include one or more subsystems that perform one or more of the operations described herein. Additionally, each system of the secure computing environment 125 may be operatively and/or otherwise communicatively coupled with each other so as to facilitate one or more operations described herein. The secure computing environment 125 may include general hardware, specifically-purposed hardware, and/or a combination thereof.


The processing system 202 may control the memory 204, the I/O system 206, and the communication system 208, as well as any included subsystems, elements, components, devices, and/or functions performed by the memory 204, I/O system 206, and the communication system 208. Additionally, any actions described in this disclosure as being performed by a processor or one or more processors of a computing device or one or more computing device processors and/or one or more computing system processors may be executed by the processing system 202 of FIGS. 2A and 2B. Further, while one processing system 202 is shown in FIGS. 2A and 2B, multiple processing systems may be present and/or otherwise included in the secure computing environment 125 or elsewhere in the overall network system 100 of FIG. 1. Thus, while instructions may be described as being executed by the processing system 202 (and/or various subsystems of the processing system 202), the instructions may be executed simultaneously, serially, and/or otherwise by one or multiple processing systems 202 on one or more computing devices.


According to one embodiment, the processing system 202 may be implemented as one or more computer processor chips and/or graphical processing unit (GPU) chips and may include a hardware device capable of executing computer instructions. The processing system 202 may execute instructions, codes, computer programs, and/or scripts. The instructions, codes, computer programs, and/or scripts may be received from the I/O system 206, the communication system 208, and/or stored in the memory 204, and/or received from the other subsystems of the secure computing environment 125 and/or received from other computing environments.


In some embodiments, the processing system 202 may include subsystems such as a content management subsystem 212, a graphical processing subsystem 216, and a resource allocation subsystem 218. Each of the aforementioned subsystems of the processing system 202 may be communicatively or operably coupled to each other.


The content management sub-system 212 may facilitate generation, modification, analysis, transmission, and/or presentation of content. Content may be file content, media content, structured data content, user interfaces, or any combination thereof. In some instances, content on which the content management system 212 operates includes structured data from the server 105, structured data from the local repository 130, user interface data, device information, images, text, themes, audio files, video files, documents, and/or the like. Additionally, the content management subsystem 212 may control the audio-visual environment and/or appearance of application data during execution of various processes. In some embodiments, the content management subsystem 212 may interface with a third-party content server and/or third-party memory locations for execution of its operations.


The graphical processing subsystem 216 may facilitate generation, modification, analysis, processing, transmission, and/or presentation of the content described above, as well as any data described herein. In some embodiments, the graphical processing subsystem 216 may be used to render content for presentation on a computing device (e.g., via a graphical user interface of the computing device). The graphical processing subsystem 216 may also include multiple graphical processing subsystems and therefore may be configured to perform and/or execute multiple processes in parallel. In some implementations, the graphical processing subsystem 216 may be used in conjunction with components of the memory 204, the I/O system 206, the communication system 208, and/or a combination thereof.


The resource allocation subsystem 218 may facilitate the determination, monitoring, analysis, and/or allocation of computing resources throughout the secure computing environment 125 and/or other computing environments. Computing resources of the secure computing environment 125 may be used by the processing system 202, the memory 204, the I/O system 206, and/or the communication system 208. These resources may include processing power, data storage space, network bandwidth, and/or the like. Accordingly, the resource allocation subsystem 218 may include sensors and/or other specially-purposed hardware for monitoring performance of each system and/or subsystem of the secure computing environment 125, as well as hardware for responding to the computing-resource needs of each system and/or subsystem. In some embodiments, the resource allocation subsystem 218 may use computing resources of a second secure computing environment separate and distinct from the secure computing environment 125 to facilitate a desired operation.


The memory 204 may be used for storing, recalling, receiving, transmitting, and/or accessing various files and/or data (e.g., structured data) and/or signals associated with a product during the operation of the secure computing environment 125. For example, the memory 204 may store, recall, and/or update structured data and/or one or more signals from the server 105 and/or from the local repository as the case may be. In some embodiments, the memory 204 may store instructions and/or data that may be executed by the processing system 202. For instance, the memory 204 may store instructions that execute operations associated with one or more systems and/or one or more subsystems of the secure computing environment 125. For example, the memory 204 may store instructions for the processing system 202, the I/O system 206, the communication system 208, and for itself.


Memory 204 may include various types of data storage media such as solid state storage media, hard disk storage media, virtual storage media, and/or the like. Memory 204 may include dedicated hardware elements such as hard drives and/or servers, as well as software elements such as cloud-based storage drives. In some implementations, memory 204 may be a random access memory (RAM) device, a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, flash memory, read only memory (ROM) device, and/or various forms of secondary storage. The RAM device may be used to store volatile data and/or to store instructions that may be executed by the processing system 202. For example, the instructions stored may be a command, a current operating state of secure computing environment 125, an intended operating state of secure computing environment 125, and/or the like. As a further example, data stored in the memory 204 may include instructions related to various methods and/or functionalities described herein. The ROM device may be a non-volatile memory device that may have a smaller memory capacity than the memory capacity of a secondary storage of the secure computing environment. The ROM device may be used to store instructions and/or data that may be read during execution of computer instructions. In some embodiments, access to both the RAM device and ROM device may be faster to access than access to the secondary storage of the secure computing environment 125. Secondary storage may comprise one or more disk drives and/or tape drives which may be used for non-volatile/non-transitory storage of data or as an over-flow data storage device of the secure computing environment 125 if the RAM device is not large enough to hold all working data. Secondary storage may be used to store programs that may be loaded into the RAM device when such programs are selected for execution.


Turning back to FIG. 2A, the memory 204 may include subsystems such as application data 228, application programming interface 230, content storage 232, and cache storage 240. Application data 228 may facilitate deployment, storage, access, execution, and/or utilization of an application utilized by the secure computing environment 125 and/or any other computing environments described herein. As such, application data 228 may store any information and/or data associated with an application. Application data 228 may further store various pieces of information and/or data associated with the operation of an application and/or with the secure computing environment 125 as a whole, such as a status of computing resources (e.g., processing power, memory availability, resource utilization, and/or the like), runtime information, user interfaces, systems to direct execution of operations described herein to, user permissions, security credentials, and/or the like.


The application programming interface (API) 230 may facilitate deployment, storage, access, execution, and/or utilization of information associated with APIs of secure computing environment 125 and/or any other computing environment described herein. For example, secure computing environment 125 may include one or more APIs for various devices, applications, systems, subsystems, elements, and/or other computing environments to allow communication between one or more applications associated with the secure computing environment 125. Accordingly, API 230 may include API databases containing information that may be accessed and/or used by applications, systems, subsystems, elements, and/or operating systems of other devices and/or computing environments in communication with the secure computing environment 125. In some cases, the API 230 may enable the server 105 and the secure computing environment 125 to communicate with each other.


The content storage 232 may facilitate deployment, storage, access, and/or utilization of information associated with structured data as further discussed below. In one embodiment, content storage 232 may communicate with a content management system 212 to receive and/or transmit content (e.g., structured data, media content, etc.).


The I/O system 206 may include hardware and/or software elements for the secure computing environment 125 to receive, and/or transmit, and/or present information useful for generating one or more interfaces for retrieving and displaying structured data according to some embodiments of this disclosure. For example, elements of the I/O system 206 may be used to receive input from a user of the secure computing environment 125. As described herein, I/O system 206 may include subsystems such as I/O device 242, I/O calibration subsystem 244, and/or driver 246.


The I/O device 242 may facilitate the receipt, transmission, processing, presentation, display, input, and/or output of information as a result of executed processes described herein. In some embodiments, the I/O device 242 may include a plurality of I/O devices. In some embodiments, I/O device 242 may include a variety of elements that enable a user to interface with secure computing environment 125. For example, I/O device 242 may include a keyboard, a touchscreen, a button, a sensor, a biometric scanner, a laser, a microphone, a camera, and/or another element for receiving and/or collecting input from a user. Additionally and/or alternatively, I/O device 242 may include a display, a screen, a sensor, a vibration mechanism, a light emitting diode (LED), a speaker, a radio frequency identification (RFID) scanner, and/or another element for presenting and/or otherwise outputting data to a user. In some embodiments, the I/O device 242 may communicate with one or more elements of processing system 202 and/or memory 204 to execute operations associated with generating user interfaces for retrieving and visualizing structured data.


The I/O calibration system 244 may facilitate the calibration of the I/O device 242. For example, I/O calibration system 244 may detect and/or determine one or more settings of I/O device 242, and then adjust and/or modify settings so that the I/O device 242 may operate more efficiently. In some embodiments, I/O calibration system 244 may use a driver 246 (or multiple drivers) to calibrate I/O device 242 as needed. For example, driver 246 may include software that is to be installed by I/O calibration system 244 so that an element of secure computing environment 125 (or an element of another computing environment) may recognize and/or integrate with I/O device 242.


The communication system 208 may facilitate establishment, maintenance, monitoring, and/or termination of communications between the secure computing environment 125 and other computing environments, third-party server systems, and/or the like. Communication system 208 may also facilitate internal communications between various elements (e.g., systems and/or subsystems) of secure computing environment 125. In some embodiments, communication system 208 may include a network protocol subsystem 248, an API gateway 250, an encryption engine 252, and/or a communication device 254. These systems and/or subsystems of the communication system 208 may be implemented as hardware, software, or a combination thereof.


The network protocol subsystem 248 may facilitate establishment, maintenance, and/or termination of a communication connection for the secure computing environment 125 via a network (e.g., network 110). For example, network protocol subsystem 248 may detect and/or define a communication protocol required by a particular network and/or network type. Communication protocols utilized by network protocol subsystem 248 may include Wi-Fi protocols, Li-Fi protocols, cellular data network protocols, Bluetooth® protocols, internet protocols, WiMAX protocols, Ethernet protocols, power line communication (PLC) protocols, and/or the like. In some embodiments, facilitation of communication for the secure computing environment 125 may include transforming and/or translating data from a first communication protocol to a second communication protocol. In some embodiments, network protocol subsystem 248 may determine and/or monitor an amount of data traffic to determine which network protocol is to be used for establishing a secure communication connection, transmitting data, and/or performing retrieval and subsequent visualization of structured data.


The application programming interface (API) gateway 250 may allow other devices and/or computing environments and/or applications external to the secure computing environment 125 to access the API 230 of the memory 204. For example, a computing system may access the API 230 of the secure computing environment 125 via the API gateway 250. In some embodiments, API gateway 250 may be required to validate user credentials associated with a user of a computing device (e.g., a device external to the secure computing environment 125) prior to providing access to the API 230 to the user. API gateway 250 may include instructions for the secure computing environment 125 and thereby communicate with external devices and/or between components of the secure computing environment 125.


The encryption engine 252 may facilitate translation, encryption, encoding, decryption, and/or decoding of information received, transmitted, and/or stored by the secure computing environment 125. Using encryption engine 252, each transmission of data may be encrypted, encoded, and/or translated for security reasons, and any received data may be encrypted, encoded, and/or translated prior to its processing and/or storage. In some embodiments, encryption engine 252 may generate an encryption key, an encoding key, a translation key, and/or the like, which may be transmitted along with any data content.


The communication device 254 may include a variety of hardware and/or software specifically purposed to facilitate communication for secure computing environment 125 with external systems and/or devices. In some embodiments, communication device 254 may include one or more radio transceivers, chips, analog front end (AFE) units, antennas, processing units, memory, other logic, and/or other components to implement communication protocols (wired or wireless) and related functionality for facilitating communication for WAS system 125. Additionally and/or alternatively, communication device 254 may include a modem, a modem bank, an Ethernet device such as a router or switch, a universal serial bus (USB) interface device, a serial interface, a token ring device, a fiber distributed data interface (FDDI) device, a wireless local area network (WLAN) device and/or device component, a radio transceiver device such as code division multiple access (CDMA) device, a global system for mobile communications (GSM) radio transceiver device, a universal mobile telecommunications system (UMTS) radio transceiver device, a long term evolution (LTE) radio transceiver device, a worldwide interoperability for microwave access (WiMAX) device, and/or another device used for communication purposes.


To manage and evaluate data received from data sources, server 105 may provide to each computing environment 125 a number of user interfaces. In this context, signals are data from the data sources that have processed using one or more statistical operations. These user interfaces may allow each computing environment to manage and evaluate one more detected signals based on the data. Moreover, the user interface may allow the users of each computing environment 125 to perform signal detection analysis using the statistical metrics described in herein including point-in-time statistical metrics. Also, the one or more detected signals may be configured or otherwise parameterized using a plurality of stages. The stages may include a detection phase, an analysis and prioritization phase, a validation phase, an assessment phase, a risk management phase, and a regulatory review phase. This is described in further detail hereinafter.


User Interfaces



FIG. 3 illustrates an example interface 300 that is generated for visualizing statistical data derived from one or more signal sources. The one or more signal sources may comprise one or more data sources (e.g., server 105 and/or data source 130 of FIG. 1) that store structured data. Moreover, the interface 300 may be generated in a secure computing environment (e.g., secure computing environment 125 of FIG. 1) according to some embodiments. The interface 300 includes a details section 302, a statistical analysis chart 304, one or more statistical metrics 306A . . . 306E, and one or more data sources 308 associated with at least one detected signal (e.g., a record, a file, or other data associated with a product). In addition, the interface 300 may include event terms E1-E5, one or more repository references ER1-ER4, and one or more data sources (e.g., data source 1 to data source 5) associated with at least one detected signals. According to one embodiment, the interface 300 may include other features other than those shown in FIG. 3. Furthermore, the interface 300 may be generated in response to passing one or more detected signals through a number of processing stages or phases as discussed in association with FIGS. 4-15.


The details section 302 of FIG. 3 provides a summary of information associated with one or more detected signals. For example, the details section 302 may include information such as the name of a product (e.g., product 1) and an organization that produces the product (e.g., Agency A). Thus, the illustrated embodiment of interface 300 represents a visualization of one or more detected signals associated with product 1 manufactured by agency A. The statistical analysis chart 304 provides a statistical diagram or a graph, or a plot, or a graphical illustration based on the one or more statistical metrics 306A . . . 306E. In one embodiment, the statistical analysis chart 304 also includes a hover summary 312 providing specific details associated with specific data points within the statistical chart 304. In some cases, the statistical analysis chart 304 includes a bubble chart depicting multi-dimensions (e.g., 2-dimensions, 3-dimensions, 4-dimensions, etc.) of data associated with one or more detected signals. For example, a bubble comprised in the bubble chart may have a first dimension representing a first statistical metric, a second dimension representing a second statistical metric, and a third dimension representing a magnitude, an amount, or a size of the bubble. In some cases, the bubble chart beneficially provides relationships and patters between data sets, multiple values (hundreds or thousands of values), values differing by substantially significant orders of magnitude, etc., associated with one or more detected signals. Such identified relationships can help prioritize areas of focus of the bubble chart. For example, certain areas of focus of the bubble chart can help identify clusters that indicate optimal project executions and considerations (e.g., cost, value, and risk) associated with the one or more detected signals. While a bubble chart is shown in the illustrated embodiment, the chart 304 may include funnel charts, categorical column charts, unit charts, bar charts, stacked charts, multiple line charts, cherry charts, etc.


In some instances, the interface 300 may represent a signal profile product having a chart (e.g., statistical analysis chart 304), a grid (e.g., layout of statistical metrics 306A . . . 306E) and an auto-coded structured data (e.g., Medical Dictionary for Regulatory Activities (“MedDRA”) dictionaries). The auto-coded structured data may include structured, tiered or stratified data that allows for words or terms that are similar to low level terms within the strata of the structured data to be used for automatic updating of terms associated with one or more signal sources and/or associated with a product associated with the signal profile product. Such updates may include taking snapshots/updates of the low level terms in the strata of the structured data from a repository and automatically updating similar low level terms associated with the interface 300. According to one embodiment, automatic coding occurs at a record level such that one or more records with terms associated with the interface 300 are updated to a specific version of records in the repository within which is the structured data. A snapshot reference may be used to automatically update certain records with terms associated with the interface 300 without updating all the records associated with the interface 300. A snapshot reference may include a reference object including one or more identifiers, one or more tagging/coding data, and at least one version of information. According to one embodiment, an automatic coding or update operation may be executed on one or more terms associated with the interface 300 using the tagging data. The update operation may include at least automatically updating version information associated with a record/term associated with the interface 300. The update operation may also include automatically updating a plurality of records/terms associated with the interface 300 based on updated records/terms within a repository (e.g., a MedDRA dictionary or a WHODrug dictionary).


In one embodiment, the one or more detected signals may be configured or otherwise parameterized using a plurality of stages. Such configuring and/or parameterizing of the one or more detected signals may be initiated by activating (e.g., clicking) a button such as the button 310 of the interface 300. For example, the plurality of stages used to configure the one or more detected signals may include a detection phase, an analysis and prioritization phase, a validation phase, an assessment phase, a risk management phase, and a regulatory review phase. These phases are further discussed in association with FIGS. 4-16.


In some embodiments, the statistical metrics 306A . . . 306E may be exclusively different statistical metrics. In some embodiments, each statistical metric 306A . . . 306E may include one or more statistical operations. In some embodiments, the one more statistical operations may include Empirical Bayes Geometric Mean (EBGM), Proportional Reporting Ratio (PRR), Chi-Square, or the like.



FIG. 4 shows an interface 400 for configuring one or more signals detected from one or more data sources. In one embodiment, the one or more signals are associated with a product (e.g., a pharmaceutical product) that has to go through a plurality of regulatory and testing phases in order to be approved for use. As seen in the figure, the interface 400 includes a first details section 402, a status section 403 (e.g., 403a and 403b), a second details section 404A, a signal sources section 404B, and a signal analysis section 404C associated with a product (e.g., product 2). As seen in the figure, the first details section 402 includes summary data associated with the second details section 404A, the signal sources section 404B, and the signal analysis section 404C. For example, the first details section 402 may include the number of sources from which the one or more signals are obtained, the type of analysis being conducted on the one or more detected signals, reference documents associated with analysis of the one or more detected signals, a workflow timeline indicative of an analysis phase of the one or more detected signals, etc.


The status section 403 indicates a specific stage/phase and/or a status associated with a specific stage of a configuration process for one or more detected signals. For example, the status section 403a indicates that the one or more signals associated with a product have been successfully detected. Successful signal detection may be further indicated by activating a first color (e.g., green) associated with the status section 403a. Similarly, the status section 403b indicates that an analysis and prioritizing stage of a signal configuration process is ongoing and once completed, a second color (e.g., green) associated with the status section 403b may be activated to indicate completion of the analysis and prioritizing stage of the signal.


The second details section 404A provides contextual data associated with a product for which the one or more signals have been detected. For example, the second details section 404A may include a first property associated with a product (e.g., blood magnesium level associated with product 2), a repository term (e.g., PT term 1), an event identifier (e.g., RAE1) associated with the aforementioned structured data, a signal product profile for the product in question, etc. Moreover, the signal sources section 404B may include a grid format that outlines one or more event terms E1 . . . E3 associated with structured data, or associated with one or more data sources (data source 1 to data source 3) from which the one or more detected signals were obtained. The grid format may also include one or more outcomes 408A (e.g., worst outcomes WO1 . . . WO3) resulting from using the product being analyzed, and may also include other signal properties 408B, 408C, 408D, and 408D as needed. The signal properties (e.g., P1 . . . P4) may include data such as deaths reported associated with using the product being analyzed, life threatening reactions associated with using the product, hospitalizations associated with using the product, and other serious cases associated with using the product. Also included in the grid format are one or more statistical metrics 406A . . . 406D with corresponding entries within the grid format. A button 412 of the signal sources section 404B may allow for additional analysis features to be added to the signal sources section 404B. The signal analysis section 404C may allow a user to provide parameters that assign degrees of urgency based on one or more data (e.g., statistical metrics, signal properties, outcomes, etc.) to thereby decide or otherwise prioritize an order for managing or handling identified issues (e.g., problems) associated with the product being analyzed. According to one embodiment, activating a button 410 of the interface 400 allows a user to further configure data associated with the signal analysis section 404C as further discussed below in association with FIG. 5.



FIG. 5 shows an example interface for prioritizing, confirming, or otherwise executing a triage operation on one or more detected signal associated with a given product (e.g., product 2). In one embodiment, a pop-up menu 502 may be generated for executing the triage operation in response to a user activating the button 410 of FIG. 4. The pop-up menu 502 includes a first field 502A for selecting an option associated with a seriousness property resulting from using the product, a second field 502B for selecting an option associated with a reaction (e.g., an adverse reaction) resulting from using the given product, a third field 502C for flagging whether the given product should be on a watch-list, a fourth field 502D for selecting an outcome associated with using the given product, and at least one checkbox 503 for establishing a verdict associated with using the given drug. In response to the user executing the triage operation by selecting or parameterizing aspects of the given product based on fields 502A . . . 502D and based on the at least one checkbox 503, the pop-up menu 502 may transition the user interface 400 into the interface shown in FIG. 6.


In FIG. 6, the interface 400 now includes a status section 403c that is indicative of a validation stage of processing the one or more received signals. At this processing stage, the interface 400 can display an evaluation section 404D which includes reaction (e.g., adverse reaction) data associated with using the given product, exposure data associated with one or more groups using the given product, population impact data, etc. At the validation stage, the user may activate a button 602 to generate the pop-up menu 702 of FIG. 7. The pop-up menu 702 may include a plurality of fields 702A . . . 702G that can be used to parameterize the one or more detected signals during the validation stage. In response to validating the one or more signals using the pop-up menu 702, the user may activate the button 704 to update the interface 400 to transition to an assessment stage as shown in FIG. 8.



FIG. 8 shows a transition of the interface 400 from a validation stage to an assessment stage. At this stage of processing the one or more detected signals associated with a given product (e.g., product 2), information about the one or more signals is compared against one or more reference documents such as the reference documents 1102 of FIG. 11, 1202 of FIG. 12, and signal report 1400 of FIG. 14. This ensures that any inconsistencies associated with the prior processing stages may be caught and addressed.



FIG. 9 shows an interface 400 for configuring aspects of a detected signal undergoing further assessment, according to one embodiment. The interface 400 may be at the assessment stage 403d. In such a case, clinical relevance of the detected signal may be evaluated using a workflow task window 902, which provides a listing of workflow tasks 902a, 902b, 902c, and 902d to be addressed by a user. The workflow task 902a may be associated with prevention and reversibility options concerning Product 2. The workflow task 902b may be associated with the different possibilities for prevention concerning Product 2. The workflow task 902c may be associated with signal severity options concerning Product 2. The listing 902 may be associated with reasons for the signal severity concerning Product 2. After the user is completed addressing tasks 902a, 902b, 902c, and 902d, the user may click button 906 to close workflow task window 902. Moreover, the user may cancel their entries for tasks 902a, 902b, 902c, and 902d by clicking button 908. A new workflow task window 902 may be provided so the user can re-enter entries for tasks 902a, 902b, 902c, and 902d. Once the user is done with workflow task window 902, the user can confirm that he/she has completed a workflow task portion of the assessment by clicking button 904.


In some embodiments, each workflow task 902a, 902b, 902c, and 902d is provided with a drop menu of options to select. In some embodiments, the user can write responses in a text box to each workflow task 902a, 902b, 902c, and 902d.



FIG. 10 shows an interface 400 for further configuring an assessment phase of a signal, according to one embodiment. The interface 400 may be at the assessment stage 403d. After completing workflow tasks 902a, 902b, 902c, and 902d, a causality determination window 1002 may be provided to determine if Product 2 is likely the cause of an adverse event. The causality determination window 1002 may include a number of causality determination tasks 1002a, 1002b, and 1002c a user must answer. The workflow task 1002a may be associated with assessing the causality of an adverse event involving Product 2. The workflow task 1002b may be associated with the reasons for the causality involving Product 2. The workflow task 1002c may be associated with the verdict on causality associated with Product 2. The listing 902 may be associated with reasons for the signal severity involving Product 2. After the user has completed addressing tasks 1002a, 1002b, and 1002c, the user may activate (e.g., click) button 1006 to close workflow task window 1002. Moreover, the user may cancel entries for tasks 1002a, 1002b, and 1002c by activating (e.g., clicking) button 1008. A new workflow task window 1002 may be provided so the user can re-enter entries for tasks 1002a, 1002b, and 1002c. Once the user is done with workflow task window 1002, the user can confirm completing the workflow task portion of the assessment by activating (e.g., clicking) button 1004.


In some embodiments, each causality determination tasks 1002a, 1002b, and 1002c may be provided with a drop menu of options to select. In some embodiments, the user may write in a text box responses to each causality determination tasks 1002a, 1002b, and 1002c.



FIG. 11 shows an example interface for displaying a reference document 1104, according to one embodiment. The interface 400 may still indicate a status indicator 403d designating that the detected signal of Product 2 is at the assessment stage. In this case, a document window 1102 may be presented once all information in the workflow task window 902 has been entered. The document window 1102 includes an annotated reference 1104 and an information section 1106. The annotated reference 1104 may be a reference closely aligned with information in workflow task window 902 of Product 2, and may be annotated using information provided in workflow task window 902. The information section 1106 may describe general information regarding annotated reference 1104, such as the name of the reference, title, subtype, document number, who created or modified the document, version data of the document, and the like.


In some embodiments, the underlying document associated with the annotated reference 1104 may be retrieved for a local or remote document storage memory system.



FIG. 12 shows an example interface for displaying a reference document 1104, according to one embodiment. The interface 400 may indicate a status indicator 403e designating the detected signal of Product 2 is at the risk management stage 403e. In this case, a document window 1202 may be presented once all information in causality determination window 1002 has been entered. The document window 1202 may include an annotated reference 1204 and an information section 1206. The annotated reference 1204 may be a reference closely aligned with information in the causality determination window 1002 of Product 2, and may be annotated using information provided in the causality determination window 1002. The information section 1206 may describe general information regarding annotated reference 1204, such as the name of the reference, title, status, lifecycle, document number, who created or modified the document, version data of the document, aggregate report, and the like. Under the risk management stage 403e, reviewing the one or more reference documents, including information regarding the one or more detected signals, allows one to devise a risk management strategy regarding the producer under review.


In some embodiments, the underlying document associated with the annotated reference 1204 may be retrieved from a local or remote document storage memory system.



FIG. 13 shows an example interface for generating a signal report. A signal report may be generated to notify authorities/regulators regarding an adverse event associated with a signal associated with Product 2, for example. This may be determined by using several statistical analyses to detect adverse events associated with using Product 2. A signal report generation window 1302 may be provided when interface 400 is at the regulatory review stage 403f. The signal report generation window 1302 may include a first portion 1304, a second portion 1306, and a third portion 1308.


The first portion 1302 may include profile information retrieved from various stages 403a . . . 403d of interface 400 regarding the signal of Product 2 as discussed in FIGS. 3-12. The second portion 1306 may focus on signals of disproportionate reporting. The second portion 1306 may list the internal names D1-D3 of the data sources Data Source 1-Data Source 3 used for signal detection, signal priority, total number of cases associated with each local data source Data Source 1-Data Source 3, and statistical analysis information St1-St5 used for signal detection. Note that each data source may produce a different signal that is assessed using statistical analysis information St1-St5. The third portion 1308 may focus on triage and prioritization of Product 2. The information shown in the third portion 1308 may be retrieved from pop-menu 502 of FIG. 5.


Once all information is appropriately entered and evaluated, a signal report 1400 may be generated, as shown in FIG. 14. The signal report 1400 may incorporate information displayed in the signal report generation window 1302. Moreover, the signal report 1400 may be provided to select authorities for determining if Product 2 is viable.


According to one embodiment, FIG. 15 shows an example interface for configuring a detected signal undergoing further regulatory review. After a signal report 1400 is generated, a final assessment verdict window 1502 may be provided. The final assessment verdict of Product 2 may be provided when interface 400 is under regulatory review stage 403f. The final assessment verdict window 1502 may be used to give a final assessment verdict based on the signals of Product 2, as shown in FIG. 13. In particular, the final assessment verdict window 1502 may include a signal verdict option 1502a and a tracking status option 1502b. The signal verdict option 1502a may involve a user selecting several options from a pull-down menu, signifying a signal verdict. The tracking status option 1502b may include a user choosing several options from a pull-down menu, indicating a tracking status.


After entering the information for signal verdict option 1502a and tracking status option 1502b, the user may click button 1506 to close final assessment verdict window 1502. Moreover, the user may cancel the entries 1502a and 1502b by activating (e.g., clicking) button 1508. The interface 400 may provide a new final assessment verdict window 1502, so the user can re-enter entries for signal verdict option 1502a and tracking status option 1502b. Once the user is done with final assessment verdict window 1502, the user can confirm completing the final assessment verdict portion of the Regulatory Review by activating (e.g., clicking) button 1504.


In some implementations, the signal verdict option 1502a and the tracking status option 1502b may be manually entered by the user.



FIG. 16 shows an example interface for placing a signal in a continuous state of surveillance. After completing the final assessment verdict, interface 400 may enter an end stage 403g. At this stage, the signal of Product 2, for example, may be placed on an “ongoing surveillance” protocol 1602 based on the selection of tracking status 1502b, as shown in FIG. 15. In this case, tracking status 1502b may be selected to initiate an “ongoing surveillance” protocol. The protocol for “ongoing surveillance” 1600 may be a continuous state of surveillance of Product 2 at the end stage 403g.


In other embodiments, other protocols may be used for managing or maintaining a different surveillance relationship with Product 2.


In some embodiments, based on the signal report 1400, surveillance of one or more signals is performed during a surveillance period and using the surveillance protocol. The surveillance period may be a pre-set time period defined by the surveillance protocol.


In some embodiments, surveillance of one or more signals may occur during a surveillance period using the surveillance protocol. During the surveillance period, one or more updates may be received for one or more signals or one or more reference documents or data. Based on the update to the at least one signals or the one or more reference documents or data, at least one of the adverse events may be updated as well.


In some embodiments, one or more alerts may be sent when one or more signals or one or more reference documents are updated.


In some embodiments, if it is determined there is a change between the predicted adverse events and the updated at least one of the predicted one or more adverse events, at least one alert may be sent indicating this change between the predicted one or more adverse events and the updated at least one of the predicted one or more adverse events. In some embodiments, the change may involve likelihood information, such as confidence intervals, statistical relevance, correlation, or the like. In some embodiments, the change may involve updates in the reference documents or data. In some embodiments, the change may involve updated information from one or more signals' data sources.


In some embodiments, a filtering parameter may be received by an example interface for filtering the at least one of the first data or the second data. In some embodiments, one or more signals are filtered using the filtering parameter. In some embodiments, one or more second predicted adverse events for at least one of the one or more filtered signals is determined for further analysis.


Workflow



FIG. 17 shows a flowchart for using a point-in-time architecture (PTA) database. In block 1702, first data from a first data source may be received. The first data may include a first record associated with a first attribute and a first event, and a second record associated with a second attribute and a second event. In block 1704, the first data in a first PTA database may be organized using the one or more computing device processors. For each record, the first PTA database may include a first time associated with creation of an entry in the first PTA database for the record and a second time associated with manipulation of the entry in the first PTA database for the record. Access to a historical version of the first PTA database without destroying a current version of the first PTA database is enabled, using the one or more computing device processors, as shown in block 1706. In block 1708, the one or more computing device processors may enable access to a history of manipulation of the first PTA database.


In some implementations, server 105 of FIG. 1 may implement the first PTA database, the second PTA database, or more PTA databases. In other implementations, server 105 may remotely access the first PTA database and the second PTA database using the communication system 208 of FIGS. 2A and 2B. In other implementations, the one or more computing device processors may be one or more of the processors 202 of FIGS. 2A and 2B.


In some implementations, server 105 may organize the first data in the first PTA database by modifying the first data from the first data source to be compatible with the first PTA database. In some implementations, server 105 may send query commands to the first PTA database or the second PTA database to access the first data.


In some embodiments, server 105 may enable access to the history of manipulation by providing a listing of the history of manipulation. In some embodiments, the listing may be a database listing or text file. In some embodiments, server 105 utilizes logic that adjust the second data to be compatible with the first PTA database or the second PTA database


In block 1710, the second data from a second data source is received using the one or more computing device processors. The second data may include a third record associated with a third attribute and a third event, and a fourth record associated with a fourth attribute and a fourth event. The second data may be organized in the first PTA database or a second PTA database, organizing using the one or more computing device processors, as shown in block 1712. In block 1714, a first instruction may be received to process the first data and the second data using a first statistical operation using the one or more computing device processors. The first statistical operation may include one or more first parameters. The first statistical operation for the first data and the second data may be executed using the one or more computing device processors, as shown in block 1716.


In some implementations, server 105 may organize the first data in the first PTA database by modifying the first data from the first data source to be compatible with the first PTA database. In some implementations, server 105 may send query commands to the first PTA database or the second PTA database to access the first data. In some implementations, server 105 may send query commands to the first PTA database or the second PTA database to access the second data.


In some embodiments, the first statistical operation may include the same statistical operations used to define the statistical metrics 306a . . . 306e. In some embodiments, the statistical operation may include one or more point-in time statistical operations.


In some implementations, server 105 may receive the first instruction to process the first data and the second data using the first statistical operation. In some implementations, server 105 determines if the information in the first data and the second data valid to perform the first statistical operation. In some implementations, interface 300 allows a user to evaluate the first data and the second data before executing the first statistical operation.


In block 1718, a second instruction may be received to process the first data and the second data using a second statistical operation, wherein the second statistical operation comprises one or more second parameters using the one or more computing device processors. The second statistical operation may be executed for the first data and the second data using the one or more computing device processors, as shown in block 1720. In block 1722, a third instruction may be received to filter first output data resulting from the execution of the first statistical operation for the first data and the second data, or filter second output data resulting from the execution of the second statistical operation for the first data and the second data using the one or more computing device processors. The filtering of the first output data or the second output data is based on a user-selected attribute associated with records comprised in the first data or the second data, respectively. In block 1724, simultaneous graphical display of the first output data resulting from the execution of the first statistical operation for the first data and the second data, and graphical display of the second output data resulting from the execution of the second statistical operation for the first data and the second data may be enabled, on a single user interface. Note the first output data and the second output data may be considered signals because they have processed using one or more statistical operation.


In some embodiments, the first statistical operation may include the same statistical operations used to define the statistical metrics 306A . . . 306E. In some embodiments, the statistical operation may include one or more point-in time statistical operations. In some embodiments, interface 300 via server 105 may be used define which one of the statistical operations. In some implementations, interface 300 allows a user to evaluate the first data and the second data before executing the second statistical operation. In some embodiments, the first statistical operation and the second statistical operation include point-in-time statistical metrics or operations, such as EBGM or the like.


In some embodiments, the user-selected attribute associated with the records may include point-in-time statistical metrics, such as EBGM or the like.


In some embodiments, server 105 receives the second instruction to process the first data and the second data using the second statistical operation. In some embodiments, server 105 determines if the information in the first data and the second data can be used to perform the second statistical operation. In some embodiments, interface 400 via server 105 may be used define which one of the statistical operations is used at the analysis and prioritization stage 403b.


In some implementations, server 105 receives the third instruction to filter first output data resulting from the execution of the first statistical operation for the first data and the second data, or filter second output data resulting from the execution of the second statistical operation. In some implementations, server 105 validates the first output data and the second output data.


In some implementations, interface 300 may receive the first instruction or the second instruction to process the first data and the second data using the first statistical operation or the second statistical operation. In some implementations, the user interface may allow a user to evaluate the first data and the second data before performing the first statistical operation. In some implementations, the interface 300 may display the first and the second data before performing the first statistical operation or the second statistical operation. In some implementations, the interface 300 may be configured to simultaneously display the first output data and the second output to one or more users. In some implementations, the interface 300 may further include displaying information associated with the first output data and the second output data.


Once the first output data and the second output are identified, interface 400 of FIGS. 3-16 may identify the first output data and the second output data as one or more signals associated with a product.


In some embodiments, interface 400 of FIGS. 3-16 may detect one or more signals associated with the first output data and the second output data. In some embodiments, interface 400 allows for the one or more detected signals to be parameterized using a plurality of stages. In some embodiments, the plurality of stages used to configure the one or more detected signals may include a detection phase, an analysis and prioritization phase, a validation phase, an assessment phase, a risk management phase, and a regulatory review phase, as discussed in FIGS. 3-16. In some embodiments, interface 400 may manage the one or more signals associated with the first output data and the second output data for later processing.


When there is data exchange between organizations (e.g., a hospital and a health authority), the sender needs to manage what data goes where. For example, the health authority of one country may not allow its citizens' heath data to go to another country, even though the healthy data needs to be submitted to the second country for review and approval of a health care product. The present invention provides a method to protect and secure sensitive health data which is valid for this type of submission. In one embodiment, the present invention may identify Personal Identifiable Information (“PII”) fields that need to be secured, and E2B fields that can be masked for distribution. Based on the settings for distributions and the particular type of submission, the system 100 shown in FIG. 1 may prevent sensitive health data from being sent to unauthorized recipients during the submission, and can work as a safeguard for data exchange.


In an example partner distribution list of a safety report shown in FIG. 18, a user may define a Sending Organization, a Distribution Rules (e.g., FDA ICSR Reporting Rule Set), a Destination Organization (e.g., Ethics Committee (US)), and a Reporting Family Type (e.g., partner distribution list). The user may also define the conditions for sending the safety report to the Destination organization, which may include Patient Content Protection (e.g., mask PII, or mask E2B which includes PII), and Study Content Protection (e.g., mask unblinded content).


Patient content protection has a couple of values. One is Mask PII, which may be predefined and include patient name, birth date, reporter first name and last name. The second is Mask E2B. E2B data may have many fields, and some of them support an additional field called reason omitted, which is a field that helps the sender describe why that field is empty, e.g., the reason the information is omitted. In one example, a sender may omit information because he/she asks the reporter a patient's birth date, but the reporter does not know either. In another example, the sender did not ask for the information, so it is a blank field. The option “Mask” means the sender actually has the information (e.g., the patient's birth date), but wants to explicitly mask it when sending the safety report (e.g., to the ethics committee). Not all fields are maskable, and the maskable fields are the ones that will appear as blank or redacted when the sender generates a safety report submission to the ethics committee.


Study content protection is similar. It relates to blinded clinical trial studies that organizations run. Sometimes a clinical trial study needs to be unblinded in order to conduct a medical review. In one example, the sender may think that there is a reasonable possibility that a product caused a patient adverse event, and want to unblind the case to find out which product the patient was taking, the investigational product or the placebo. And then the sender can make a final assessment to the health authorities. However, in an unblinded case, the product that a patient was taking is sensitive information. To maintain trial integrity, only a few individuals can have access to that info. If the sender is going to be sending the unblinded case (e.g., to the ethics committee in the U.S.), he/she may send them a lot of information but want to mask the product that the patient was taking to maintain trial integrity.


In one embodiment, the system 100 may provide the sender an option to overwrite the patient content protection and/or the study content protection, in case he/she wants to share the patient content or study content on a particular distribution. The right to overwrite may depend on the actual distribution, security rights and proper permission.


When the files are generated in the system 100, they are marked with content protection and are secured. Consequently, only people who have the right to see the data can access the file.


In some embodiments, the present invention enables users to set up confidentiality preference when sharing case records with partners. The levels of protection include:

    • Personal Identifiable Information (PII)
    • E2B Masking—PII and Patient Health Information (PHI)
    • Case Product Information for double blinded studies


In some embodiments, the present invention enables users to set up patient or study data confidentiality on any of the file formats used in a distribution record, which may include:

    • FDA 3500A
    • CIOMS I
    • EMA E2B R3
    • E2B R3
    • FDA E2B R2


In some embodiments, the present invention may provide users with a separate blinded template for case narratives for a double blinded study. The invention may ensure that distribution or submission records are not created if case study product is a placebo.



FIG. 19 shows an example flowchart for a method for protecting sensitive content in an enterprise content management system, according to one embodiment. The process may be controlled by the server 105, and may start at 1901.


At 1903, a masked distribution record may be created. If a customer enables study and/or patient content protection on a partner distribution family, when the “Evaluate Reporting Obligation” action is executed on a case lifecycle state (e.g. Approved State), the system may automatically generate a distribution record with relevant patient and/or study content protected in the generated distribution record. As shown in Table 1 below, new fields “Patient Content Protection” and “Study Content Protection” may be added to the Reporting Family object and the Transmission object respectively:











TABLE 1





Type of Config
Data Element
Config Required







Page Layout
Object:
Section: Details


Change
Reporting Family
Modify Layout - Two Column



Layout:
Add two new fields:



Partner Distribution
Patient Content Protection



Detail Page Layout
Study Content Protection


Page Layout
Object:
Section: Details


Change
Transmission
Add two new fields:



Layout:
Patient Content Protection



Distribution Detail
Study Content Protection



Page Layout




Inbound Transmission




Detail Page Layout









In one embodiment, category may be defined in advance based on industry standards (e.g., E2B) or standards from health authorities (e.g., HIPPA). The system may put data into its corresponding category, flag the data fields, and properly mask the data based on its category in outputs when generating forms (e.g., a safety report).


At 1905, a case preview with study content protected may be created at a case level, so that the user may check case files before they are sent to the receiving organization. Users may expect some changes in how case files are generated when they preview a case record in any of the available formats at case level via user actions.


Access to distribution record may be generated at case level. For files with unblinded study data (e.g., product), access may be limited as per sharing rule configurations for user roles set up by the sending organization. In one example, configurations may enable Head of Safety, Medical Reviewer to view unblinded data. All user roles may be able to view a distribution record without unblinded study data.


If a study is blinded, but the case has been unblinded, the system 100 may generate two versions of the case record—with and without unblinded study data. If both the case and study are blinded, the system may generate only one version of the case record that includes unblinded study data which includes sensitive information (e.g., a product). If both the case and study are not blinded, the system may generate only one version of the case record that does not include any unblinded study data.


In one example, previews may be generated at the case level. When there is unblinded study data, two previews may be generated: one preview when the user is enabled to access the unblinded study data, and one preview when the user is not enabled to access unblinded study data. Consequently, users who are enabled to access the unblinded study data can see the unblinded study data (e.g., the product Cholecap in FIG. 19A), and users who are not enabled to access the unblinded study data cannot see the unblinded study data (e.g., the blank Product field in FIG. 19B). The users who are not enabled to access the unblinded study data can still review the remaining study data to process the case, although they do not know the product the patient is actually taking.


With that information, users may have the ability to generate previews of submittable documents (e.g., E2B(R3)) through the menu.


At 1907, confidentiality protection may be set up. Users may be able to specify one or more levels of confidentiality protection, In one example, a user request for setting up Patient Content Protection may be received. If the option for Mask PII (Personally Identifiable Information (PII)) is selected, data which may identify a patient may be protected, as shown in Table 2 below:












TABLE 2







Protection
Protection




format -
format -


Data Object
Data Field
Forms
E2B







case_contact_v
title_value_v
*****
MSK


case_contact_v
firstname_value_v
*****
MSK


case_contact_v
middlename_value_v
*****
MSK


case_contact_v
lastname_value_v
*****
MSK


case_contact_v
organization_value_v
*****
MSK


case_contact_v
department_value_v
*****
MSK


case_contact_v
street_value_v
*****
MSK


case_contact_v
postalcode_value_v
*****
MSK


case_contact_v
telephone_value_v
*****
MSK


case_contact_v
fax_v
*****
MSK


case_contact_v
email_address_v
*****
MSK


case_version_v
reporter_first_name_v
*****
MSK


case_version_v
reporter_last_name_v
*****
MSK


case_version_v
patient_id_value_v
*****
MSK


case_version_v
gender_value_v
Left blank
MSK


case_product_v
date_implanted_v
**_***_ ****
MSK


case_product_v
date_explanted_v
**_***_ ****
MSK









In one embodiment, a user request for setting up E2B Mask (Including PII) may be received. When the option for “Blank” is received, no data will be protected in the distribution record. When the option for E2B Mask is selected, E2B data may be protected as shown in Table 3 below:












TABLE 3








Protec-




Protection
tion




format -
format -


Vault Object
Vault Field
Forms
E2B







case_contact_v
title_value_v
*****
MSK


case_contact_v
firstname_value_v
*****
MSK


case_contact_v
middlename_value_v
*****
MSK


case_contact_v
lastname_value_v
*****
MSK


case_contact_v
organization_value_v
*****
MSK


case_contact_v
department_value_v
*****
MSK


case_contact_v
street_value_v
*****
MSK


case_contact_v
postalcode_value_v
*****
MSK


case_contact_v
country_value_v
*****
MSK




Form





checkbox





is blank





(G.3)



case_contact_v
telephone_value_v
*****
MSK


case_contact_v
fax_v
*****
MSK


case_contact_v
email_address_v
*****
MSK


case_version_v
reporter_first_name_v
*****
MSK


case_version_v
reporter_last_name_v
*****
MSK


case_version_v
patient_id_value_v
*****
MSK


case_product_v
date_implanted
**-***-****
MSK


case_product_v
date_explanted_v
**-***-****
MSK


case_adverse_event_v
onset_idate_v
**-***-****
MSK


case_adverse_event_v
resolved_idate_v
**-***-****
MSK



duration_number_v




case_adverse_event_v
duration_units v
*****
MSK


case_contact_v
city_value_v
*****
MSK


case_contact_v
state_province_value v
*****
MSK


case_contact_v
country_value_v
*****
MSK


case_drug_history_v
startdate_idate_v
**-***-****
MSK


case_drug_history_v
enddate_idate_v
**-***-****
MSK


case_medical_history_v
startdate_idate_v
**-***-****
MSK


case_medical_history_v
continuing_value_v
*****
MSK


case_medical_history_v
enddate_idate_v
**-***-****
MSK


case_product_dosage_v
firstadmin_idate_v
**-***-****
MSK


case_product_dosage_v
lastadmin_idate v
**-***-****
MSK



Duration_number_v




case_product_dosage_v
duration_units_v
*****
MSK


case_version_v
event_onset_idate_v
**-***-****
MSK









In one embodiment, a user request for Study Content Protection may be received. When the option for “Blank” is received, no data will be protected in the distribution record. If the option for Mask Unblinded Content is received, when this option is selected for double blinded studies, data from the data fields in Table 4 below may be protected:












TABLE 4







Protection
Protection




format -
format -


Vault Object
Vault Field
Forms
E2B







case_product_dosage_v
batchlot_number_v
Left blank
Left blank


case_product_v
product_name_v
Placeholder name or
Placeholder name or




stars if no placeholder
MSK if no placeholder


case_product v
product _vr.name_v
Placeholder name or
Placeholder name or




stars if no placeholder
MSK if no placeholder


case_product_v
product_reported_v
Placeholder name or
Placeholder name or




stars if no placeholder
MSK if no placeholder


case_product_v
mpid_ v
Left blank
Left blank


case_product_v
mpid_version_v
Left blank
Left blank


product_v
generic_name_v
Left blank
Left blank


case_product_v
manufacturer_v
Left blank
Left blank


case_product_v
model_number_v
Left blank
Left blank


case_product_v
blinded_v
Left blank
Left blank


case_product_substance_v
name_reported_v
Left blank
Left blank


case_product_substance_v
strength_unit_v
Left blank
Left blank









At 1909, a first document (e.g., a safety report) may be generated by the system 100 in response to a user request.


In one embodiment, patient content (e.g., name) may be redacted in the first document to restrict access as shown in FIG. 21, so that only people who have right to access that data can access.


Elected category of data may be blinded. In one example, all information that is able to identify the product may be redacted. In one embodiment, all information that can be used to identify the patient (e.g., birth date) may be blinded. In one example, all E2B data may be redated.


For the embodiment described with reference to FIGS. 20A and 20B, two versions of a safety report may be generated: one is blinded, and one is unblinded. In the blinded safety report, the product “Colecap” may redacted. In one embodiment, the redacted information may be displayed as stars. The unblinded version, which has sensitive info (e.g., the investigational drug or a placebo) and only a selected few are enabled to access, can be sent to healthy authorities for review of the product, since they need to know what the product is. Because most people are enabled to access the blinded one, it may allow more users to process the case and may be sent to organization which does not need to know the product name, e.g., the ethics committee.


At 1911, the first document may be sent to a receiving organization.


Reference in the specification to “one implementation” or “an implementation” means that a particular feature, structure, or characteristic described in connection with the implementation is included in at least one implementation of the disclosure. The appearances of the phrase “in one implementation,” “in some implementations,” “in one instance,” “in some instances,” “in one case,” “in some cases,” “in one embodiment,” or “in some embodiments” in various places in the specification are not necessarily all referring to the same implementation or embodiment. In some embodiments, the terms “signal,” “data,” and/or “information” may be used interchangeably. In some embodiments, signals refer to non-transitory signals.


Finally, the above descriptions of the implementations of the present disclosure have been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the present disclosure to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the present disclosure be limited not by this detailed description, but rather by the claims of this application. As will be understood by those familiar with the art, the present disclosure may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the present disclosure is intended to be illustrative, but not limiting, of the scope of the present disclosure, which is set forth in the following claims.

Claims
  • 1. A method for managing data associated with a point-in-time architecture (PTA) database, the method comprising: receiving, using one or more computing device processors, first data from a first PTA database and second data from a second PTA database;validating, using the one or more computing device processors, one or more parameters associated with the first data and the second data;comparing, using the one or more computing device processors, the first data and the second data with one or more reference data;predicting, using the one or more computing device processors, one or more events based on comparing the first data and the second data with the one or more reference data;generating, using the one or more computing device processors, a data report indicating the first data and the second data leads to the predicted one or more events;performing, using the one or more computing device processors, and based on the data report, surveillance of the first data and the second data during a surveillance period and using a surveillance protocol;during the surveillance period, receiving, using the one or more computing device processors, an update to at least one of the first data, the second data, or the one or more reference data;updating, using the one or more computing device processors, and based on the update to the at least one of the first data, the second data, or the one or more reference data, at least one of the predicted one or more events; andreceiving a user request for enabling patient content protection.
  • 2. The method of claim 1, further comprising detecting if the first data and the second data are respectively stored in the first PTA database and the second PTA database.
  • 3. The method of claim 2, further comprising generating a visual representation of statistical information derived from or comprised in the first data and the second data.
  • 4. The method of claim 1, wherein receiving the first data from the first PTA database and the second data from the second PTA database comprises receiving the first data from a first data source and the second data from a second data source, wherein the first data comprises a first record associated with a first attribute and a first event, and a second record associated with a second attribute and a second event, andwherein the second data comprises a third record associated with a third attribute and a third event, and a fourth record associated with a fourth attribute and a fourth event.
  • 5. The method of claim 1, wherein validating the first data and the second data comprises displaying validation information associated with the first data or the second data.
  • 6. The method of claim 5, wherein validating the first data and the second data comprises parameterizing a set of information for the first data or the second data.
  • 7. The method of claim 1, further comprising receiving relevance information for the first data and the second data, wherein the relevance information comprises a plurality of parameters to assess the one or more events.
  • 8. The method of claim 7, further comprising receiving causality information for the first data and the second data, wherein the causality information comprises a plurality of parameters to assess one or more causal relationships among the one or more events.
  • 9. The method of claim 8, wherein predicting the one or more events comprises using the causality information and the relevance information for the first data and the second data to predict the one or more events.
  • 10. The method of claim 1, wherein generating the data report comprises generating report information associated with the first data, the second data, and the predicted one or more events.
  • 11. The method of claim 1, wherein the surveillance period is determined based on at least one of the predicted one or more events or the surveillance protocol.
  • 12. The method of claim 1, further comprising sending one or more alerts in response to the first data, the second data, or the one or more reference data being updated.
  • 13. The method of claim 1, further comprising: determining if there is a change between the predicted one or more events and the updated at least one of the predicted one or more events; andsending at least one alert indicating the change between the predicted one or more events and the updated at least one of the predicted one or more events.
  • 14. The method of claim 1, further comprising determining if there is a difference in likelihood information between the predicted one or more events and the updated at least one of the predicted one or more events.
  • 15. The method of claim 1, further comprising: receiving a filtering parameter for filtering the at least one of the first data or the second data;filtering, using the filtering parameter, the at least one of the first data or the second data, resulting in a subset of the at least one of the first data or the second data; anddetermining one or more second predicted events for the subset of the at least one of the first data or the second data.
  • 16. A system for managing data associated with a PTA database, the system comprising at least one PTA database comprising first data and second data;one or more computing device processors;one or more computing device memories, coupled to the at least one PTA database and the one or more computing device processors, the one or more computing device memories storing instructions executed by the one or more computing device processors, wherein the instructions are configured to: receive first data from a first PTA database and second data from a second PTA database;validate one or more parameters associated with the first data and the second data;compare the first data and the second data with one or more reference data;predict one or more events based on comparing the first data and the second data with the one or more reference data;generate a data report indicating the first data and the second data leads to the predicted one or more events;perform, based on the data report, surveillance of the first data and the second data during a surveillance period and using a surveillance protocol;during the surveillance period, receive an update to at least one of the first data, the second data, or the one or more reference data; andupdate, based on the update to the at least one of the first data, the second data, or the one or more reference data, at least one of the predicted one or more events.
  • 17. The system of claim 16, wherein the instructions are further configured to provide a user interface for generating a visual representation of statistical information derived from or comprised in the first data or the second data.
  • 18. The system of claim 17, wherein the statistical information results from execution of at least one of an Empirical Bayes Geometric Mean (EBGM)-based operation, a Proportional Reporting Ratio (PRR)-based operation, or a Chi-Square-based operation.
  • 19. The system of claim 16, wherein the instructions are further configured to provide a user interface for receiving information related to relevance of the predicted one or more events with respect to the first data and the second data.
  • 20. The system of claim 16, wherein the instructions are further configured to provide a user interface for receiving information related to causality of the predicted one or more events with respect to the first data and the second data.
  • 21. The system of claim 16, wherein the instructions are further configured to provide a user interface for receiving information related to the surveillance protocol used for tracking the first data and the second data.
  • 22. A method for managing data associated with a PTA database, the method comprising: receiving, using one or more computing device processors, at least first data from at least a first PTA database;validating, using the one or more computing device processors, one or more parameters associated with the at least first data;comparing, using the one or more computing device processors, the at least first data with one or more reference data;predicting, using the one or more computing device processors, one or more events based on comparing the at least first data with the one or more reference data;generating, using the one or more computing device processors, a data report indicating the first data and the second data leads to the predicted one or more events;performing, using the one or more computing device processors, and based on the data report, surveillance of the at least first data during a surveillance period and using a surveillance protocol;during the surveillance period, receiving, using the one or more computing device processors, an update to at least one of the at least first data or the one or more reference data; andupdating, using the one or more computing device processors, and based on the update to the at least one of the at least first data or the one or more reference data, at least one of the predicted one or more events.
  • 23. The method of claim 22, further comprising receiving a set of parameterized information associated with the at least first data.
  • 24. The method of claim 22, wherein predicting the one or more events comprises considering causality of the one or more events.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of and claims priority to U.S. patent application Ser. No. 17/069,751 filed on Oct. 13, 2020, all of which is incorporated by reference herein. This application claims priority to U.S. Provisional Patent Application No. 62/969,002 filed on Jan. 31, 2020, which is incorporated by reference herein.

Provisional Applications (1)
Number Date Country
62969002 Jan 2020 US