The disclosure is related to a signal processing circuit, and more particularly, a signal processing circuit capable of sampling data through a plurality of path units.
In the signal processing applications related to the panel, the signals obtained from the panel side can be sampled and transmitted to the integrated circuit (IC) side to be processed. For example, a buffer can be embedded at the panel side to transmit the captured signal to a sampling switch at the IC side. When the sampling switch is turned on, the signal can be transmitted to the sampling capacitor. Then, when the sampling switch is turned off, the sampled signal can be sent to the back-end circuit for analysis and processing.
Although the above structure is usable, since the panel side often has serious parasitic effects, and the driving ability of the buffer on the panel side is usually weak, it takes a long time to transmit the signal to the IC side, and it is time consuming to store the signal into a sampling capacitor. Hence, the performance of signal processing and the resolution of the signal are difficult to be improved. There is still a need for solutions to improve the performance of signal processing in the field.
An embodiment provides a signal processing circuit including a buffer, a first capacitor, a second capacitor, a first switch and a second switch. The buffer is used to receive an external signal and accordingly generate an input signal, and the buffer includes an input terminal for receiving the external signal, and an output terminal for outputting the input signal. The first switch is coupled to the output terminal of the buffer and the first capacitor. The second switch is coupled to the output terminal of the buffer and the second capacitor. The first switch and the second switch are turned on alternately.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
As shown in
The buffer 105 can include an input terminal for receiving an external signal VX, and an output terminal for outputting the input signal VIN.
The first terminals of the first switch 110 and the second switch 120 can be coupled to the output terminal of the buffer 105. The first terminal of the capacitor C1 can be coupled to the second terminal of the first switch 110. The first terminal of the capacitor C2 can be coupled to the second terminal of the second switch 120. The first switch 110 and the second switch 120 can be turned on alternately rather than simultaneously.
As shown in
The third switch 130 can include a first terminal coupled to the second terminal of the first switch 110, and a second terminal coupled to a reference voltage terminal VR. The fourth switch 140 can include a first terminal coupled to the second terminal of the second switch 120, and a second terminal coupled to the reference voltage terminal VR. The fifth switch 150 can include a first terminal coupled to an operating voltage terminal VCM, and a second terminal coupled to the second terminal of the first capacitor C1. The sixth switch 160 can include a first terminal coupled to the second terminal of the second capacitor C2, and a second terminal coupled to the operating voltage terminal VCM. The seventh switch 170 can include a first terminal coupled to the second terminal of the first capacitor C1, and a second terminal. The eighth switch 180 can include a first terminal coupled to the second terminal of the second capacitor C2, and a second terminal coupled to the second terminal of the seventh switch 170.
As shown in
In
In another embodiment, the signal processing circuit 100 can further include an amplifier 195, a feedback capacitor CF and an integrating circuit 198.
The amplifier 195 can include a first input terminal coupled to the second terminal of the seventh switch 170, a second input terminal coupled to the operating voltage terminal VCM, and an output terminal for outputting an output signal VOUT. The output signal VOUT can be corresponding to the input signal VIN.
The feedback capacitor CF can include a first terminal coupled to the first input terminal of the amplifier 195, and a second terminal coupled to the output terminal of the amplifier 195.
The integrating circuit 198 can perform an integrating operation to generate a result signal VRR according to the output signal VOUT.
During the first period T1, the states of the switches of the signal processing circuit 100 can be as shown in
During the first period T1, the first capacitor C1 can sample the input signal VIN, and the amplifier 195 can generate the output signal VOUT(0) corresponding to the period preceding the first period T1 (i.e. the zeroth period). The signal sampled and stored by the second capacitor C2 during the zeroth period can be transmitted to the amplifier 195 through the eighth switch 180 as shown in
During the second period T2 following the first period T1, the states of the switches of the signal processing circuit 100 can be as shown in
During the second period T2, the second capacitor C2 can sample the input signal VIN, the signal sampled and stored by the first capacitor C1 during the first period T1 can be transmitted to the amplifier 195 through the seventh switch 170, and the amplifier 195 can generate the output signal VOUT(1) corresponding to the first period T1. The integrating circuit 198 can use the output signal VOUT(1) to perform the integrating operation.
The operations during the third period T3 following the second period T2 can be similar to the operations during the first period T1. During the third period T3, as shown in
The operations during the fourth period T4 following the third period T3 can be similar to the operations during the second period T2. During the fourth period T4, as shown in
In other words, a plurality of path units of the signal processing circuit 100 can be used to synchronously perform sampling and integration of the signals, so as to perform pipelined and synchronous signal processing. As shown in
As above, when one of the first switch 110 and the second switch 120 is being used to sample the input signal VIN, the output signal VOUT generated through the other one of the first switch 110 and the second switch 120 during the previous period can be used by the integrating circuit 198 for performing the integrating operation. When the integrating circuit 198 is performing the integrating operation, the signals are gradually transmitted from the buffer 105. As a result, the sampling operation and the integrating operation can be synchronously performed.
As shown in
Generally, the transmission speed of the signal in the panel P is much slower than that in the integrated circuit IC, which is not conducive to signal processing. With the circuit and operations described in
In the embodiment of
The data collected with a single sampling in prior art can be obtained with N samplings in this embodiment. The noises obtained in a plurality of samplings can be reduced by one another during the integrating process, so the signal-to-noise ratio (SNR) is improved, and the resolution of the output signal VOUT can be equivalently improved to be N1/2 times.
Similar to
In
The switches shown in
Step 510: turn on the first switch 110, the fourth switch 140, the fifth switch 150 and the eighth switch 180, and turn off the second switch 120, the third switch 130, the sixth switch 160 and the seventh switch 170;
Step 520: turn off the first switch 110, the fourth switch 140, the fifth switch 150 and the eighth switch 180, turn on the second switch 120, the third switch 130, the sixth switch 160 and the seventh switch 170, use the amplifier 195 to generate the output signal VOUT corresponding to the previous period, and use the integrating circuit 198 to perform the integrating operation according to the output signal VOUT corresponding to the previous period; and
Step 530: turn on the first switch 110, the fourth switch 140, the fifth switch 150 and the eighth switch 180, turn off the second switch 120, the third switch 130, the sixth switch 160 and the seventh switch 170, use the amplifier 195 to generate the output signal VOUT corresponding to the previous period, and use the integrating circuit 198 to perform the integrating operation according to the output signal VOUT corresponding to the previous period.
For example, Step S510 can be an initial step and be corresponding to
Steps S520 and S530 can be performed repeatedly, so as to control the switches of the path units PT1 and PT2 in turn. The relevant principles and effects can be as above, and will not be repeated.
In summary, by means of the signal processing circuits 100, 400 and 600, and signal processing method 500, an input signal can be sampled, and an output signal generated previously can be used to perform an integrating operation synchronously. Problems caused by the difference of the signal transmission speeds of the panel P and the integrated circuit IC are reduced, and the resolution of the signal is improved.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application claims priority to U.S. Provisional Application No. 62/960,153, filed on Jan. 13, 2020, and incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/108664 | 8/12/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62960153 | Jan 2020 | US |