The present invention relates to a frequency down converter, and in particular to a frequency down converter that receives signals from different satellites.
a is a conventional signal receiver receiving signals in a normal condition. Signals are emitted from satellites 131, 132 and 133, reflected by the reflective surface 110, and separately received by the wave guides 121, 122 and 123.
However, as shown in
As shown in
The present invention comprises a body, a first wave guide and a second wave guide. The body comprises a main surface. The first wave guide comprises a first section and a second section. The first section is connected to the main surface with an end and extends parallel thereto. The second section is connected to the first section and extends perpendicular to the main surface. The second wave guide comprises a third section and a fourth section. The third section is connected to the main surface with an end and extends parallel thereto. The fourth section is connected to the third section and extends perpendicular to the main surface.
Lengths of the first and the third sections vary with requirements, defining the distance between the second and the fourth sections. Thus, the frequency down converter can receive signals from satellites along any path without redesigning the circuit board thereof.
The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
a is a schematic view of the conventional signal receiver receiving satellite signals;
b shows satellites moving along different paths;
c shows the conventional signal receiver receiving signals from satellites along other paths;
a shows a conventional frequency down converter;
b shows a conventional circuit board;
c shows another conventional circuit board;
a shows a frequency down converter of a first embodiment of the present invention;
b shows openings of a first and a third sections of the frequency down converter;
c is a section view of the frequency down converter of the embodiments of the invention;
d shows a circuit board in the frequency down converter of the embodiments of the invention;
a shows a frequency down converter of a second embodiment of the invention; and
b shows wave guides of the frequency down converter rotated.
a shows a frequency down converter of a first embodiment of the invention. The frequency down converter 200 comprises a flat body 240, a first wave guide 210, a second wave guide 220 and a third wave guide 230. The first wave guide 210 comprises a first section 211 and a second section 212. An end of the first section 211 is connected to a main surface 241 of the body 240, and another end of the first section 211 is connected to the second section 212. The first section is parallel to the main surface 241, and the second section 212 is perpendicular thereto. The second wave guide 220 comprises a third section 221 and a fourth section 222. An end of the third section 221 is connected to the main surface 241, and another end of the third section 221 is connected to the fourth section 222. The third section 221 is parallel to the main surface 241, and the fourth section 222 is perpendicular thereto. The third wave guide 230 is disposed on the main surface 241 between the first wave guide 210 and the second wave guide 220. The third wave guide 230 is perpendicular to the main surface 241.
A length d1 of the first section 211 and a length d2 of the third section 221 can be varied as required by manufacture to provide a distance L1 between the second section 212 and the third wave guide 230 and a distance L2 between the fourth section 222 and the third wave guide 230. Thus, the frequency down converter 200 can receive signals from satellites along any path without redesigning the circuit board thereof.
During manufacture, molding (not shown) of the first wave guide 210 and the second wave guide 220 requires formation of a second opening 223 at an end of the third section 221 close to the fourth section 222, enabling the mold to be disassembled along X direction. The first section 211 has a first opening 213(not shown) formed during fabrication at an end of the first section 211 close to the second section 212, enabling the mold to be disassembled along -X direction. After disassembling, a second cover 224 is disposed on the second opening 223 to prevent signal leakage therefrom. Similarly, a first cover 214 (now shown) is disposed on the first opening 213 to prevent signal leakage therefrom.
If the first section 211, the second section 212, the third section 221 and the fourth section 222 are cylindrical. The conical portions (not shown) are formed on the mold (not shown) corresponding to a connection portion between the first section 211 and the second section 212 and a connection portion between the third section 221 and a fourth section 222. The conical portions (not shown) are weak and unable to endure high temperature. The first section 211 and the third section 221 form the cube-shaped-like design, matching with cylindrical design of the second section 212 and fourth section 222 to obviate the formation of the conical portions on the mold.
Impedance matchings (not shown) are disposed on the connection portion between the first section 211 and the second section 212 and the connection portion between the third section 221 and the fourth section 222. Thus, signals are transmitted from the cylindrical tubes (the second section 212 and the fourth section 222) to the cube-shaped tubes (the first section 211 and the third section 221) without disturbance.
As shown in
As shown in
A length d1 of the first section 211 and a length d2 of the third section 221 can be varied as required during manufacture to provide a distance L1 (first distance) between the second section 212 and the third wave guide 230 and a distance L2 (second distance) between the fourth section 222 and the third wave guide 230. Thus, the frequency down converter 200 can receive signals from satellites along any path without redesigning the circuit board thereof. Thus, manufacture costs and time are reduced.
a shows a second embodiment of the invention. In this embodiment, the first section 211 and the third section 221 are rotatably disposed on the body 240. As shown in
This embodiment can also be applied on frequency down converters with two or four wave guides. For example, in
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
| Number | Date | Country | Kind |
|---|---|---|---|
| TW93100205 | Jan 2004 | TW | national |