This application is based on and hereby claims priority to Chinese Application No. 200610056710.1 filed on Mar. 6, 2006 and Great Britain Application No. 0613269.0 filed on Jul. 5, 2006, the contents of which are hereby incorporated by reference.
This invention relates to a wireless communication method and wireless communication equipment, and more particularly, to a signal receiving method and signal receiving equipment for multiple input/multiple output wireless communication systems.
Wireless communication resources have always been an extremely important determining element in the development of wireless transmission technologies, and how to make efficient use of limited wireless communication resources has always been one of the key research points for communication workers. In recent years, multiple input/multiple output (MIMO) wireless transmission technology has received more and more attention due to its highly efficient use of wireless communication resources.
In MIMO wireless transmission technology, as shown in
In MIMO wireless transmission technology, spatial diversity transmission and spatial multiplex transmission are the two major transmission schemes. In the spatial diversity transmission scheme, for example using the space time block coded (STBC) transmission scheme, the data flow of space-time coded multi-channel wireless signals is transmitted simultaneously via the plural antenna units, so as to achieve the spatial diversity gain and to improve the wireless signal's transmission performance. In the spatial multiplex transmission scheme, such as the Vertical Bell Laboratories Layered Space Time (BLAST) transmission scheme proposed by Bell Laboratories, the data flow of the multi-channel wireless signal is transmitted simultaneously via the plural antenna units by a spatial multiplex scheme to increase significantly the wireless signal's transmission speed.
Theoretically speaking, in MIMO wireless transmission technology, the achievable gain for wireless signals' transmission speed or transmission performance would have an increase close to linear with the increase in the number of the antenna units. Therefore, MIMO wireless transmission technology has been considered as one of the development trends for the physical structure of future high speed wireless communication systems.
In the BLAST transmission scheme proposed by Bell Laboratories, when the wireless signal's receiving end detects the transmitting signal, the algorithms that can usually be used include: zero forcing (ZF) detection, minimum mean square error (MMSE) detection, interference cancellation detection and maximum likelihood (ML) detection, etc. Among these usual detection algorithms, there is a conflict between increasing the detection performance and reducing the computation complexity. The better a detection algorithm's detection performance, the more complex its computation will be, while the detection algorithm of relatively low computation complexity would have less good detection performance. For example, the maximum likelihood detection algorithm and the interference cancellation detection algorithm are non-linear detection algorithms, which have high computation complexity and quite good detection performance. Of these the maximum likelihood detection algorithm is the better detection algorithm, but its computation complexity increases exponentially with the increase in the number of antenna units. When the number of antenna units is relatively large, the maximum likelihood detection algorithm's computation complexity would be too high to accomplish. Both the zero forcing detection algorithm and the minimum mean square error detection algorithm are linear detection algorithms with relatively low computation complexity but less good detection performance. Particularly when the state of the wireless channels between the transmitting antenna units and the receiving antenna units is relatively bad, the linear detection algorithms' detection performance would deteriorate significantly.
In order to solve the conflict between the detection performance and computation complexity during the MIMO signal receiving process, a lattice-reduction-aided detection algorithm was proposed by Huan Yao and G. W. Wornell et al., also called lattice reduction detection algorithm, which can reduce the detection algorithm's computation complexity with the advantage of not significantly reducing detection performance. In this detection algorithm, the lattice reduction conversion in algebra is used in conjunction with the above linear detection algorithms or the interference cancellation detection algorithm, so the transmission signal's detection performance can be improved significantly and at the same time it can also keep the computation complexity virtually unchanged.
In algebra, lattice in an n-dimensional real number space is defined as ψ={s|s=Bλ}. Wherein, B=[b1 b2 . . . bn], the column vectors b1 to bn of B form a group of base vectors of the lattice ψ, and B is called a basis of the lattice ψ. λ=[λ1 λ2 . . . λn]T, which is an integer weighted column vector, namely each λi is an integer, i=1, 2, . . . , n. As to a lattice ψ, if B is a basis of it, after using a matrix T to perform a linear conversion to B, wherein the matrix T contains only integer elements and det(T)=±1, the matrix obtained =BT would also be a basis of the lattice ψ. In the ψ, when B is a basis, x represents a point s=Bx, and when z,900 is a basis, it will be converted so that z=T−1x represents a point, namely s=Bx=(BT)(T−1x)=z. Lattice reduction conversion refers to a linear conversion performed to a basis B of lattice ψ, so that in obtained after the conversion the base vectors are shorter, and the correlation between the base vectors in is lower.
Signals received by a MIMO signal receiver are represented as yc=Hcxc+nc, wherein Hc represents a wireless channel state information matrix of nR rows and nT columns between the transmitting antenna units and the receiving antenna units; nR is the number of receiving antenna units, nT is the number of transmitting antenna units, and an element in the matrix represents the amplitude characters and phase characters of a wireless channel between a transmitting antenna unit and a receiving antenna unit; xc represents the transmitting signal's column vector of nT rows, yc represents the receiving signal's column vector of nR rows, and nc represents the complex additive white Gaussian noise signals' column vector of nR rows. When the lattice reduction conversion is used in conjunction with the linear detection algorithms or the interference cancellation detection algorithm, the above mentioned receiving signal's expression format of complex numbers can be converted into an expression format of real numbers, namely to express it as y=Hx+n, wherein
Following this, the lattice reduction conversion is first performed on the wireless channel state information matrix H, and after the conversion the wireless channel state information matrix is =HT. By selecting a suitable matrix T, after the conversion the column vectors in the wireless channel state information matrix have the character of quasi-orthogonal between them. Under the wireless channel state information matrix after the conversion, the receiving signals would be expressed as y=(HT)(T−1x)+n={tilde over (H)}z+n. Then, based on , compensation is made to y by using linear detection algorithms or interference cancellation detection algorithm to obtain a detection signal {tilde over (z)}. The detection signal {tilde over (z)} is sliced or quantized to obtain quantized signal {circumflex over (z)}. Finally, the quantized signal {circumflex over (z)} is multiplied by the conversion matrix T, and then to obtain the detection signal {circumflex over (x)}=T{circumflex over (z)} of the transmitted signal x. For example, when the zero forcing detection algorithm is used, the inverse matrix or pseudo-inverse matrix † of is right-multiplied by y, to obtain the detection signal {tilde over (z)}, by quantizing the detection signal {tilde over (z)} to obtain the quantized signal {circumflex over (z)}, and then to obtain the detection signal {circumflex over (x)}=T{circumflex over (z)}.
Since in the lattice reduction detection algorithm, the characteristics of wireless channel state information matrix are improved by the lattice reduction conversion, namely after the conversion the column vectors in the wireless channel state information matrix †, when compared with the column vectors in the unconverted wireless channel state information matrix H, have lower correlation between themselves or have the quasi-orthogonal characteristics, and the lengths of the vectors are shorter, therefore the detection performance by the linear detection algorithm or the interference cancellation detection algorithm gets improved.
However, there exist in the lattice reduction detection algorithm the following problems: assuming in a MIMO wireless communication system the transmitting signals x adopt 16QAM (Quadrature Amplitude Modulation) scheme for modulation,
the modulation constellation diagram is as shown in
then it is not difficult to see the modulation constellation diagram of the signals z would be distorted as that shown in
However, when detecting signals z, for example by using zero forcing detection algorithm, firstly the pseudo-inverse matrix † of is right-multiplied by y, to obtain the detection signal {tilde over (z)}. Then, when {tilde over (z)} is quantized, if linear quantization are simply performed on the two elements in {tilde over (z)} respectively, the actual decision domain of {tilde over (z)} would be made into a rectangular area, instead of a parallelogram area as shown in
In order to avoid this kind of wrong detection mentioned above, in consideration of x∈S2, while z=T−1x∈T−1S2, it is necessary to perform non-linear quantization in T−1S2 space when the detection signal {tilde over (z)} is quantized. However, since the elements in the converted signal z are not always mutually independent, and to a different matrix Hc, the matrix T used for lattice reduction conversion is not always the same, it is therefore difficult to perform non-linear quantization to {tilde over (z)} in T−1S2 space. Furthermore, when the number of antenna units is large, the computation volume for the abovementioned non-linear quantization would be huge, and would therefore also restrict the exploitation of the non-linear quantization.
For detailed description regarding the lattice reduction detection method, please refer to the thesis by the authors of Huan Yao and G. W. Wornell, “Lattice-reduction-aided detectors for MIMO communication systems” GLOBECOM '02. IEEE, Volume: 1, 17-21 Nov. 2002, Pages: 424-428.
Aiming at the signal detection problems in multiple input/multiple output wireless communication systems, the object of this invention is to propose a method for receiving signals in a multiple input/multiple output wireless communication system, which can significantly improve the signal detection performance of a multiple input/multiple output wireless communication system based on the current algorithms of linear detection, interference cancellation detection or lattice reduction detection, etc., and when at a high signal-to-noise ratio, the bit-error performance when using the signal receiving method of this invention is close to the bit-error performance of a system using maximum likelihood detection algorithm. At the same time, the signal receiving method proposed in this invention would not lead to any significant increase in the system's computation complexity, therefore the exploitation of the method of this invention has relatively good feasibility.
It is also an object of this invention to propose signal receiving equipment for a multiple input/multiple output wireless communication system, for applying the signal receiving method of this invention.
Accordingly, a method for receiving signals in a multiple input/multiple output wireless communication system, includes the following steps:
(1) obtaining a wireless channel state information matrix H;
(2) applying lattice reduction conversion to the matrix H to obtain a converted wireless channel state information matrix {tilde over (H)}=HT
(3) compensating a receiving signal y based on the matrix {tilde over (H)}, to obtain a detection signal {tilde over (z)};
(4) obtaining an intermediate signal table LD based on the detection signal {tilde over (z)}, with the table LD consisting of at least two intermediate signals {circumflex over (z)}D;
(5) multiplying respectively the intermediate signals {circumflex over (z)}D by the converting matrix T;
(6) obtaining a candidate signal table L by confining each product signal T{circumflex over (z)}D into the signal in a modulation constellation diagram for a transmitting signal x, with the table L consisting of at least one candidate signal {circumflex over (x)}D;
(7) obtaining a decision signal bit {circumflex over (b)} based on the candidate signal table L.
In the present invention, the channel matrix H is pre-processed by a uni-modular matrix T through a lattice reduction algorithm, so that a table LD of as little as two vectors can achieve very high performance with reduced complexity, the candidate transmit vectors being selected based on a converted transmit constellation z.
Preferably, in the step (3) a linear detection algorithm or a serial interference cancellation detection algorithm is used in compensating the receiving signal y.
Preferably, step (4) includes:
(4a) quantizing respectively each element in the detection signal {tilde over (z)} into a closest integer;
(4b) selecting from the detection signal {tilde over (z)} at least one most unreliable element, and quantizing respectively the selected element once again into a next closest integer;
(4c) combining the integers obtained by quantizing the elements, so as to obtain the intermediate signal table LD.
Preferably, the most unreliable element is the element whose difference with its closest integer has the largest absolute value.
Preferably, step (7) includes:
(7a) multiplying respectively the candidate signals {circumflex over (x)}D in the candidate signal table L with the wireless channel state information matrix H;
(7b) selecting from the candidate signals {circumflex over (x)}D the candidate signal i which produces the smallest Euclidean distance between the product signal H{circumflex over (x)}D and the receiving signal y;
(7c) demodulating the selected signal {circumflex over (x)} to obtain the decision signal bit {circumflex over (b)}.
Alternatively, in step (7) a detecting and decoding iteration method is used based on the candidate signal table L to obtain the decision signal bit {circumflex over (b)}. Then preferably, step (7) includes:
(7a) obtaining first extrinsic Information IE1 of a transmitting signal bit b based on the candidate signal table L and first prior Information IA1 of the transmitting signal bit b, and de-interleaving the first extrinsic Information IE1 to obtain second prior Information IA2 of the transmitting signal bit b;
(7b) applying channel decoding to the second prior Information IA2, so as to obtain second extrinsic Information IE2 of the transmitting signal bit b, and interleaving the second extrinsic Information IE2 to obtain the first prior Information IA1;
(7c) obtaining the decision signal bit {circumflex over (b)} based on the second prior Information IA2.
Preferably, the multiple input/multiple output wireless communication system is a multiple input/multiple output multiple carrier wireless communication system. When receiving signals of the multiple input multiple/output multiple carrier wireless communication system before step (1), it also includes separating receiving signals yƒ on the sub-carriers of the multiple carrier system.
Preferably, the signal receiving equipment in a multiple input/multiple output wireless communication system includes:
a wireless channel state information acquisition unit for acquiring a wireless channel state information matrix H;
a lattice reduction conversion unit for applying lattice reduction conversion to the matrix H, so as to obtain a converted wireless channel state information matrix {tilde over (H)}=HT;
a compensation unit for compensating a receiving signal y based on the matrix {tilde over (H)} to obtain a detection signal {tilde over (z)};
a first signal processing unit for obtaining a candidate signal table L based on the detection signal {tilde over (z)}, with the table L consisting of at least one candidate signal {circumflex over (x)}D;
a second signal processing unit for multiplying respectively the intermediate signals {circumflex over (z)}D by the converting matrix T, and for obtaining a candidate signal table L by confining each product signal T{circumflex over (z)}D into the signal in a modulation constellation diagram for a transmitting signal x, with the table L consisting of at least one candidate signal {circumflex over (x)}D; and
a decision unit for obtaining a decision signal bit {circumflex over (b)} based on the candidate signal table L.
Preferably, the compensation unit uses a linear detection algorithm, or a serial interference cancellation detection algorithm to compensate the receiving signal y.
Preferably, the first signal processing unit first quantizes respectively each element in the detection signal {tilde over (z)} into a closest integer; then selects from the detection signal {tilde over (z)} at least one most unreliable element, and quantizes respectively the selected element once again into a next closest integer; and finally combines the integers obtained by quantizing the elements, so as to obtain the intermediate signal table LD. Preferably, the most unreliable element is the element whose difference with its closest integer has the largest absolute value.
Preferably, the decision unit first multiplies respectively the candidate signals {circumflex over (x)}D in the candidate signal table L with the wireless channel state information matrix H; then selects from the candidate signals {circumflex over (x)}D the candidate signal {circumflex over (x)} which produces the smallest Euclidean distance between the product signal H{circumflex over (x)}D and the receiving signal y; and finally the decision unit demodulates the selected signal {circumflex over (x)} to obtain the decision signal bit {circumflex over (b)}.
In one example, the decision unit uses a detecting and decoding iteration method to obtain the decision signal bit {circumflex over (b)} based on the candidate signal table L. Then the decision unit first obtains first extrinsic Information IE1 of a transmitting signal bit based on the candidate signal table L and first prior Information IA1 of the transmitting signal bit, and de-interleaves the first extrinsic Information IE1 to obtain second prior Information IA2 of the transmitting signal bit; then performs channel decoding to the second prior Information IA2, so as to obtain second extrinsic Information IE2 of the transmitting signal bit, and interleaves the second extrinsic Information IE2 to obtain the first prior Information IA1; and finally obtains the decision signal bit {circumflex over (b)} based on the second prior Information IA2.
Preferably, the signal receiving equipment in the multiple input/multiple output multiple carrier wireless communication system further includes a filter unit for separating receiving signals yƒ on the sub-carriers of the multiple carrier system.
These and other objects and advantages will become more apparent and more readily appreciated from the following description of exemplary practical embodiments, without any restrictive effect, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the preferred embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
The key point of this invention is: after having applied linear conversion to the wireless channel state information matrix H by using lattice reduction conversion, and when a current detection algorithm is used to compensate the receiving signal y based on converted wireless channel state information matrix {tilde over (H)}, as to the obtained detection signal {tilde over (z)}, in consideration of the distortion of the modulation constellation diagram of signal z, further processing is made to the detection signal {tilde over (z)} to obtain an intermediate signal table LD consisting of at least two intermediate signals {circumflex over (z)}D, so as to increase the area for the detection signal {tilde over (z)} to get the correct decision, thereby increasing the correct detection probability for signal z. Then, a candidate signal table L is obtained from the intermediate signal table LD, and to obtain the transmitting signal's decision signal based on the candidate signal table L, and thereby to finally increase the correct detection probability for the transmitting signals.
According to the signal receiving method of this invention,
In the practical embodiment, for example, in the step 102 the receiving signal y is compensated by using the zero forcing detection algorithm to obtain a detection signal {tilde over (z)}LR-ZF=†y=z+†n. In the step 103, in order to obtain an intermediate signal table LD based on the detection signal {tilde over (z)}LR-ZF, the elements in the signal {tilde over (z)}LR-ZF can be quantized respectively into a closest integer value, and on this basis at least one most unreliable element is selected from the signal {tilde over (z)}LR-ZF, and the selected elements are respectively quantized once again to a next closest integer. The most unreliable element refers to the element whose difference with its closest integer has the largest absolute value. Then, the integer values obtained by the quantization of the elements are combined. Each combined integer value sequence forms an intermediate signal {circumflex over (z)}D, and all of the intermediate signals {circumflex over (z)}D form the intermediate signal table LD. It can be seen that when a most unreliable element is selected in the signal {tilde over (z)}LR-ZF, the intermediate signal table LD would be formed by two intermediate signals {circumflex over (z)}D, and when two most unreliable elements are selected in the signal {tilde over (z)}LR-ZF, the intermediate signal table LD would be formed by four intermediate signals {circumflex over (z)}D, and so on.
Hereinbelow still using the 16QAM modulation scheme as an example to illustrate the above processing to the detection signal {tilde over (z)}LR-ZF, namely how to obtain an area for correct decision by increasing detection signal {tilde over (z)}LR-ZF, thereby to improve the probability of correct detection of signal z. Still assuming
then the modulation constellation diagram of signal z=T−1x is as shown in
the modulation constellation diagram of signal z=T−1x would be like that shown in
Although the above description is made with 16QAM modulation scheme as an example, it is not difficult for those skilled in the art to understand that the signal receiving method according to this invention is equally suitable to MIMO wireless communication systems modulated by quadrature phase shift keying (QPSK), 32QAM, 64QAM or higher order QAM schemes.
In a second practical embodiment according to the signal receiving method of this invention, if the minimum mean square error detection algorithm is used to compensate the receiving signal y, then in a step 200 the obtained wireless channel state information matrix H and the receiving signal y are extended; the extended wireless channel state information matrix is
and the extended receiving signal is
wherein σ represents the standard deviation of the complex additive white Gaussian noise signals, m=2nT, Im represents an identity matrix of m rows and m columns, 0m,1 represents a zero matrix of m rows and 1 column. In a step 201, lattice reduction conversion is applied to the matrix H to obtain a converted wireless channel state matrix =HT. Then in a step 202, as equivalent to the zero forcing detection algorithm, the pseudo-inverse matrix † of is right-multiplied by y, to obtain the detection signal {tilde over (z)}LR-MMSE=†y. Since the following steps are the same as those relevant steps above when using the zero forcing detection algorithm, redundant description will not be made here.
In a third practical embodiment according to the signal receiving method of this invention, after having obtained the lattice reduction converted wireless channel state information matrix , QR decomposition is made to the matrix , i.e. =, then detection can be made to the signal z by using the serial interference cancellation detection algorithm, and the detection signal obtained is {tilde over (z)}LR-ZFSIC=Ty=z+Tn. The following steps are the same as those relevant steps above when using the zero forcing detection algorithm.
In a fourth practical embodiment according to the signal receiving method of this invention, similarly, after having obtained the lattice reduction converted wireless channel state information matrix , QR decomposition is made to the matrix , i.e. =, then detection can be made to the signal z by using the serial interference cancellation detection algorithm, and the detection signal obtained is {tilde over (z)}LR-MMSESIC=Ty. The following steps are the same as those relevant steps above when using the zero forcing detection algorithm.
In a fifth practical embodiment according to the signal receiving method of this invention, when the decision signal bit {circumflex over (b)} is obtained based on the candidate signal table L, it can also use current iteration detection and decoding method to make computation of soft information of the transmitting signal bit based on the candidate signal table L, and to perform iteration with channel decoding process to obtain the decision signal bit {circumflex over (b)}, thereby to further improve the system's bit-error rate performance. The iteration detection and decoding method includes the following: making computation of a second prior information IA2 of the transmitting signal bit b based on the candidate signal table L and a first prior information IA1 of the transmitting signal bit b; performing channel decoding to the second prior information IA2 to obtain the first prior information IA1; obtaining the decision signal bit {circumflex over (b)} based on the second prior information IA2. At the same time, in order to increase the system's capability in resisting burst errors, the transmitting signal can be interleaved first, and then be channel-encoded; correspondingly, when obtaining the decision signal bit {circumflex over (b)} based on the candidate signal table L, it includes the following: obtaining first extrinsic Information IE1 of the transmitting signal bit b based on the candidate signal table L and the first prior Information IA1 of the transmitting signal bit b, and de-interleaving the first extrinsic Information IE1 to obtain the second prior Information IA2, of the transmitting signal bit b; performing channel decoding to the second prior Information IA2, so as to obtain second extrinsic Information IE2 of the transmitting signal bit b, and interleaving the second extrinsic Information IE2 to obtain the first prior Information IA1; obtaining the decision signal bit {circumflex over (b)} based on the second prior Information IA2. Regarding the detailed steps of iteration detection and channel decoding method, reference can be made to the thesis by Hochwald, B. M. and ten Brink, S. “Achieving near-capacity on a multiple-antenna channel” Communications, IEEE Transactions on, Volume: 51, Issue: 3, March 2003, Pages:389-399.
When both numbers of the transmitting antenna units and receiving antenna units are 4, simulation on signal receiving performance has been made to the current MIMO signal receiving methods and the signal receiving method according to this invention, and the simulation results are shown in
As described above, based on the current algorithms of linear detection, interference cancellation detection or lattice reduction detection etc., the signal receiving method according to this invention improves significantly the signal detection performance of a MIMO wireless communication system, so that when at a high signal-to-noise ratio, the bit-error performance of using the signal receiving method of this invention approaches the bit-error performance of a system using the maximum likelihood detection algorithm. At the same time, the signal receiving method proposed in this invention would not lead to any significant increase in the system's computation complexity, therefore the exploitation of this invention has relatively good feasibility.
When applying the signal receiving method of this invention, the signal receiving equipment according to this invention would include: a wireless channel state information acquisition unit for acquiring a wireless channel state information matrix H; a lattice reduction conversion unit for performing lattice reduction conversion to the matrix H, so as to obtain a converted wireless channel state information matrix {tilde over (H)}=HT; a compensation unit for compensating a receiving signal y based on the matrix {tilde over (H)} to obtain a detection signal {tilde over (z)}; a first signal processing unit for obtaining a candidate signal table L based on the detection signal {tilde over (z)}, with the table L consisting of at least one candidate signal {circumflex over (x)}D; a second signal processing unit for multiplying respectively the intermediate signals {circumflex over (z)}D by the converting matrix T, and for obtaining a candidate signal table L by confining each product signal T{circumflex over (z)}D into the signal in a modulation constellation diagram for a transmitting signal x, with the table L consisting of at least one candidate signal {circumflex over (x)}D; a decision unit for obtaining a decision signal bit b based on the candidate signal table L.
In addition, in order to resist the frequency selective fading in a wireless channel, the MIMO wireless signal transmission technology can be combined with orthogonal frequency division multiplex (OFDM) multiple carrier technology. When the signal receiving method according to this invention is used in such a MIMO wireless communication system, firstly, the receiving signal yƒ on each sub-carrier of the multiple carrier system needs to be separated. Then, the receiving signal yƒ on each sub-carrier is treated as the receiving signal of a single carrier MIMO wireless communication system for corresponding treatments, namely the receiving signal on each sub-carrier is detected. By the same principle, when the signal receiving equipment according to this invention is used in a multiple input/multiple output multiple carrier wireless communication system, the equipment also includes a filter unit for separating receiving signals yƒ on the sub-carriers of the multiple carrier system. Then, to the receiving signal yƒ on each sub-carrier, the equipment includes one set of the equipment units for corresponding processing to the receiving signal yƒ, thereby to detect the receiving signal on each sub-carrier.
The method described above can be performed by components like those illustrated in
A description has been provided with particular reference to preferred embodiments thereof and examples, but it will be understood that variations and modifications can be effected within the spirit and scope of the claims which may include the phrase “at least one of A, B and C” as an alternative expression that means one or more of A, B and C may be used, contrary to the holding in Superguide v. DIRECTV, 358 F3d 870, 69 USPQ2d 1865 (Fed. Cir. 2004).
Number | Date | Country | Kind |
---|---|---|---|
200610056710.1 | Mar 2006 | CN | national |
0613269.0 | Jul 2006 | GB | national |