The disclosure relates to signal synthesis circuits, and particularly to a signal synthesis circuit that can synthesize luma signals and chroma signals.
In Federal Communications Commission (FCC) and International Radio Consultative Committee (CCIR) standards, phase differences of luma signals and chroma signals comprising composite video broadcast signals (CVBS) are able to meet 170 nanoseconds output by a radio modulator. It is challenging to design a signal synthesis circuit that can synthesize luma signals and chroma signals into CVBS.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure.
Several definitions that apply throughout this disclosure will now be presented.
The term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently connected or releasably connected. The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the like.
The present disclosure is described in relation to a signal synthesis circuit.
The delay unit 104 is coupled to the first gain adjusting unit 102. The delay unit 104 delays output of the gain-adjusted luma signals. The second gain adjusting unit 106 is coupled to the video signal source 20 and the delay unit 104. The second gain adjusting unit 106 receives chroma signals from the video signal source 20 and adjusts gains of the chroma signals so that the delayed gain-adjusted luma signals output by the delay unit 104 and the gain-adjusted chroma signals output by the second gain adjusting unit 106 can be synthesized into the CVBS, and the tuner 30 can transmit the CVBS to a television (not shown).
In at least one embodiment, the delay unit 104 comprises a plurality of resonance oscillation units coupled in series, and the resonance oscillation units can be inductance capacitance (LC) resonance oscillation circuits. Phase differences of the delayed luma signals output by the delay unit 104 and the chroma signals output by the second gain adjusting unit 106 are 170 nanoseconds.
In at least one embodiment, the CVBS may include direct current (DC) interferences, and the signal synthesis circuit 10 further comprises a DC isolation unit 108. An input terminal of the DC isolation unit 108 is coupled to a node between the delay unit 104 and the second gain adjusting unit 106, and an output terminal of the DC isolation unit 108 is coupled to the tuner 30. The DC isolation unit 108 filters out the DC interferences included in the CVBS so that the CVBS which are free of the DC interferences can be sent to the tuner 30.
In at least one embodiment, gain adjusting values of the first gain adjusting unit 102 and the second gain adjusting unit 106 can be determined by design. For example, the gain adjusting values of the first gain adjusting unit 102 and the second gain adjusting unit 106 are determined by a type of television used for playback.
The second gain adjusting unit 106 comprises a second resistor R2 and a third resistor R3. A first end of the second resistor R2 is coupled to the video signal source 20, and a second end of the second resistor R2 is coupled to a node between the second inductor L2 and the fifth capacitor C5. A first end of the third resistor R3 is coupled to the second end of the second resistor R2, and a second end of the third resistor R3 is grounded. The second gain adjusting unit 106 can adjust the respective resistances of the second resistor R2 and the third resistor R3 to adjust the gains of the chroma signals.
The DC isolation unit 108 comprises a seventh capacitor C7. A first end of the seventh capacitor C7 is coupled to a node between the second inductor L2 and the second resistor R1, and a second end of the seventh capacitor C7 is coupled to the tuner 30. The signal synthesis circuit 10a filters out any DC interference included in the CVBS, via the seventh capacitor C7.
In at least one embodiment, the resistors R1, R2, and R3, the inductors L1, L2, and the capacitors C1, C2, C3, C4, C5, and C6 can be precise electronic elements which have low errors to reduce offset errors of the CVBS, and the inductors L1, L2 have low DC resistances.
The embodiments shown and described above are only examples. Many details are often found in the art such as the other features of a signal synthesis circuit. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, especially in matters of shape, size and arrangement of the parts within the principles of the present disclosure up to, and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
103131012 A | Sep 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
2895004 | Fredendall | Jul 1959 | A |
3728476 | Bates | Apr 1973 | A |
3736370 | Thielking | May 1973 | A |
4558348 | Bolger | Dec 1985 | A |
4567523 | Hiday | Jan 1986 | A |
4668999 | De La Cierva, Sr. | May 1987 | A |
4689663 | Bell | Aug 1987 | A |
5172217 | Perkins | Dec 1992 | A |
5296921 | Klink | Mar 1994 | A |
20030156228 | Lee et al. | Aug 2003 | A1 |
20050134745 | Bacche | Jun 2005 | A1 |
20100149418 | Freed | Jun 2010 | A1 |
20140355774 | Quan | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
1047491 | Dec 1999 | CN |
Number | Date | Country | |
---|---|---|---|
20160073037 A1 | Mar 2016 | US |