The present invention relates to a signal transmission line, and relates to a signal transmission line having a signal line, for example.
For an optical module for high-speed optical communication or the like, an optical modulator that modulates signal light is used. The optical modulator modulates intensity of optical signals outputted according to electric input signals. For example, in Japanese Patent Application Laid-Open Publication No. 2005-252251, an optical modulation device using an EA (Electro-Absorption) optical modulator is described. The optical modulator modulates the intensity of continuous light on the basis of inputted modulation signals. The modulation signals reach 10-40 GHz or higher. Therefore, for transmission of the modulation signals, design in consideration of high frequency transmission is carried out.
Modulation signals of an optical modulator reach 10-40 GHz or higher. Therefore, for transmission of the modulation signals, design in consideration of high frequency transmission is carried out. For example, in the above-described optical modulation device, the modulation signals are inputted through a transmission line to the optical modulator. However, in the transmission line, when a stub of a large area is formed in order to obtain large reactance, a dip is sometimes generated in frequency characteristics.
An aspect of the present invention is a signal transmission line comprising: a dielectric substrate; a signal line formed on a first surface of the dielectric substrate; a first conductive layer formed on a second surface of the dielectric substrate; and a first stub formed on the first surface of the dielectric substrate, the first stub being electrically connected with the signal line, wherein the first stub includes a plurality of straight areas each extending from a different position of the signal line, a conductor part extending in parallel with the signal line, the conductive part being electrically connected with the plurality of straight areas, a projection part connected with the conductor part, the projection part extending from the conductor part, and an opening provided between the conductor part and the signal line.
[Description of Embodiments]
First of all, embodiments of the invention of the subject application will be described as enumerated below.
One embodiment of the present invention is a signal transmission line comprising: a dielectric substrate; a signal line formed on a first surface of the dielectric substrate; a first conductive layer formed on a second surface of the dielectric substrate; and a first stub formed on the first surface of the dielectric substrate, the first stub being electrically connected with the signal line, wherein the first stub includes a plurality of straight areas each extending from a different position of the signal line, a conductor part extending in parallel with the signal line, the conductive part being electrically connected with the plurality of straight areas, a projection part connected with the conductor part, the projection part extending from the conductor part, and an opening provided between the conductor part and the signal line.
According to one embodiment of the present invention, a suppression of a dip due to a stub and a miniaturization of a reactance circuit can be achieved.
In the above-described configuration, the signal transmission line may further comprise a second conductive layer connected with the first conductive layer, the second conductive layer being arranged in parallel with the conductor part and being provided on the first surface of the dielectric substrate.
In the above-described configuration, the first stub may include a plurality of the openings.
In the above-described configuration, the signal transmission line may further comprise a second stub provided on the first surface of the dielectric substrate, wherein the first stub and the second stub are respectively located at either side of the signal line.
In the above-described configuration, the signal transmission line may further comprise a third conductive layer provided on a side face of the dielectric substrate, the third conductive layer being connected with the first conductive layer and the second conductive layer.
In the above-described configuration, the signal line, the first conductive layer, and the first stub may be made of a metal, and the dielectric substrate may be made of an aluminum oxide.
In the above-described configuration, the second conductive layer may be made of a metal, and the dielectric substrate may be made of an aluminum oxide.
In the above-described configuration, the second stub may be made of a metal, and the dielectric substrate may be made of an aluminum oxide.
In the above-described configuration, the third conductive layer may be made of a metal, and the dielectric substrate may be made of an aluminum oxide.
In the above-described configuration, the metal may be gold or copper.
In the above-described configuration, an electrical length of the first stub may be smaller than λ/4.
[Details of Embodiments]
Specific examples of the signal transmission line according to embodiments of the present invention will be described below with reference to the accompanying drawings. It should be noted that the present invention is not limited to these examples but shown in the claims, and it is intended that all modifications that come within the meaning and range of equivalence to the claims should be embraced herein. In the description, the same elements or elements having the same function are denoted with the same reference signs, and an overlapping description will be omitted.
[Embodiment 1]
The inductors L1 and L2 are, for example, bonding wires. The capacitor C is a chip capacitor for example, and the resistor R is a chip resistor for example. The optical modulator 10 is an EA optical modulator for example. To the input terminal 14, high frequency signals outputted by a modulation drive IC (Integrated Circuit) are inputted for example.
The stub 24 is formed on the upper surface of the dielectric substrate 28, and extends from the signal line 22. That is, the stub 24 is provided in contact with the signal line 22. The stub 24 includes openings 30 and a projection 36. The projection 36 is, for example, provided along the extending direction of the signal line 22. The stub 24 is formed to include a plurality of straight areas 24a extending in a direction intersecting with the extending direction of the signal line 22, and a straight area 24b (conductor part) extending in parallel with the signal line 22. The projection 36 may be formed as a part of the straight area 24b.
The conductive layer 26 is formed to cover the lower surface of the dielectric substrate 28. The conductive layer 26 has a reference potential of the ground or the like. The signal line 22 and the conductive layer 26 form a microstrip line. The signal line 22, the stub 24, and the conductive layer 26 are formed of a metal such as gold (Au) or copper (Cu) for example.
Next, comparative example 1 to be compared with embodiment 1 will be described.
In embodiment 1, the plurality of straight areas 24a respectively extend from a plurality of positions of the signal line 22, and distal ends of the individual straight areas 24a are electrically connected in common by the straight area 24b (conductor part) arranged in parallel with the signal line 22. Thus, the stub 24 is provided with the openings 30 between the straight area 24b and the signal line 22.
In this way, since the stub 24 includes the openings 30, the element of the inductance component L0 generated by enlargement of the stub 24 can be reduced. Thus, the generation of the dip 40 can be suppressed.
The stub 24 may include one opening 30 but the stub 24 may also include a plurality of openings 30. Thus, the element of the inductance component L0 of the stub 24 can be suppressed more and the dip 40 can be suppressed more. Sizes and shapes of the plurality of openings 30 are the same, for example.
The stub 24 may be provided on one side of the signal line 22, but may also be arranged in the areas on both sides of the signal line 22. Thus, the reactance component of the signal transmission line 20 can be increased more. The plurality of stubs 24 may be provided along the extending direction of the signal line 22.
Also, in the case that the openings 30 are formed such that a width of the signal line 22 does not change, characteristic impedance of the signal transmission line 20 can be fixed.
Further, by the projection 36, the size of the reactance component formed by the stub 24 can be finely adjusted.
When a wavelength of high frequency signals transmitted through the signal transmission line 20 is defined as λ, the electric length of the stub 24 may be equal to or smaller than about λ/4. Therefore, the electric length of the stub 24 may be, for example, equal to or larger than λ/10 and equal to or smaller than λ/4. Note that the electric length of the stub 24 may correspond to the sum of a length of a straight area 24a and a width of the straight area 24b.
[Embodiment 2]
The signal line 22 in the signal transmission line 20b is indicated by the distributed constant line L01 in the equivalent circuit. In the stub 24 in the signal transmission line 20b, the straight area 24a extended to intersect with the signal line 22 is indicated by the capacitance component C01 in the equivalent circuit. The straight area 24b of the stub 24 in the signal transmission line 20b is indicated by the node N01 in the equivalent circuit. A space 38 between the stub 24 and the conductive layer 32 is indicated by the capacitance component C02 in the equivalent circuit.
According to embodiment 2, the conductive layer 32 connected with the reference potential is formed on the upper surface of the dielectric substrate 28 and on the outer side of the stub 24. Thus, as illustrated in
Further, the conductive layer 34 having the reference potential is formed on the side face of the dielectric substrate 28. Therefore, the capacitance component C02 can be enlarged more. Thus, the signal transmission line 20b can be miniaturized more.
Further, since the conductive layer 34 is in contact with the conductive layer 26 and the conductive layer 32, the conductive layers 26, 32 and 34 can be set to the same reference potential.
[Embodiment 3]
Embodiment 3 is an example of an optical modulation device including the signal transmission line according to embodiment 1 or embodiment 2.
The housing 84 is composed of a metal or the like for example. On a bottom surface of the housing 84, a TEC (Thermoelectric Cooler) 68 is arranged. On the TEC 68, a carrier 70 that is formed of insulation of aluminum oxide or ceramic or the like for example and has high heat conductivity is arranged. On the carrier 70, a sub carrier 71 and a lens holder 78 are arranged.
On the sub carrier 71, a dielectric substrate 50, the chip in which the optical modulator 10 and the semiconductor laser 12 are integrated, and a photodetector 79 are arranged. By the lens holder 78, a lens 80 is held. On an upper surface of the dielectric substrate 50, a signal line 52 is formed.
Further, on the bottom surface of the housing 84, a heat sink 66 composed of a metal such as copper tungsten (CuW) or copper molybdenum (CuMo) is arranged. On the heat sink 66, the modulation drive IC 74 and a substrate 72 having a transmission line 73 are arranged. An upper surface of the heat sink 66 and an upper surface of the sub carrier 71 are at the almost same height. A bridge 76 bridged between the upper surface of the heat sink 66 and the upper surface of the sub carrier 71 corresponds to the signal transmission line 20 or 20b according to embodiment 1 or embodiment 2.
On a front sidewall of the housing 84, a lens 82 is held. Further, to a front surface of the housing 84, the receptacle 98 is fixed. In a rear sidewall of the housing 84, a feed-through 60 mainly composed of an insulator is embedded. Inside the feed-through 60, an interconnection that electrically connects a terminal 64 inside the housing 84 and a terminal 62 outside the housing 84 is provided.
The terminal 64 and the transmission line 73 of the substrate 72 are electrically connected by a bonding wire 90. The transmission line 73 and the modulation drive IC 74 are electrically connected by a bonding wire 92. The modulation drive IC 74 and the signal line 22 inside the bridge 76 are electrically connected by a bonding wire 94. The signal line 22 inside the bridge 76 and the signal line 52 on the dielectric substrate 50 are electrically connected by a bonding wire 96.
Input signals which are high frequency signals are inputted from the terminal 62, through the interconnection inside the feed-through 60, the terminal 64, the bonding wire 90, the transmission line 73 and the bonding wire 92 to the modulation drive IC 74. The modulation drive IC 74 amplifies the input signals and outputs them as modulation electric signals. The outputted modulation electric signals are inputted through an output terminal of the modulation drive IC 74 and through the bonding wire 94, the signal line 22 inside the bridge 76 and the bonding wire 96 to the signal line 52. The signal line 52 is electrically connected with an electrode of the optical modulator 10 through a bonding wire 97. Thus, the modulation electric signals are inputted to the electrode of the optical modulator 10. The optical modulator 10 modulates the intensity of output light of the semiconductor laser 12, and emits the light. In such a manner, the output terminal of the modulation drive IC 74 and the electrode of the optical modulator 10 are electrically connected with each other through the bridge 76, and the modulation electric signals outputted by the modulation drive IC 74 is inputted to the optical modulator 10. The optical modulator 10 and a fiber (not shown in the drawings) inserted in the receptacle 98 are optically coupled by the lenses 80 and 82. Thus, the light emitted from the optical modulator 10 is introduced into the fiber. The photodetector 79 detects the intensity of the light emitted from a back surface of the semiconductor laser 12. A control circuit not shown in the drawings executes feedback control to a current to be applied to the semiconductor laser 12 according to output of the photodetector 79. The TEC 68 keeps a temperature of the semiconductor laser 12 and the optical modulator 10 fixed. Thus, a wavelength of the light emitted from the optical modulator 10 is locked and the semiconductor laser 12 can be stably operated.
As in embodiment 3, as a first loading member, the sub carrier 71 is loaded with the optical modulator 10. As a second loading member, the heat sink 66 is loaded with the modulation drive IC 74. The modulation drive IC 74 functions as an amplifier that outputs high frequency signals to the signal transmission line 20 or 20b. The signal transmission line 20 or 20b is mechanically connected by a connection part (a first connection part) provided on the upper surface of the sub carrier 71 and a connection part (a second connection part) provided on the upper surface of the heat sink 66, and is provide so as to bridge the sub carrier 71 and the heat sink 66. Therefore, on the lower surface of the signal transmission line 20 or 20b, a space exists. In this way, the first loading member (the sub carrier 71) and the second loading member (the heat sink 66) are arranged separately across the space, and the dielectric substrate of the bridge 76 is bridged and arranged on the space between the first loading member (the sub carrier 71) and the second loading member (the heat sink 66).
According to embodiment 3, even when the stub 24 is formed in order to enlarge the reactance component of the signal transmission line 20 or 20b through which high frequency signals outputted by the modulation drive IC 74 are transmitted, the generation of a dip can be suppressed.
In embodiment 3, an example of the optical modulation device 106 using the bridge 76, the bridge 76 including the signal transmission line 20 or 20b and being provided on the first loading member and the second loading member, is described. The signal transmission line 20 or 20b may be used in devices other than the optical modulation device.
Number | Date | Country | Kind |
---|---|---|---|
2013-195633 | Sep 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6467152 | De Los Santos | Oct 2002 | B1 |
20100060388 | Ueda | Mar 2010 | A1 |
20130321093 | Ueda | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
2005-252251 | Sep 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20150084714 A1 | Mar 2015 | US |