Signaling protocol for satellite direct radio broadcast system

Information

  • Patent Grant
  • 6201798
  • Patent Number
    6,201,798
  • Date Filed
    Thursday, July 9, 1998
    26 years ago
  • Date Issued
    Tuesday, March 13, 2001
    23 years ago
Abstract
A satellite direct radio broadcast system is provided which assembles bits of broadcast programs into prime rate increments, several of which are assembled into a frame. Frames are divided into symbols which are demultiplexed into alternating ones of a plurality of prime rate channels. The prime rate channels are demultiplexed onto a corresponding number of broadcast frequencies for transmission to a satellite. The satellite payload switches the symbols into time division multiplexed (TDM) data streams. The receivers process the TDM streams using service control headers (SCHs) provided therein by broadcast stations. The SCHs facilitate transmission of different service components within broadcast channel frames, association of a primary broadcast channel with one or more secondary broadcast channels on a frame-to-frame basis, and the transmission of multiframe bit streams, or auxiliary data throughout a broadcast channel that are independent of a service, in contiguous or non-contiguous frames.
Description




FIELD OF THE INVENTION




The invention relates to satellite broadcast systems, and a signaling waveform for facilitating the formatting of broadcast data, and the processing thereof by a satellite payload and remote radio receivers.




BACKGROUND OF THE INVENTION




There presently exists a population of over 4 billion people that are generally dissatisfied and underserved by the poor sound quality of short-wave radio broadcasts, or the coverage limitations of amplitude modulation (AM) band and frequency modulation (FM) band terrestrial radio broadcast systems. This population is primarily located in Africa, Central and South America, and Asia. A need therefore exists for a satellite-based direct radio broadcast system to transmit signals such as audio, data and images to low-cost consumer receivers.




A number of satellite communications networks have been developed for commercial and military applications. These satellite communications systems, however, have not addressed the need to provide multiple, independent broadcast service providers with flexible and economical access to a space segment, nor consumers' need to receive high quality radio signals using low-cost consumer radio receiver units. A need therefore exists for providing service providers with direct access to a satellite and choices as to the amount of space segment that's purchased and used. In addition, a need exists for a low-cost radio receiver unit capable of receiving time division multiplexed downlink bit streams.




SUMMARY OF THE INVENTION




In accordance with an aspect of the present invention, a method of formatting a signal for broadcast transmission to remote receivers is provided whereby a broadcast service having at least one service component (e.g., an audio program, video, data, static images, paging signals, test, messages, panographic symbols, and so on) is combined with a service control header (SCH) in a broadcast channel bit stream frame. The SCH dynamically controls the reception of the service at the remote receivers.




In accordance with another aspect of the present invention, the service has an overall bit rate of K bits per second or n multiples of a minimum bit rate of L bits per second. The frame period is M seconds. The number of bits of service in a frame is n×L×M=n×P bits per frame. The SCH is n×Q bits, and the number of bits in a frame is n×(P+Q). For example, the service has an overall bit rate of 16 to 128 kilobits per second or n multiples of a minimum bit rate of 16 kilobits per second where 1≦n ≦8. The frame period is 432 milliseconds. The number of bits of service in a frame is n×16 kilobits per second×432 milliseconds or n×6912 bits. The SCH is n×224 bits, and the number of bits in a frame is n×7136.




In accordance with yet another aspect of the present invention, the service comprises more than one service component. Bits of each service component are interleaved in each broadcast channel bit stream frame.




In accordance with still yet another aspect of the present invention, the service components are integer ratios of the minimum bit rate of the service. Padding bits are added to the broadcast channel bit stream frame when one of the service components does not have a bit rate sufficient to fill each interleaved portion of the frame.




In accordance with another aspect of the present invention, the service and a SCH corresponding to each of first and second broadcast channels are synchronized using independent bit rate references. A single bit rate reference for all broadcast channels is not required. A satellite is configured to determined and compensate for time differences between the various independent bit rate references of the broadcast stations and a clock on-board the satellite.




In accordance with another aspect of the present invention, a service component comprising an analog signal such as audio is compressed using a coding scheme such as a Motion Pictures Expert Group or MPEG coding scheme (i.e., MPEG 1, MPEG 2 or MPEG 2.5) and a selected sampling frequency (e.g., 8 kilohertz, 12 kilohertz, 16 kilohertz, 24 kilohertz, 32 kilohertz and 48 kilohertz). Compression of a service component can be performed using the MPEG 2.5, layer 3 coding scheme.




In accordance with still yet another aspect of the present invention, the SCH comprises a number of fields selected from the group consisting of a preamble indicating the beginning of said frame, a bit rate index indicating the bit rate of said service, encryption control data, an auxiliary data field, an auxiliary field content indicator relating to the content of said auxiliary data field, data relating to multiframe segments transmitted using said auxiliary data field, and data indicating the number of service components which constitute said frame.




In accordance with another aspect of the present invention, a broadcast channel can be designated a primary broadcast channel and other broadcast channels can carry secondary services that are associated with the primary broadcast channel. The bandwidth of the broadcast program on the primary broadcast channel is therefore effectively increased. Information is provided in the SCH of each frame in each of the broadcast channels to assist the remote receivers in receiving broadcast services from primary and secondary broadcast channels. In accordance with a preferred embodiment of the present invention, the auxiliary field content indicator is provided with a flag to indicate whether the auxiliary data field comprises a primary or second service, and an associated service pointer comprising a unique identification code which corresponds to the next associated broadcast channel. The auxiliary data field can be changed from frame to frame, and the associated service broadcast channels need not be in contiguous frames.




In accordance with still yet another aspect of the present invention, the SCH can be used to control specific radio receiver functions requiring long bit strings. The long bit strings are transmitted via multiframe segments. The SCH comprises a start flag to indicated whether an auxiliary data field comprises the first segment or an intermediate segment of a multiframe transmission. The service control header is also provided with a segment offset and length field (SOLF) to indicate to which of a total number of multiframe segments the current segment corresponds and therefore to serve as a counter. In other words, the SOLF for each intermediate multiframe segment increases by one until the total number of segments less one is reached. Multiframe segments need not be located in contiguous broadcast channel frames. In addition, the auxiliary field content indicator comprises bits corresponding to a service label for the contents of the auxiliary data field.




In accordance with yet another aspect of the present invention, the service control header comprises a service component control field (SCCF) for each service component provided in a broadcast channel frame which facilitates demultiplexing and decoding of service components at radio receivers. The SCCF indicates the length of the service component, the type of service component (e.g., data, MPEG encoded audio, video and so on), whether or not the service component is encrypted, method of encryption, the type of program (e.g., music, speech as so on) to which the service component belongs, as well as the language used in the program.




In accordance with still yet another aspect of the present invention, the SCH comprises a dynamic auxiliary data field for transmitting a dynamic label byte stream to receivers such as text or a screen for display at the receiver. The dynamic label byte stream that is not related to a particular service. Thus, the radio receiver need not be tuned to receive a particular service in order to receive the dynamic label byte stream.











BRIEF DESCRIPTION OF THE DRAWINGS




These and other features and advantages of the present invention will be more readily comprehended from the following detailed description when read in connection with the appended drawings, which form a part of this original disclosure, and wherein:





FIG. 1

is a schematic diagram of a satellite direct broadcast system constructed in accordance with an embodiment of the present invention;





FIG. 2

is a flow chart depicting the sequence of operations for end-to-end signal processing in the system depicted in

FIG. 1

in accordance with an embodiment of the present invention;





FIG. 3

is a schematic block diagram of a broadcast earth station constructed in accordance with an embodiment of the present invention;





FIG. 4

is a schematic diagram illustrating broadcast segment multiplexing in accordance with an embodiment of the present invention;





FIG. 5

is a schematic block diagram of an on-board processing payload for a satellite in accordance with an embodiment of the present invention;





FIG. 6

is a schematic diagram illustrating on-board satellite demultiplexing and demodulation processing in accordance with an embodiment of the present invention;





FIG. 7

is a schematic diagram illustrating on-board satellite rate alignment processing in accordance with an embodiment of the present invention;





FIG. 8

is a schematic diagram illustrating on-board satellite switching and time division multiplexing operations in accordance with an embodiment of the present invention;





FIG. 9

is a schematic block diagram of a radio receiver for use in the system depicted in FIG.


1


and constructed in accordance with an embodiment of the present invention;





FIG. 10

is a schematic diagram illustrating receiver synchronization and demultiplexing operations in accordance with an embodiment of the present invention;





FIG. 11

is a schematic diagram illustrating synchronization and multiplexing operations for recovering coded broadcast channels at a receiver in accordance with an embodiment of the present invention;





FIG. 12

is a schematic diagram of a system for managing satellite and broadcast stations in accordance with an embodiment of the present invention;





FIGS. 13A-13B

is a schematic block diagram of the broadcast segment, space segment and radio segment of a system constructed in accordance with an embodiment of the present invention;





FIG. 14

is a diagram illustrating interleaving of service components within a frame period in the service layer of a system constructed in accordance with an embodiment of the present invention;





FIG. 15

is a schematic block diagram of the service layer of the broadcast segment of a system constructed in accordance with an embodiment of the present invention;





FIG. 16

is a schematic diagram of a pseudorandom sequence generator used for scrambling broadcast channels in accordance with an embodiment of the present invention;





FIG. 17

is a schematic block diagram of the service layer of the radio segment of a system constructed in accordance with an embodiment of the present invention;





FIG. 18

is a schematic block diagram of the transport layer of the broadcast segment of a system constructed in accordance with an embodiment of the present invention;





FIG. 19

is a diagram of a broadcast channel frame in the outer transport layer depicted in

FIG. 18

, and a prime rate channel frame in the inner transport layer as depicted in

FIG. 18

;





FIGS. 20A-20D

is a diagram illustrating interleaving of symbols in a prime rate channel in accordance with an embodiment of the present invention;





FIG. 21

is a schematic diagram of a Viterbi encoder for broadcast channels used on the inner transport layer of the broadcast segment in accordance with an embodiment of the present invention;





FIGS. 22A-22E

is a diagram depicting the demultiplexing of a broadcast channel into prime rate channels in accordance with an embodiment of the present invention;





FIG. 23

is a schematic block diagram of the transport layer of the space segment of a system constructed in accordance with an embodiment of the present invention;





FIG. 24

is a diagram depicting a time division multiplex downlink signal generated in accordance with an embodiment of the present invention;





FIGS. 25A-25B

is a diagram illustrating rate alignment performed on-board a satellite in accordance with an embodiment of the present invention;





FIG. 26

is a diagram depicting a time slot control word inserted in a time division multiplex downlink bit stream in accordance with an embodiment of the present invention;





FIG. 27

is a schematic diagram of a time division multiplex frame sequence generator used in accordance with an embodiment of the present invention; and





FIGS. 28



a


and


28




b


are schematic block diagrams of the transport layer of the radio segment in a system constructed in accordance with an embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Overview




In accordance with the present invention, a satellite-based radio broadcast system


10


is provided to broadcast programs via a satellite


25


from a number of different broadcast stations


23




a


and


23




b


(hereinafter referred to generally as


23


), as shown in FIG.


1


. Users are provided with radio receivers, indicated generally at


29


, which are designed to receive one or more time division multiplexed (TDM) L-band carriers


27


downlinked from the satellite


25


that are modulated at 1.86 Megasymbols per second (Msym/s). The user radios


29


are designed to demodulate and demultiplex the TDM carrier to recover bits that constitute the digital information content or program transmitted on broadcast channels from the broadcast stations


23


. In accordance with an embodiment of the invention, the broadcast stations


23


and the satellite


25


are configured to format uplink and downlink signals to allow for improved reception of broadcast programs using relatively low cost radio receivers. A radio receiver can be a mobile unit


29




a


mounted in a transportation vehicle, for example, a hand-held unit


28




b


or a processing terminal


29




c


with a display.




Although only one satellite


25


is shown in

FIG. 1

for illustrative purposes, the system


10


preferably comprises three geostationary satellites


25




a,




25




b


and


25




c


(

FIG. 12

) configured to use frequency bands of 1467 to 1492 Megahertz (Hz) which has been allocated for broadcasting satellite service (BSS) direct audio broadcast (DAB). The broadcast stations


23


preferably use feeder uplinks


21


in the X-band, that is from 7050 to 7075 MHz. Each satellite


25


is preferably configured to operate three downlink spot beams indicated at


31




a


,


31




b


and


31




c.


Each beam covers approximately 14 million square kilometers within power distribution contours that are four decibels (dB) down from beam center and 28 million square kilometers within contours that are eight dB down. The beam center margin can be 14 dB based on a receiver gain-to-temperature ratio of −13 dB/K.




With continued reference to

FIG. 1

, the uplink signals


21


generated from the broadcast stations


23


are modulated in frequency division multiple access (FDMA) channels from the ground stations


23


which are preferably located within the terrestrial visibility of the satellite


25


. Each broadcast station


23


preferably has the ability to uplink directly from its own facilities to one of the satellites and to place one or more 16 kilobit per second (kbps) prime rate increments on a single carrier. Use of FDMA channels for uplink allows for a significant amount of flexibility for sharing the space segment among multiple independent broadcast stations


23


and significantly reduces the power and hence the cost of the uplink earth stations


23


. Prime rate increments (PRIs) of 16 kilobits per second (kbps) are preferably the most fundamental building block or rudimentary unit used in the system


10


for channel size and can be combined to achieve higher bit rates. For example, PRIs can be combined to create program channels with bit rates up to 128 kbps for near compact disc quality sound or multimedia broadcast programs comprising image data, for example.




Conversion between uplink FDMA channels and downlink multiple channel per carrier/time division multiplex (MCPC/TDM) channels is achieved on-board each satellite


25


at the baseband level. As will be described in further detail below, prime rate channels transmitted by a broadcast station


23


are demultiplexed at the satellite


25


into individual 16 kbps baseband signals. The individual channels are then routed to one or more of the downlink beams


31




a,




31




b


and


31




c,


each of which is a single TDM stream per carrier signal. This baseband processing provides a high level of channel control in terms of uplink frequency allocation and channel routing between uplink FDMA and downlink TDM signals.




The end-to-end signal processing that occurs in the system


10


is described with reference to FIG.


2


. The system components responsible for the end-to-end signal processing is described in further detail below with reference to

FIGS. 3-11

. As shown in

FIG. 2

, audio signals from an audio source, for example, at a broadcast station


23


, are preferably coded using MPEG 2.5 Layer 3 coding (block


26


). The digital information assembled by a broadcast service provider at a broadcast station


23


is preferably formatted in 16 kbps increments or PRIs where n is the number of PRIs purchased by the service provider (i.e., n×16 kbps). The digital information is then formatted into a broadcast channel frame having a service control header (SCH) (block


28


), described in further detail below. A periodic frame in the system


10


preferably has a period duration of 432 milliseconds (ms). Each frame is preferably assigned n×224 bits for the SCH such that the bit rate becomes approximately n×16.519 kbps. Each frame is next scrambled by addition of a pseudorandom bit stream to the SCH. Information control of the scrambling pattern by a key permits encryption. The bits in a frame are subsequently coded for forward error correction (FEC) protection using preferably two concatenated coding methods such as the Reed Solomon method, followed by interleaving, and then convolution coding (e.g., trellis convolution coding described by Viterbi) (block


30


). The coded bits in each frame corresponding to each PRI are subsequently subdivided or demultiplexed into n parallel prime rate channels (PRCs) (block


32


). To implement recovery of each PRC, a PRC synchronization header is provided. Each of the n PRCs is next differentially encoded and then modulated using, for example, quadrature phase shift keying modulation onto an intermediate frequency (IF) carrier frequency (block


34


). The n PRC IF carrier frequencies constituting the broadcast channel of a broadcast station


23


is converted to the X-band for transmission to the satellite


25


, as indicated by the arrow


36


.




The carriers from the broadcast stations


23


are single channel per carrier/frequency division multiple access (SCPC/FDMA) carriers. On-board each satellite


25


, the SCPC/FDMA carriers are received, demultiplexed and demodulated to recover the PRC carriers (block


38


). The PRC digital baseband channels recovered by the satellite


25


are subjected to a rate alignment function to compensate for clock rate differences between the on-board satellite clock and that of the PRC carriers received at the satellite (block


40


). The demultiplexed and demodulated digital streams obtained from the PRCs are provided to TDM frame assemblers using routing and switching components. The PRC digital streams are routed from demultiplexing and demodulating equipment on-board the satellite


25


to the TDMA frame assemblers in accordance with a switching sequence unit on-board the satellite that is controlled from an earth station via a command link (e.g., a satellite control center


236


in

FIG. 12

for each operating region). Three TDM carriers are created which correspond to each of the three satellite beams


31




a,




31




b


and


31




c


(block


42


). The three TDM carriers are up converted to L-band frequencies following QPSK modulation, as indicated by arrow


44


. Radio receivers


29


are configured to receive any of the three TDM carriers and to demodulate the received carrier (block


46


). The radio receivers


29


are designed to synchronize a TDM bit stream using a master frame preamble provided during on-board satellite processing (block


48


). PRCs are demultiplexed from the TDM frame using a Time Slot Control Channel (TSCC), as well. The digital streams are then remultiplexed into the FEC-coded PRC format described above with reference to block


30


(block


50


). The FEC processing preferably includes decoding using a Viterbi trellis decoder, for example, deinterleaving, and then Reed Solomon decoding to recover the original broadcast channel comprising n×16 kbps channel and the SCH. The n×16 kbps segment of the broadcast channel is supplied to an MPEG 2.5 Layer 3 source decoder for conversion back to audio. In accordance with the present invention, the audio output is available via a very low cost broadcast radio receiver


27


due to the processing and TDM formatting described above in connection with the broadcast station(s)


23


and the satellite


25


(block


52


).




Uplink Multiplexing and Modulation




Signal processing to convert data streams from one or more broadcast stations


23


into parallel streams for transmission to a satellite


25


will now be described with reference to FIG.


3


. For illustrative purposes, four sources


60


,


64


,


68


, and


72


of program information are shown. Two sources


60


and


64


, or


68


and


72


, are coded and transmitted together as part of a single program or service. The coding of the program comprising combined audio sources


60


and


64


will be described. The signal processing of the program comprising digital information from sources


68


and


72


is identical.




As stated previously, broadcast stations


23


assemble information from one or more sources


60


and


64


for a particular program into broadcast channels characterized by increments of 16 kbps. These increments are referred to as prime rate increments or PRIs. Thus, the bit rate carried in a broadcast channel is n×16 kbps were n is the number of PRIs used by that particular broadcast service provider. In addition, each 16 kbps PRI can be further divided into two 8 kbps segments which are routed or switched together through the system


10


. The segments provide a mechanism for carrying two different service items in the same PRI such as a data stream with low bit rate speech signals, or two low bit rate speech channels for two respective languages, and so on. The number of PRIs are preferably predetermined, that is, set in accordance with program code. The number n, however, is not a physical limitation of the system


10


. The value of n is generally set on the basis of business concerns such as the cost of a single broadcast channel and the willingness of the service providers to pay. In

FIG. 3

, n for the first broadcast channel


59


for sources


60


and


64


is equal to 4. The value of n for the broadcast channel


67


for sources


68


and


72


is set to 6 in the illustrated embodiment.




As shown in

FIG. 3

, more than one broadcast service provider can have access to a single broadcast station


23


. For example, a first service provider generates broadcast channel


59


, while a second service provider can generate broadcast channel


67


. The signal processing described herein and in accordance with the present invention allows data streams from several broadcast service providers to be broadcast to a satellite in parallel streams which reduces the cost of broadcasting for the service providers and maximizes use of the space segment. By maximizing efficiency of space segment usage, the broadcast stations


23


can be implemented less expensively using less power- consuming components. For example, the antenna at the broadcast station


23


can be very small aperture terminal (VSAT) antenna. The payload on the satellite requires less memory, less processing capability and therefore fewer power sources which reduces payload weight.




A broadcast channel


59


or


67


is characterized by a frame


100


having a period duration of 432 ms, as shown in FIG.


4


. This period duration is selected to facilitate use of the MPEG source coder described below; however, the frame paired in the system


10


can be set to a different predetermined value. If the period duration is 432 ms, then each 16 kbps PRI requires 16,000×0.432 seconds=6912 bits per frame. As shown in

FIG. 4

, a broadcast channel therefore consists of a value n of these 16 kbps PRIs which are carried as a group in the frame


100


. As will be described below, these bits are scrambled to enhance demodulation at the radio receivers


29


. The scrambling operation also provides a mechanism for encrypting the service at the option of the service provider. Each frame


100


is assigned n×224 bits which correspond to a service control header (SCH), resulting in a total of n×7136 bits per frame and a bit rate of n×(16,518+14\27) bits per second. The purpose of the SCH is to send data to each of the radio receivers


29


tuned to receive the broadcast channel


59


or


67


in order to control reception modes for various multimedia services, to display data and images, to send key information for decryption, to address a specific receiver, among other features.




With continued reference to

FIG. 3

, the sources


60


and


64


are coded using, for example, MPEG 2.5 Layer 3 coders


62


and


66


, respectively. The two sources are subsequently added via a combiner


76


and then processed using a processor at the broadcast station


23


to provide the coded signals in periodic frames of 432 ms, that is, n×7136 bits per frame including the SCH, as indicated by processing module


78


in FIG.


3


. The blocks indicated at the broadcast station in

FIG. 3

correspond to programmed modules performed by a processor and associated hardware such as digital memory and coder circuits. The bits in the frame


100


are subsequently coded for FEC protection using digital signal processing (DSP) software, application specific integrated circuits (ASICs) and custom large-scale integration (LS) chips for the two concatenated coding methods. First, a Reed Solomon coder


80




a


is provided to produce 255 bits for every 223 bits entering the coder. The bits in the frame


100


are then reordered according to a known interleaving scheme, as indicated by reference number


80




b.


The interleaving coding provides further protection against bursts of error encountered in a transmission since this method spreads damaged bits over several channels. With continued reference to processing module


80


, a known convolution coding scheme of constraint length


7


is applied using a Viterbi coder


80




c.


The Viterbi coder


80




c


produces two output bits for every input bit, producing as a net result 16320 FEC-coded bits per frame for each increment of 6912 bits per frame applied in the broadcast channel


59


. Thus, each FEC-coded broadcast channel (e.g., channel


59


or


67


) comprises n×16320 bits of information which have been coded, reordered and coded again such that the original broadcast 16 kbps PRIs are no longer identifiable. The FEC-coded bits, however, are organized in terms of the original 432 ms frame structure. The overall coding rate for error protection is (255/223)×2=2+64/223.




With continued reference to

FIG. 3

, the n×16320 bits of the FEC-coded broadcast channel frame is subsequently subdivided or demultiplexed using a channel distributor


82


into n parallel prime rate channels (PRCs), each carrying 16320 bits in terms of sets of 8160 two-bit symbols. This process is further illustrated in FIG.


4


. The broadcast channel


59


is shown which is characterized by a 432 ms frame


100


having an SCH


102


. The remaining portion


104


of the frame consists of n 16 kbps PRIs which corresponds to 6912 bits per frame for each of the n PRIs. The FEC-coded broadcast channel


106


is attained following concatenated Reed Solomon 255/223, interleaving and FEC ½ convolution coding described above in connection with module


80


. As stated previously, the FEC-coded broadcast channel frame


106


comprises n×16320 bits which correspond to 8160 sets of two-bit symbols, with each symbol being designated by a reference numeral


108


for illustrated purposes. In accordance with the present invention, the symbols are assigned across the PRCs


110


in the manner shown in FIG.


4


. Thus, the symbols will be spread on the basis of time and frequency which further reduces errors at the radio receiver caused by interference in transmission. The service provider for broadcast channel


59


has purchased four PRCs for illustrative purposes, whereas the service provider for broadcast channel


67


has purchased six PRCs for illustrative purposes.

FIG. 4

illustrates the first broadcast channel


59


and the assignment of symbols


114


across the n=4 PRCs


110




a,




110




b,




110




c


and


110




d,


respectively. To implement recovery of each two-bit symbol


114


set at the receiver, a PRC synchronization header or preamble


112




a,




112




b,




112




c


and


112




d,


respectively, is placed in front of each PRC. The PRC synchronization header (hereinafter generally referred to using reference numeral


112


) contains 48 symbols. The PRC synchronization header


112


is placed in front of each group of 8160 symbols, thereby increasing the number of symbols per 432 ms frame to 8208 symbols. Accordingly, the symbol rate becomes 8208/0.432 which equals 19 kilosymbols per second (ksym/s) for each PRC


110


. The 48 symbol PRC preamble


112


is used essentially for synchronization of the radio receiver PRC clock to recover the symbols from the downlink satellite transmission


27


. At the on-board processor


116


, the PRC preamble is used to absorb timing differences between the symbol rates of arriving uplink signals and that used on-board to switch the signals and assemble the downlink TDM streams. This is done by adding, subtracting a “0” or neither to each 48 symbol PRC in the rate alignment process used on-board the satellite. Thus, the PRC preambles carried on the TDM downlink has 47, 48 or 49 symbols as determined by the rate alignment process. As shown in

FIG. 4

, symbols


114


are assigned to consecutive PRCs in a round-robin fashion such that symbol


1


is assigned to PRC


110




a,


symbol


2


is assigned to PRC


110




b,


symbol


3


is assigned to PRC


110




c,


symbol


4


is assigned to PRC


110




d,


symbol


5


is assigned to PRC


110




e,


and so on. This PRC demultiplexing process is performed by a processor at the broadcast station


23


and is represented in

FIG. 3

as the channel distribution (DEMUX) module


82


.




The PRC channel preambles are assigned to mark the beginning of the PRC frames


110




a,




110




b,




110




c


and


110




d


for broadcast channel


59


using the preamble module


84


and adder module


85


. The n PRCs are subsequently differentially encoded and then QPSK modulated onto an IF carrier frequency using a bank of QPSK modulators


86


as shown in FIG.


3


. Four of the QPSK modulators


86




a,




86




b,




86




c


and


86




d


are used for respective PRCs


110




a,




110




b,




110




c


and


110




d


for broadcast channel


59


. Accordingly, there are four PRC IF carrier frequencies constituting the broadcast channel


59


. Each of the four carrier frequencies is up-converted to its assigned frequency location in the X-band using an up-converter


88


for transmission to the satellite


25


. The up-converted PRCs are subsequently transmitted through an amplifier


90


to the antenna (e.g., a VSAI)


91




a


and


91




b.






In accordance with the present invention, the transmission method employed at a broadcast station


23


incorporates a multiplicity of n Single Channel Per Carrier, Frequency Division Multiple Access (SCPC/FDMA) carriers into the uplink signal


21


. These SCPC/FDMA carriers are spaced on a grid of center frequencies which are preferably separated by 38,000 Hertz (Hz) from one another and are organized in groups of 48 contiguous center frequencies or carrier channels. Organization of these groups of 48 carrier channels is useful to prepare for demultiplexing and demodulation processing conducted onboard the satellite


25


. The various groups of 48 carrier channels are not necessarily contiguous to one another. The carriers associated with a particular broadcast channel (i.e., channel


59


or


67


) are not necessarily contiguous within a group of 48 carrier channels and need not be assigned in the same group of 48 carrier channels. The transmission method described in connection with

FIGS. 3 and 4

therefore allows for flexibility in choosing frequency locations and optimizes the ability to fill the available frequency spectrum and to avoid interference with other users sharing the same radio frequency spectrum.




The system


10


is advantageous because it provides a common base of capacity incrementation for a multiplicity of broadcast companies or service providers whereby broadcast channels of various bit rates can be constructed with relative ease and transmitted to a receiver


29


. Typical broadcast channel increments or PRIs are preferably 16, 32, 48, 64, 80, 96, 112 and 128 kbps. The broadcast channels of various bit rates are interpreted with relative ease by the radio's receiver due to the processing described in connection with FIG.


4


. The size and cost of a broadcast station can therefore be designed to fit the capacity requirements and financial resource limitations of a broadcast company. A broadcast company of meager financial means can install a small VSAT terminal requiring a relatively small amount of power to broadcast a 16 kbps service to its country that is sufficient to carry voice and music having quality far better than that of short-wave radio. On the other hand, a sophisticated broadcast company of substantial financial means can broadcast FM stereo quality with a slightly larger antenna and more power at 64 kbps and, with further increases in capacity, broadcast near compact disc (CD) stereo quality at 96 kbps and full CD stereo quality at 128 kbps.




The frame size, SCH size, preamble size and PRC length described in connection with

FIG. 4

are used to realize a number of advantages; however, the broadcast station processing described in connection with

FIGS. 3 and 4

is not limited to these values. The frame period of 432 ms is convenient when using an MPEG source coder (e.g., coder


62


or


66


). The 224 bits for each SCH


102


is selected to facilitate FEC coding. The 48 symbol PRC preamble


112


is selected to achieve 8208 symbols per PRC


110


to achieve 19 ksym/s for each PRC for a simplified implementation of multiplexing and demultiplexing on-board the satellite


25


, as described in future detail below. Defining symbols to comprise two-bits is convenient for QPSK modulation (i.e., 2


2


=4). To illustrate further, if phase shift key modulation at the broadcast station


23


uses eight phases as opposed to four phases, then a symbol defined as having three bits would be more convenient since each combination of three bits (i.e., 2


3


) can correspond to one of the eight phases.




Software can be provided at a broadcast station


23


or, if more than one broadcast station exists in the system


10


, a regional broadcast control facility (RBCF)


238


(

FIG. 12

) to assign space segment channel routing via a mission control center ICC)


240


, a satellite control center (SCC)


236


and a broadcast control center (BCC)


244


. The software optimizes use of the uplink spectrum by assigning PRC carrier channels


110


wherever space is available in the 48 channel groups. For example, a broadcast station may wish to broadcast a 64 kbps service on four PRC carriers. Due to current spectrum use, the four carriers may not be available in contiguous locations, but rather only in non-contiguous locations within a group of 48 carriers. Further, the RBCF


238


using its MCC and SCC may assign the PRCs to non-contiguous locations among different 48 channel groups. The MCC and SCC software at the RBCF


238


or a single broadcast station


23


can relocate PRC carriers of a particular broadcast service to other frequencies to avoid deliberate (i.e., jamming or accidental interference on specific carrier locations. A current embodiment of the system has three RBCFs, one for each of the three regional satellites. Additional satellites can be controlled by one of these three facilities.




As will be described in further detail below in connection with on-board satellite processing in

FIG. 6

, an on-board digitally implemented polyphase processor is used for on-board signal regeneration and digital baseband recovery of the symbols


114


transmitted in the PRCs. The use of groups of 48 carriers spaced on center frequencies separated by 38,000 Hz facilitates processing by the polyphase processor. The software available at the broadcast station


23


or RBCF


238


can perform defragging, that is, defragmentation processing to optimize PRC


110


assignments to uplink carrier channels, that is, groups of 48 carrier channels. The principal behind defragmentation of uplink carrier frequency assignments is not unlike known software for reorganizing files on a computer hard drive which, over time, have been saved in such a piece-meal manner as to be inefficient for data storage. The BCC functions at the RBCF allows the RBCF to remotely monitor and control broadcast stations to assure their operation within assigned tolerances.




Satellite Payload Processing




The baseband recovery on the satellite is important for accomplishing on-board switching and routing and assembly of TDM downlink carriers, each having 96 PRCs. The TDM carriers are amplified on-board the satellite


25


using single-carrier-per-traveling-wave-tube operation. The satellite


25


preferably comprises eight on-board baseband processors; however, only one processor


116


is shown. Preferably only six of the eight processors are used at a time, the remainder providing redundancy in event of failures and to command them to cease transmission if circumstances require such. A single processor


116


is described in connection with

FIGS. 6 and 7

. It is to be understood that identical components are preferably provided for each of the other seven processors


116


. With reference to

FIG. 5

, the coded PRC uplink carriers


21


are received at the satellite


25


by an X-band receiver


120


. The overall uplink capacity is preferably between 288 and 384 PRC uplink channels of 16 kbps each (i.e., 6×48 carriers if six processors


116


are used, or 8×48 carriers if all eight processors


116


are used). As will be described in further detail below, 96 PRCs are selected and multiplexed for transmission in each downlink beam


27


onto a carrier of approximately 2.5 MHz bandwidth.




Each uplink PRC channel can be routed to all, some or none of the downlink beams


27


. The order and placement of PRCs in a downlink beam is programmable and selectable from a telemetry, range and control (TRC) facility


24


(FIG.


1


). Each polyphase demultiplexer and demodulator


122


receives the individual FDMA uplink signals in groups of 48 contiguous channels and generates a single analog signal on which the data of the 48 FDMA signals is time multiplexed, and performs a high speed demodulation of the serial data as described in further detail below in connection with FIG.


6


. Six of these polyphase demultiplexer and demodulators


122


operate in parallel to process


288


FDMA signals. A routing switch and modulator


124


selectively directs individual channels of the six serial data streams into all, some or none of the downlink signals


27


and further modulates and up-converts the three downlink TDM signals


27


. Three traveling wave tube amplifiers (TWTA)


126


individually amplify the three downlink signals, which are radiated to the earth by L-band transmit antennas


128


.




The satellite


25


also contains three transparent payloads, each comprising a demultiplexer and down-converter


130


and an amplifier group


132


configured in a conventional “bent pipe” signal path which converts the frequency of input signals for retransmission. Thus, each satellite


25


in the system


10


is preferably equipped with two types of communication payloads. The first type of on-board processing payload is described with reference to

FIGS. 5

,


6


and


7


. The second type of communication payload is the transparent payload which converts uplink TDM carriers from frequency locations in the uplink X-band spectrum to frequency locations in the L-band downlink spectrum. The transmitted TDM stream for the transparent payload is assembled at a broadcast station


23


, sent to the satellite


25


, received and frequency converted to a downlink frequency location using module


130


, amplified by a TWTA in module


132


and transmitted to one of the beams. To a radio receiver


29


, the TDM signals appear identical whether they are from the on-board processing payload indicated at


121


or the transparent payload indicated at


133


. The carrier frequency locations of each type of payload


121


and


133


are spaced on separate grids of 920 kHz spacing which are interlaced between one another in a bisected manner so that the carrier locations of a mix of signals from both types of payloads


121


and


133


are on 460 kHz spacings.




The on-board demultiplexer and demodulator


122


will now be described in further detail with reference to FIG.


6


. As shown in

FIG. 6

, SCPC/FDMA carriers, each of which is designated with reference numeral


136


, are assigned to groups of 48 channels. One group


138


is shown in

FIG. 6

for illustrative purposes. The carriers


136


are spaced on a grid of center frequencies separated by 38 kHz. This spacing determines design parameters of the polyphase demultiplexers. For each satellite


25


, preferably 288 uplink PRC SCPC/FDMA carriers can be received from a number of broadcast stations


23


. Six polyphase demultiplexers and demodulators


122


are therefore preferably used. An on-board processor


116


accepts these PRC SCPC/FDMA uplink carriers


136


and converts them into three downlink TDM carriers, each carrying 96 of the PRCs in 96 time slots.




The 288 carriers are received by an uplink global beam antenna


118


and each group of 48 channels is frequency converted to an intermediate frequency (IF) which is then filtered to select a frequency band occupied by that particular group


138


. This processing takes places in the receiver


120


. The filtered signal is then supplied to an analog-to-digital (A/D) converter


140


before being supplied as an input to a polyphase demultiplexer


144


. The demultiplexer


144


separates the 48 SCPC/FDMA channels


138


into a time division multiplexed analog signal stream comprising QPSK modulated symbols that sequentially present the content of each of 48 SCPC/FDMA channels at the output of the demultiplexer


144


. This TDM analog signal stream is routed to a digitally implemented QPSK demodulator and differential decoder


146


. The QPSK demodulator and differential decoder


146


sequentially demodulates the QPSK modulated symbols into digital baseband bits. Demodulation processing requires symbol timing and carrier recovery. Since the modulation is QPSK, baseband symbols containing two-bits each are recovered for each carrier symbol. The demultiplexer


144


and demodulator and decoder


146


will hereinafter be referred to as a demultiplexer/demodulator (D/D)


148


. The D/D is preferably accomplished using high speed digital technology using the known Polyphase technique to demultiplex the uplink carriers


21


. The QPSK demodulator is preferably a serially-shared, digitally-implemented demodulator for recovering the baseband two-bit symbols. The recovered symbols


114


from each PRC carrier


110


are subsequently differentially decoded to recover the original PRC symbols


108


applied at the input encoders, that is, the channel distributors


82


and


98


in

FIG. 3

, at the broadcast station


23


. The satellite


25


payload preferably comprises six digitally implemented,


48


carrier D/Ds


148


. In addition, two spare D/Ds


148


are provided in the satellite payload to replace any failed processing units.




With continued reference to

FIG. 6

, the processor


116


is programmed in accordance with a software module indicated at


150


to perform a synchronization and rate alignment function on the time division multiplexed symbol stream generated at the output of the QPSK demodulator and differential decoder


146


. The software and hardware components (e.g., digital memory buffers and oscillators) of the rate alignment module


150


in

FIG. 6

are described in more detail with reference to FIG.


7


. The rate alignment module


150


compensates for clock rate differences between the on-board clock


152


and that of the symbols carried on the individual uplink PRC carriers


138


received at the satellite


25


. The clock rates differ because of different clock rates at different broadcast stations


23


, and different Doppler rates from different locations caused by motion of the satellite


25


. Clock rate differences attributed to the broadcast stations


23


can originate in clocks at a broadcast station itself or in remote clocks, the rates of which are transferred over terrestrial links between a broadcast studio and a broadcast station


23


.




The rate alignment module


150


adds or removes a “0” value symbol, or does neither operation in the PRC header portion


112


of each 432 ms recovered frame


100


. A “0” value symbol is a symbol that consists of a bit value 0 on both the I and Q channels of the QPSK-modulated symbol. The PRC header


112


comprises 48 symbols under normal operating conditions and consists of an initial symbol of “0” value, followed by 47 other symbols. When the symbol times of the uplink clock, which is recovered by the QPSK demodulator


146


along with the uplink carrier frequency, and those of the on-board clock


152


are synchronized, no change is made to the PRC preamble


112


for that particular PRC


110


. When the arriving uplink symbols have a timing that lags behind the on-board clock


152


by one symbol, a “0” symbol is added to the start of the PRC preamble


112


for the PRC currently being processed, yielding a length of 49 symbols. When the arriving uplink symbols have a timing that leads the on-board clock


152


by one symbol, a “0” symbol is deleted at the start of the PRC preamble


112


of the current PRC being processed, yielding a length of 47 symbols.




As stated previously, the input signal to the rate alignment module


150


comprises the stream of the recovered baseband two-bit symbols for each received uplink PRC at their individual original symbol rates. There are 288 such streams issued from the D/D


148


corresponding to each of the six active processors


116


. The action involving only one D/D


148


and one rate alignment module


150


is described, although it is to be understood that the other five active processors


116


on the satellite perform similar functions.




To rate align uplink PRC symbols to the on-board clock


152


, three steps are performed. First, the symbols are grouped in terms of their original 8208 two-bit symbol PRC frames


110


in each buffer


149


and


151


of a ping-pong buffer


153


. This requires correlation of the PRC header


112


(which contains a 47 symbol unique word) with a local stored copy of the unique word in correlators indicated at


155


to locate the symbols in a buffer. Second, the number of on-board clock


152


ticks between correlation spikes is determined and used to adjust the length of the PRC header


112


to compensate for the rate difference. Third, the PRC frame, with its modified header, is clocked at the on-board rate into its appropriate location in a switching and routing memory device


156


(FIG.


8


).




PRC symbols enter the ping-pong buffer pair


153


at the left. The ping-pong action causes one buffer


149


or


151


to fill at the uplink clock rate, and the other buffer to simultaneously empty at the onboard clock rate. The roles reverse from one frame to the next and cause continuous flow between input and output of the buffer


149


and


151


. Newly arriving symbols are written to the buffer


149


or


151


to which they happen to be connected. Writing continues to fill the buffer


149


or


151


until the correlation spike occurs. Writing then stops, and the input and output switches


161


and


163


switch to the reverse state. This captures an uplink PRC frame so that its 48 header symbols reside in the 48 symbol slots with one slot left unfilled at the output end of the buffer and the 8160 data symbols fill the first 8160 slots. The contents of the subject buffer are immediately read to the output thereof at the on-board clock rate. The number of symbols read out are such that the PRC header contains 47, 48 or 49 symbols. A “0” value symbol is removed or added at the start of the PRC header to make this adjustment. The header length


112


is controlled by a signal coming from a frame symbol counter


159


which counts the number of on-board clock rate symbols that will fall in a PRC frame period to determine the header length. The ping-pong action alternates the roles of the buffers.




To perform the count, the frame correlation spikes coming from the buffer correlators


155


, as PRC frames fill the buffers


149


and


151


, are smoothed by a synch pulse oscillator (SPC)


157


. The smoothed sync pulses are used to count the number of symbol epochs per frame. The number will be 8207, 8208 or 8209 indicating whether the PRC header should be 47, 48 or 49 symbols long, respectively. This information causes the proper number of symbols to come from the frame buffers to maintain symbol flow synchronously with the on-board clock and independently of earth terminal origin.




For the rate differences anticipated over the system


10


, the run times between preamble


112


modifications are relatively long. For instance, clock rate differences of 10


−6


will elicit PRC preamble corrections on the average of one every 123 PRC frames. The resulting rate adjustments cause the symbol rates of the PRCs


110


to be precisely synchronized to the on-board clock


152


. This allows routing of the baseband bit symbols to the proper locations in a TDM frame. The synchronized PRCs are indicated generally at


154


in FIG.


6


. The on-board routing and switching of these PRCs


154


into TDM frames will now be described with reference to FIG.


8


.





FIG. 6

illustrates PRC processing by a single D/D


148


. Similar processing is performed by the other five active D/Ds on-board the satellite. The PRCs emanating from each of the six D/Ds


148


, having been synchronized and aligned, occur in a serial stream having a symbol rate of 48×19,000 which equals 912,000 symbols per second for each D/D


148


. The serial stream from each D/D


148


can be demultiplexed into 48 parallel PRC streams having rates of 19,000 symbols per second, as shown in FIG.


7


. The aggregate of the PRC streams coming from all six D/Ds


148


on-board the satellite


25


is 288, with each D/D


148


carrying 19,000 sym/s streams. The symbols therefore have epochs or periods of {fraction (1/19,000)} seconds which equals approximately 52.63 microseconds duration.




As shown in

FIG. 8

, 288 symbols are present at the outputs of the six D/Ds


148




a,




148




b,




148




c,




148




d,




148




e


and


148




f


for every uplink PRC symbol epoch. Once each PRC symbol epoch, 288 symbol values are written into a switching and routing memory


156


. The contents of the buffer


156


are read into three downlink TDM frame assemblers


160


,


162


and


164


. Using a routing and switching component designated as


172


, the contents of each of the 288 memory locations are read in terms of 2622 sets of 96 symbols to each of the three TDM frames in assemblers


160


,


162


and


164


in an epoch of 136.8 ms which occurs once every TDM frame period or 138 ms. The scan rate or 136.8/2622 is therefore faster than the duration of a symbol. The routing switch and modulator


124


comprises a ping-pong memory configuration indicated generally at


156


and comprising buffers


156




a


and


156




b,


respectively. The 288 uplink PRCs indicated at


154


are supplied as input to the routing switch and modulator


124


. The symbols of each PRC occur at a rate of 19,000 symbols per second corrected to the on-board clock


152


timing. The PRC symbols are written in parallel at the 19,600 Hz clock rate into 288 positions in the ping-pong memory


156




a


or


156




b


serving as the input. At the same time, the memory serving as the output


156




b


or


156




a,


respectively, is reading the symbols stored in the previous frame into the three TDM frames at a read rate of 3×1.84 MHz. This latter rate is sufficient to allow the simultaneous generation of the three TDM parallel streams., one directed to each of three beams. Routing of the symbols to their assigned beam is controlled by a symbol routing switch


172


. This switch can route a symbol to any one, two or three of the TDM streams. Each TDM stream occurs at a rate of 1.84 Msym/s. The output memory is clocked for an interval of 136.8 ms and pauses for 1.2 ms to allow insertion of the 96 symbol MFP and 2112 symbol TSCC. Note that for every symbol that is read into more than one TDM stream, there is an off-setting uplink FDM PRC channel that is not used and is skipped. The ping-pong memory buffers


156




a


and


156




b


exchange roles from frame to frame via the switch components


158




a


and


158




b.






With continued reference to

FIG. 8

, sets of 96 symbols are transferred to 2622 corresponding slots in each TDM frame. The corresponding symbols (i.e., the ith symbols) for all 96 uplink PRCs are grouped together in the same TDM frame slot as illustrated by the slot


166


for symbol


1


. The contents of the 2622 slots of each TDM frame are scrambled by adding a pseudorandom bit pattern to the entire 136.8 ms epoch. In addition, a 1.2 ms epoch is appended at the start of each TDM frame to insert a master frame preamble (MFP) of 96 symbols and a TSCC of 2112 symbols, as indicated at


168


and


170


, respectively. The sum of the 2622 time slots, each carrying 96 symbols, and the symbols for the MFP and TSCC is 253,920 symbols per TDM frame, resulting in a downlink symbol rate of 1.84 Msym/s.




The routing of the PRC symbols between the outputs of the six D/Ds


148


A,


148


B,


148


C,


148


D,


148


E and


148


F and the inputs to the TDM frame assemblers


160


,


162


and


164


is controlled by an on-board switching sequence unit


172


which stores instructions sent to it over a command link from the SCC


238


(

FIG. 12

) from the ground. Each symbol originating from a selected uplink PRC symbol stream can be routed to a time slot in a TDM frame to be transmitted to a desired destination beam


27


. The method of routing is independent of the relationships between the time of occurrence of symbols in various uplink PRCs and the occurrence of symbols in the downlink TDM streams. This reduces the complexity of the satellite


25


payload. Further, a symbol originating from a selected uplink PRC can be routed to two or three destination beams via the switch


158


.




Radio Receiver Operation




A radio receiver


29


for use in the system


10


will now be described with reference to FIG.


9


. The radio receiver


29


comprises an radio frequency (RF) section


176


having an antenna


178


for L-band electromagnetic wave reception, and prefiltering to select the operating band of the receiver (e.g., 1452 to 1492 MHz). The RF section


176


further comprises a low noise amplifier


180


which is capable of amplifying the receive signal with minimum self-introduced noise and of withstanding interference signals that may come from another service sharing the operating band of the receiver


29


. A mixer


182


is provided to down-convert the received spectrum to an intermediate frequency (IF). A high performance IF filter


184


selects the desired TDM carrier bandwidth from the output of the mixer


182


and a local oscillator synthesizer


186


, which generates the mixing input frequencies needed to down-convert the desired signal to the center of the IF filter. The TDM carriers are located on center frequencies spaced on a grid having 460 kHz separations. The bandwidth of the IF filter


184


is approximately 2.5 MHz. The separation between carriers is preferably at least seven or eight spaces or approximately 3.3 MHz. The RF section


176


is designed to select the desired TDM carrier bandwidth with a minimum of internally-generated interference and distortion and to reject unwanted carriers that can occur in the operating band from 152 to 192 MHz. In most areas of the world, the levels of unwanted signals are nominal, and typically the ratios of unwanted signals to desired signals of 30 to 40 dB provides sufficient protection. In some areas, operations near high power transmitters (e.g., in the vicinity of terrestrial microwave transmitters for public switched telephone networks or other broadcast audio services) requires a front end design capable of better protection ratios. The desired TDM carrier bandwidth retrieved from the downlink signal using the RF section


176


is provided to an A/D converter


188


and then to a QPSK demodulator


190


. The QPSK demodulator


190


is designed to recover the TDM bit stream transmitted from satellite


25


, that is, via the on-board processor payload


121


or the on-board transparent payload


133


, on a selected carrier frequency.




The QPSK demodulator


190


is preferably implemented by first converting the IF signal from the RF section


176


into a digital representation using the A/D converter


188


, and then implementing the QPSK using a known digital processing method. Demodulation preferably uses symbol timing and carrier frequency recover and decision circuits which sample and decode the symbols of the QPSK modulated signal into the baseband TDM bit stream.




The A/D converter


188


and QPSK demodulator


190


are preferably provided on a channel recovery chip


187


for recovering the broadcast channel digital baseband signal from the IF signals recovered by the RF/IF circuit board


176


. The channel recovery circuit


187


comprises a TDM synchronizer and predictor module


192


, a TDM demultiplexer


194


, a PRC synchronizer alignment and multiplexer


196


, the operations of which will be described in further detail in connection with FIG.


10


. The TDM bit stream at the output of the QPSK demodulator


190


is provided to a MFP synchronization correlator


200


in the TDM synchronizer and predictor module


192


. The correlator


200


compares the bits of the received stream to a stored pattern. When no signal has previously been present at the receiver, the correlator


200


first enters a search mode in which it searches for the desired MFP correlation pattern without any time gating or aperture limitation applied to its output. When the correlator discovers a correlation event, it enters a mode wherein a gate opens at a time interval in which a next correlation event is anticipated. If a correlation event occurs again within the predicted time gate epoch, the time gating process is repeated. If correlation occurs for five consecutive time frames, for example, synchronization is declared to have been determined in accordance with the software. The synchronization threshold, however, can be changed. If correlation has not occurred for the minimum number of consecutive time frames to reach the synchronization threshold, the correlator continues to search for the correlation pattern.




Assuming that synchronization has occurred, the correlator enters a synchronization mode in which it adjusts its parameters to maximize probability of continued synchronization lock. If correlation is lost, the correlator enters a special predictor mode in which it continues to retain synchronization by prediction of the arrival of the next correlation event. For short signal dropouts (e.g., for as many as ten seconds), the correlator can maintain sufficiently accurate synchronization to achieve virtually instantaneous recovery when the signal returns. Such rapid recovery is advantageous because it is important for mobile reception conditions. If, after a specified period, correlation is not reestablished, the correlator


200


returns to the search mode. Upon synchronization to the MFP of the TDM frame, the TSCC can be recovered by the TDM demultiplexer


194


(block


202


in FIG.


10


). The TSCC contains information identifying the program providers carried in the TDM frame and in which locations of the 96 PRCs each program provider's channel can be found. Before any PRCs can be demultiplexed from the TDM frame, the portion of the TDM frame carrying the PRC symbols is preferably descrambled. This is done by adding the same scrambling pattern at the receiver


29


that was added to the PRC portion of the TDM frame bit stream on-board the satellite


25


. This scrambling pattern is synchronized by the TDM frame MFP.




The symbols of the PRCs are not grouped contiguously in the TDM frame, but are spread over the frame. There are 2622 sets of symbols contained in the PRC portion of the TDM frame. In each set, there is one symbol for each PRC in a position which is numbered in ascending order from 1 to 96. Thus, all symbols belonging to PRC


1


are in the first position of all 2622 sets. Symbols belonging to PRC


2


are in the second position of all 2622 sets, and so on, as shown in block


204


. This arrangement for numbering and locating the symbols of the PRCs in the TDM frame, in accordance with the present invention, minimizes the size of the memory for performing the switching and routing on-board the satellite and for demultiplexing in the receiver. As shown in

FIG. 9

, the TSCC is recovered from the TDM demultiplexer


194


and provided to the controller


220


at the receiver


29


to recover the n PRCs for a particular broadcast channel. The symbols of the n PRCs associated with that broadcast channel are extracted from the unscrambled TDM frame time slot locations identified in the TSCC. This association is performed by a controller contained in the radio and is indicated generally at


205


in FIG.


10


. The controller


220


accepts a broadcast selection identified by the radio operator, combines this selection with the PRC information contained in the TSCC, and extracts and reorders the symbols of the PRCs from the TDM frame to restore the n PRCs.




With reference to blocks


196


and


206


, respectively, in

FIGS. 9 and 10

, the symbols of each of the n PRCs (e.g., as indicated at


207


) associated with a broadcast channel (e.g., as indicated at


209


) selected by the radio operator are remultiplexed into an FEC-coded broadcast channel (BC) format. Before the remultiplexing is accomplished, the n PRCs of a broadcast channel are realigned. Realignment is useful because reclocking of symbol timing encountered in multiplexing, demultiplexing and on-board rate alignment in passage over the end-to-end link in system


10


can introduce a shift of as many as four symbols in the relative alignment of the recovered PRC frames. Each of the n PRCs of a broadcast channel has a 48 symbol preamble, followed by 8160 coded PRC symbols. To recombine these n PRCs into the broadcast channel, synchronization is performed to the 47, 48 or 49 symbol header of each of the PRCs. The length of the header depends on the timing alignment performed on the uplink PRCs on the satellite


25


. Synchronization is accomplished using a preamble correlator operating on the 47 most recently received symbols of the PRC header for each of the n PRCs. The preamble correlator detects incidents of correlation and emits a single symbol duration correlation spike. Based on the relative time of occurrence of the correlation spikes for the n PRCs associated with the broadcast channel, and operating in conjunction with alignment buffers having a width of four symbols, the symbol content of the n PRCs can be precisely aligned and remultiplexed to recover the FEC-coded broadcast channel. Remultiplexing of the n PRCs to reform the FEC-coded broadcast channel preferably requires that the symbol spreading procedure used at the broadcast station


23


for demultiplexing the FEC-coded broadcast channel into the PRCs be performed in the reverse order, as indicated in blocks


206


and


208


of FIG.


10


.





FIG. 11

illustrates how a broadcast channel, comprising four PRCs, for example, is recovered at the receiver (block


196


in FIG.


9


). At the left, four demodulated PRCs are shown arriving. Due to reclocking variations, and different time delays encountered from the broadcast station through the satellite to the radio, up to four symbols of relative offset can occur among the n PRCs constituting a broadcast channel. The first step in recovery is to realign the symbol content of these PRCs. This is done by a set of FIFO buffers each having a length equal to the range of variation. Each PRC has its own buffer


222


. Each PRC is first supplied to a PRC header correlator


226


that determines the instant of arrival. The arrival instants are shown by a correlation spike


224


for each of the four PRCs in the illustration. Writing (W) starts into each buffer


222


immediately following the instant of correlation and continues thereafter until the end of the frame. To align the symbols to the PRCs, reading (R) from all of the buffers


222


starts at the instant of the last correlation event. This causes the symbols of all PRCs to be synchronously read out in parallel at the buffer


222


outputs (block


206


). The realigned symbols


228


are next multiplexed via a multiplexer


230


into a single serial stream that is the recovered coded broadcast channel


232


(block


208


). Due to on-board clock


152


rate alignment, the length of the PRC header may be 47, 48 or 49 symbols long. This variation is eliminated in the correlator


226


by using only the last 47 symbols to arrive to detect the correlation event. These 47 symbols are specially selected to yield optimum correlation detection.




With reference to block


198


and


210


of

FIGS. 9 and 10

respectively, the FEC-coded broadcast channel is subsequently provided to the FEC processing module


210


. Most of the errors encountered in transmission between the location of the coders and the decoders is corrected by FEC processing. FEC processing preferably employs a Viterbi Trellis Decoder, followed by deinterleaving and then a Reed Solomon decoder. FEC processing recovers the original broadcast channel comprising n×16 kbps channel increments and its n×224 bit SCH (block


212


).




The n×16 kbps segment of the broadcast channel is provided to a decoder such as MPEG 2.5 Layer 3 source decoder


214


for conversion back to audio signals. Thus, receiver processing is available using a low cost radio for broadcast channel reception from satellites. Since the transmissions of the broadcast programs via satellites


25


is digital, a number of other services are supported by the system


10


which are also expressed in digital format. As stated previously, the SCH contained in the broadcast channels provides a control channel for a wide variety of future service options. Thus, chip sets can be produced to implement these service options by making the entire TDM bit stream and its raw demodulated format, the demultiplexed TSCC information bits, and the recovered error corrected broadcast channel available. Radio receivers


29


can also be provided with an identification code for uniquely addressing each radio. The code can be accessed by means of bits carried in a channel of the SCH of the broadcast channel. For mobile operation using the radio receiver


29


in accordance with the present invention, the radio is configured to predict and recover substantially instantaneously the locations of MFP correlation spikes to an accuracy of ¼th symbol for intervals of as many as ten seconds. A symbol timing local oscillator having a short time accuracy of better than one part per 100,000,000 is preferably installed in the radio receiver, particularly for a hand-held radio


29




b.






System for Managing Satellite and Broadcast Stations




As stated previously, the system


10


can comprise one or a plurality of satellites


25


.





FIG. 12

depicts three satellites


25




a,




25




b


and


25




c


for illustrative purposes. A system


10


having several satellites preferably comprises a plurality of TCR stations


24




a,




24




b,




24




c,




24




d


and


24




e


located such that each satellite


25




a,




25




b


and


25




c


is in line of sight of two TCR stations. The TCR stations referred to generally with reference numeral


24


are controlled by a regional broadcast control facility (RBCF)


238




a,




238




b


or


238




c.


Each RBCF


238




a,




238




b


and


238




c


comprises a satellite control center (SCC)


236




a,




236




b


and


236




c,


a mission control center (MCC)


240




a,




240




b


and


240




c,


and a broadcast control center (BCC)


244




a,




244




b


and


244




c,


respectively. Each SCC controls the satellite bus and the communications payload and is where a space segment command and control computer and manpower resources are located. The facility is preferably manned 24 hours a day by a number of technicians trained in in-orbit satellite command and control. The SCCs


236




a,




236




b


and


236




c


monitor the on-board components and essentially operate the corresponding satellite


25




a,




25




b


and


25




c.


Each TCR station


24


is preferably connected directly to a corresponding SCC


236




a,




236




b


or


236




c


by full-time, dual redundant PSTN circuits.




In each of the regions serviced by the satellites


25




a,




25




b


and


25




c,


the corresponding RBCF


238




a,




238




b


and


238




c


reserves broadcast channels for audio, data, video image services, assigns space segment channel routing via the mission control center (MCC)


240




a,




240




b,




240




c,


validates the delivery of the service, which is information required to bill a broadcast service provider, and bills the service provider.




Each MCC is configured to program the assignment of the space segment channels comprising uplink PRC frequency and downlink PRC TDM slot assignments. Each MCC performs both dynamic and static control. Dynamic control involves controlling time windows for assignments, that is, assigning space segment usage on a monthly, weekly and daily basis. Static control involves space segment assignments that do not vary on a monthly, weekly and daily basis. A sales office, which has personnel for selling space segment capacity at the corresponding RBCF, provides the MCC with data indicating available capacity and instructions to seize capacity that has been sold. The MCC generates an overall plan for occupying the time and frequency space of the system


10


. The plan is then converted into instructions for the on-board routing switch


172


and is sent to the SCC for transmission to the satellite. The plan can be updated and transmitted to the satellite preferably once every 12 hours. The MCC


240




a,




240




b


and


240




c


also monitors the satellite TDM signals received by corresponding channel system monitor equipment (CSME)


242




a,




242




b


and


242




c.


CSME stations verify that broadcast stations


23


are delivering broadcast channels within specifications.




Each BCC


244




a,




244




b


and


244




c


monitors the broadcast earth stations


23


in its region for proper operation within selected frequency, power and antenna pointing tolerances. The BCCs can also connect with corresponding broadcast stations to command malfunctioning stations off-the-air. A central facility


246


is preferably provided for technical support services and back-up operations for each of the SCCs.




Signaling Protocol




In accordance with a preferred embodiment of the present invention, information to be broadcast to the radio receivers


29


is formatted into a waveform in accordance with a signaling protocol which presents many advantages over existing broadcast systems. The processing of information for broadcast transmission and reception is summarized in

FIG. 13

which illustrates a broadcast segment


250


, a space segment


252


and a radio segment


254


of a satellite direct radio broadcast system


10


constructed in accordance with a preferred embodiment of the present invention. Both the service layer and the transport layer of the system


10


is described below.




With regard to the broadcast segment


250


, a number of steps in the formatting procedure are similar to those described previously herein. For example, the demultiplexing (block


256


) of encoded and interleaved broadcast channel bit streams and the addition of prime rate channel preambles (block


258


) to generate the prime rate channels, which are transmitted via frequency division multiplex uplinks to a satellite


25


, is similar to the process described above in connection with

FIGS. 3 and 4

. The process of generating a bit stream from different service components (e.g., service components


260


and


262


) by adding a service control header (SCH)


264


, scrambling the bit stream


266


, and encoding the bit stream for forward error correction (FEC) (block


268


), however, will now be described in connection with

FIGS. 13

,


14


and


15


which illustrate a preferred embodiment of the present invention. Encryption (block


265


) will also be discussed in connection with the SCH and Table 1.




In accordance with the present invention, a broadcast service can include, but is not limited to, audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols. A service can be composed of several service components, illustrated by service components


260


and


262


in

FIG. 13

, which are delivered by a service provider. For example, a first service component can be audio, while a second service component can be text for display on a screen at the radio receivers or image data relating to the audio broadcast. In addition, a service can consist of a single service component or more than two service components. The service


261


is combined with a SCH


264


to create a service layer for the broadcast segment. The allocation of service components (e.g., service components


260


and


262


) within the service


261


is dynamically controlled by the SCH in accordance with the present invention. As described above in connection with

FIG. 4

, a broadcast channel bit stream preferably has a frame period of 432 milliseconds. The SCH


102


in

FIG. 4

has n×224 bits, and the service


104


comprises n×6912 bits, for a total of n×7136 bits per frame


100


. The numeral n is the overall bit rate of the service divided by 16,000 bits per second (bps).




As stated previously, service components of a service


261


can carry audio service or digital service. The service component bit rate is preferably divisible in multiples of 8000 bps and is between 8000 bps and 128,000 bps. When the sum of the bit rates of all of the service components in the service


261


is lower than the bit rate of the service


261


, the remaining bit rate is filled with a padding service component. Thus, the padding service component bit rate is







n
×
16
,
000

-




i
=
1


N
sc









n


(
i
)


×
8000





in





bps












where i is the i


th


service component of a service including N


sc


service components with 1≧=i≧=N


sc


, n(i) is the bit rate of the i


th


service component divided by 8000 bps and n is the service bit rate divided by 16,000 bps.




With reference to

FIG. 14

, the service components and the padding service component, if any, are preferably multiplexed within the 432 millisecond period of the frame


100


. The 432 millisecond frame period comprising the service


261


is preferably divided into 432 data fields. Each field


270


is provided with preferably 8 bits from each of the service components n(


1


), n(


2


) . . . n(N


sc


) and any padding service component n(p), thereby multiplexing N


sc


service components and the padding service component, if any, which compose the service


261


. Thus, the bits of each service component are spread across the entire frame. Interleaving of service components within each broadcast frame is advantageous when burst errors occur. Only a small amount of an interleaved component is lost as the result of a burst error, as compared with the loss of a larger portion of a service component that has been merely time division multiplexed within a broadcast channel frame and not interleaved.




Audio service components are preferably digital audio signals compressed in accordance with the Motion Pictures Expert Group (MPEG) algorithms, such as MPEG 1, MPEG 2, MPEG 2.5, MPEG 2.5 layer 3, as well as extensions for low sampling frequencies. MPEG 2.5, layer 3 encoding is particularly useful for providing good quality audio at 16 and 32 Kbps. Layer 3 coding adds more spectrum resolution and entropy coding. The digital audio signals preferably have a bit rate multiple of 8000 bps and can be between 8000 and 128,000 bps. Possible sampling frequencies for audio service components of the present invention are 48 kHz or 32 kHz as defined by MPEG 1, 24 kHz or 16 kHz as defined by MPEG 2, or 12 kHz and 8 kHz as defined by MPEG 2.5. The sampling frequencies are preferably synchronized to the service component bit rate. The framing of the MPEG encoder is synchronized to the SCH. Thus, the first bit of the audio service component within the broadcast channel frame


100


is the first bit of the MPEG frame header.




Digital service components include other types of services which are not audio services, such as image, audio services which do not comply with the characteristics described above in connection with audio service components subjected to MPEG encoding, paging, file transfer data, among other digital data. Digital service components have bit rates of multiple of 8000 bps and can be between 8000 and 128,000 bps. Digital service components are formatted such that it is possible to access the service


261


using data fields defined in the SCH. The SCH data fields are described below in connection with Table 1.




The SCH comprises four types of field groups, that is, a Service Preamble, Service Control Data, Service Component Control Data and Auxiliary Services. In accordance with the present invention, the content of the SCH comprises data as shown in Table 1.












TABLE 1











SERVICE CONTROL HEADER
















Length







Field Group




Field Name




(bit)




Contents









Service




Service Preamble




20




0474B(hex)






Preamble






Service




Bit Rate Index




 4




Service bit rate divided






Control




(BRI)





by kbps






Data




(BRI = n)





0000: no valid data









0001: 16 kbps









...









1000: 128 kbps









1001-1111; Reserved for









Future Use (RFU)






Service




Encryption Control




 4




0000: no encryption






Control






0001: static key






Data






0010: ES1, common key,









subscription period A









(UC set A shall be used)









0011: ES1, common key,









subscription period B









(UC set B shall be used)









0100: ES1, broadcast









channel specific key for









subscription period A









(UC set A shall be used)









0101: ES1, broadcast









channel specific key for









subscription period B









(UC set B shall be used)









else: RFU






Service




Auxiliary Field




 5




00(hex): not used or






Control




Content Indicator 1





not known






Data




(ACI1)





01(hex): 16 bit









encryption key selector









02(hex): RDS PI code









03(hex): Associated









Broadcast









Channel reference (PS









Flag and ASP)









04(hex) to 1F(hex): RFU






Service




Auxiliary Field




 7




00(hex): not used or






Control




Content Indicator 2





not known






Data




(ACI2)





01(hex): 64 bit









encryption key selector









02(hex): service label;









ISO-Latin 1 based









sequence









03(hex) to 7F(hex): RFU






Service




Number of Service




 3




000: One Service






Control




Components (N


sc


)





Component






Data






001: Two Service









Components









...









111: Eight Service









Components






Service




Auxiliary Data Field




16




Data field, with content






Control




1 (ADF1)





defined by ACI1






Data






Service




ADF2 multiframe




 1




1: first segment of the






Control




Start Flag (SF)





multiframe, or no






Data






multiframe









0: intermediate segment









of the multiframe






Service




ADF2 Segment




 4




If SF = 1 (first segment);






Control




Offset and Length





SOLF contains the total






Data




Field (SOLF)





number of segments of









the multiframe minus 1.









0000: one segment









multiframe (or no









multiframe)









0001: two segments









multiframe









...









1111: 16 segments









multiframe









If SF = 0 (intermediate









segment); SOLF contains









the segment offset. SOLF









values are 1,2 ..., total









number of segments of









the multiframe-1.






Service




Auxiliary Data Field




64




Data field, contents






Control




2 (ADF2)





defined by ACI2






Data






Service




Service Component




N


sc


*32




Each service component






Component




Control Field





has a SCCF; see Table 3






Control Data




(SCCF)





for SCCF content






Auxiliary




Dynamic labels




variable: n




Byte stream






Service





*224-128








−N


sc


*32














The Service Preamble is preferably 20 bits long and is selected to have good synchronization qualities during, for example, implementation of auto-correlation techniques. As shown in Table 1, the Service Preamble is preferably 0474B hexadecimal. The SCH also comprises a bit rate index (BR), which is preferably 4 bits in length and indicates the service bit rate divided by kilobits per second. For example, “000” can be used to indicate that no valid data (e.g., padding data that is to be ignored) is being transmitted in the current frame. A “0001” can be used to indicate a BRI of 16 kbps, whereas “100(B)” can indicate a BRI of 128 kbps. Accordingly, the BRI indicates the number of 16,000 bit per second components which compose a broadcast channel frame


100


. The SCH preferably also comprises a field for encryption control. For example, one 4-bit value can be used to indicate that no encryption was used on the digital information in the service


104


part of the current frame


100


corresponding to the SCH


102


. Other 4-bit binary values can be used to indicate when a particular type of key has been used to encrypt broadcast channel data Common keys can be employed for encryption, as well as specific keys for encrypting a particular broadcast channel.




In accordance with an aspect of the present invention, the SCH


264


can be provided with an auxiliary data field (ADF


1


) and an auxiliary field contents indicator (ACI


1


) to allow a service provider to control specific functionalities associated with its service


261


. The ADF


1


and ACI


1


can change from broadcast frame


100


to broadcast frame


100


at the service provider's discretion. The ACI


1


contents are preferably an encryption key selector, a standardized radio data system or RDS code (e.g., a RDS PI code) and data for referencing associated broadcast channels.




For encryption applications, two different keys can be employed, that is, a key having a length of 16 bits for minor security and another key having a length of 64 bits for higher security. Depending on which key is indicated in the ACI


1


, the actual 16-bit key is transported in the ADF


1


field, while the actual 64-bit key is transported in another auxiliary data field described below and referred to as “ADF


2


”. Use of the 16-bit key or the 64-bit key is selected by the service provider. It is possible to change the key's bit length from broadcast channel frame


100


to broadcast channel frame


100


, as desired by the service provider. The key selector in the ACI


1


field can be, for example, an over-the-air code of a decryption key consisting of three parts: a user code for individualizing the user of the service, a hardware code for uniquely identifying the radio and an over-the-air code or key selector (KS). Decryption of an encrypted service is therefore only possible when all three co-parts are used together. The radio data system code (e.g., RDS PI code) is currently used for frequency modulation or FM broadcasting. To prepare for simulcast of a program over FM airway frequencies, the RDS PI code is provided in the ADF


1


field by the service provider.




In accordance with an aspect of the present invention, a service


261


in a broadcast channel can be designated as a primary service of a multi-broadcast channel service. Accordingly, the effective bandwidth of a service


261


can be expanded by using the bandwidth of secondary services associated with the primary service. Together with the primary service, other broadcast channels carry the associated secondary services which can generally be received only by properly equipped radio receivers


29


(i.e., receivers equipped with more than one channel recovery device). The ADF


1


field is provided with information to distinguish between primary and secondary services. This data preferably comprises a primary/secondary flag or PS flag and an Associated Service Pointer (ASP) field. The PS flag is preferably set to a 1(B) when the service


261


in the frame


100


belongs to a primary service, and is set to a 0(B) when the service


261


is not a primary service. In other words, the primary service is carried in the frames of another broadcast channel. The PS flag values and the ASP are indicated in Table 2.












TABLE 2











AUXILIARY DATA FIELD 1













Assignment




Length (bit)




Contents









Not Used




4




0000






Primary/Secondary Flag (PS




1




1: primary component






Flag)





0: Not primary






Associated Service Pointer




11




000(hex): No link to






(ASP)





other service








else: Broadcast Channel








Identifier of associated








service (Refer to Time








Slot Control Channel)














Thus, the PS flag in the ADF


1


of a SCH can be 0(B) if the service


261


is the component of a secondary service, or there are currently no primary and secondary services being transmitted. When a broadcast channel comprises a primary service, the ASP in the ADF


1


field of the SCH of the frames


100


in the broadcast channel is provided with a broadcast channel identifier (BCID) of a secondary service. The BCID is described in further detail below. The ASP field in the ADF


1


field of the SCH comprising the secondary service is provided with the BCID of the next secondary service, if more than two secondary services are associated with the primary service. The ASP is otherwise provided with the BCID of the primary service Further, the PS flag in the ADF


1


field of the SCHs of the frames


100


of other broadcast channels which comprise components of the secondary services is set to 0(B). The primary and secondary channels can be received by radio receivers


29


which are equipped with more than one channel recovery device. For example, these radio receivers can playback an audio program received on a first channel and a related video program received on another channel




In accordance with another aspect of the present invention, another auxiliary data field referred to hereinafter as ADF


2


and an auxiliary field content indicator for the ADF


2


, hereinafter referred to as the ACI


2


, is provided in the SCH


102


in each frame


100


of a single broadcast channel to transmit multiframe information in the ADF


2


in other broadcast channel frames


100


. The segments comprising the multiframe information need not be in continuous broadcast channel frames. The ACI


2


comprises bits to indicate which of a number of 64 bit encryption keys is provided in the ADF


2


, as described above. The ACI


2


can also be provided with a service label, such as an International Standards Organization label (e.g., as an ISO-Latin 1-Based Sequence). The ADF


2


comprises a start flag (SF) and a Segment Offset and Length Field (SOLF), as indicated in Table 1. The SF is preferably 1 bit and is set to a first value such as “1” if the ADF


2


comprises the first segment of a multiframe sequence. The ADF


2


SF is set to “0”, for example, to indicate that the contents of the ADF


2


is an intermediate segment of a multiframe sequence. The SOLF is preferably 4 bits in length to indicate which of a total number of multiframe segments is presently provided in the ADF


2


field. The SOLF can serve as an up-counter to indicate which of the total number of multiframe segments is currently being transmitted in the ADF


2


. The second auxiliary data field ADF


2


is useful, for example, to transmit text messages along with the radio broadcast. The text messages can be displayed on a display device at the radio receivers


29


.




With continued reference to Table 1, the service control header is also provided with information to control the reception of the individual service components within a broadcast channel frame at the radio receivers


29


. The SCH is provided with a Number of Service Components (N


sc


) field to indicate the number of service components (e.g., service components


260


and


262


in

FIG. 13

) which constitute the service portion


104


(

FIG. 4

) of a bit stream frame


100


generated at a broadcast station


23


. The number of service components N


SC


is preferably represented in the SCH using 3 bits. Accordingly, in accordance with the preferred embodiment, a frame can have as many as eight service components. The padding bits, that is, the padding service component is preferably not included in the N


SC


parameter in the SCH. The SCH is further provided with a Service Component Control Field, hereinafter referred to as the SCCF, which comprises data for each component in the SCH. The SCCF is preferably N


SC


×32 bits in length for each SCH. As stated above in connection with

FIG. 14

, each broadcast channel frame


100


can comprise two or more service components which are multiplexed in each of a plurality of data fields


270


. With reference to Table 3, the SCCF comprises data for each service component in the SCH to facilitate the demultiplexing of the service components by the radio receivers


29


. In other words, the SCH comprises a SCCF for each service component. In accordance with the present embodiment, the SCCF is the only part of the SCH that is specific to each service component.












TABLE 3











SERVICE COMPONENT CONTROL FIELD













Field name




Length (bit)




Contents









SC length




4




Bit rate of the service component








divided by 8 kbps:








0000: 8 kbps








0001: 16 kbps








...








1111: 128 kbps






SC type




4




Type of service component:








0000: MPEG coded audio








0001: general data (no specified format)








0100: JPEG coded picture (TBC)








0101: low bit rate video (H.263)








1111: invalid data








else: RFU






Encryption flag




1




0: Not encrypted service component.








1: encrypted service component.








Note: If Encryption Control = 0, the








encryption flag shall be ignored






Program type




15




Type of music, speech, etc.






Language




8




Service component language














As shown in Table 3, each SCCF comprises a 4-bit service component or SC length field to indicate the bit rate of the service component divided by 8000 bps. For example, “0000(B)” can represent a SC length of 1×8000 bps, while “1111(B)” can represent a SC length of 16×8000 bps or 128,000 bps. The SC length field is important for demultiplexing at the radio receivers


29


since, without knowledge of the service component rate, the radio receivers


29


have no other means besides the size of the data fields


270


(

FIG. 14

) for determining where service components are located throughout a frame


100


. Another field provided in each 32-bit SCCF is the SC Type field which is also preferably 4 bits in length. The SC Type field identifies the type of service component. For example, a “0001(B)” can represent a service component in the service portion


104


of a frame


100


which is MPEG-coded audio. Other binary numbers can be used in the SC Type field to indicate a service component as being a JPEG-coded picture, low bit rate video (e.g., CCITT H.263 standard video), invalid data (i.e., data that should be ignored by the receivers


29


) or other type of audio or data service. A 1-bit encryption flag is provided in the SCCF to indicate whether or not a particular service component has been encrypted. The SCCF for each service component is also provided with a Program Type field comprising bits for identifying the type of program to which the service component belongs, and a Language field comprising bits to specify the language in which the program was produced. Program type can include, for example, music, speech, advertising for banned products and services, among others. Thus, countries which ban the use of alcohol can use the Program Type field to block the reception of alcohol-related advertisements transmitted by the broadcast stations


23


by programming receivers


29


to ignore broadcast data having a particular Program Type field code.




In accordance with the embodiment of the present invention described with reference to

FIGS. 13-15

and Tables 1-3, each broadcast channel from a broadcast station


23


can have more than one service component (e.g., components


260


and


262


). The waveform and signaling protocol of the present invention is advantageous for a number of reasons. First, the services


261


transmitted from different broadcast stations


23


need not be synchronized to the same single bit rate reference because each PRC is provided with a header which allows rate alignment on-board the satellite


25


. Thus, the broadcast stations


23


are less complicated and less expensive because they need not be equipped with the ability to synchronize to a single reference source. The bits of each of the service components are multiplexed, that is, interleaved across an entire frame


100


to spread the service components over the entire frame


100


. Thus, if a burst error occurs, for example, only a small portion of the service components are lost.




As stated previously, the SCH comprises four different types of field groups, three of which have been previously described. The auxiliary service-type field group comprises a dynamic label byte stream of variable length. The length of the dynamic label byte stream is preferably n×224−128−N


sc


×32. dynamic label byte stream is a serial byte stream used for transmitting auxiliary information. The dynamic labels can comprise text or radio screens and represent a general purpose serial byte stream. In other words, a dynamic label byte occurs over the entire broadcast channel, as opposed to being tuned to a particular service. For example, the dynamic label byte stream can transmit a menu of services for display on a screen at the radio receivers


29


. Thus, the dynamic label byte stream represents another method in accordance with the present invention to communicate with a radio receiver outside the service portion


104


of each broadcast from


100


, along with the auxiliary data fields ADF


1


and ADF


2


described above.





FIG. 15

provides a more detailed illustration of the components


261


,


254


,


265


and


266


provided in the service layer of the broadcast segment


250


depicted in FIG.


13


. As shown in

FIG. 15

, a broadcast channel consists of one or more service components indicated generally at


272


which are combined, as indicated at


274


. Selected service components can be encrypted, as indicated at


276


, before a SCH


278


is appended to the service information. As described in connection with Table 1, the SCH


278


comprises a service preamble


280


. The SCH


278


comprises service component control data


282


, including the SCH field indicating the number of service components within a frame and the service component control field or SCCF. Service control data


284


generally includes the SCH fields comprising the BRI and encryption control. Finally, the SCH


278


provides auxiliary services


286


which include the auxiliary data fields ADF


1


and ADF


2


and their associated fields ACI


1


and ACI


2


, respectively, as well as the start flag and SOLF corresponding to the data field ADF


2


. Auxiliary services


286


also comprises the dynamic label byte stream available in the SCH. The auxiliary services


286


provide means to communicate with radio receivers via several frames within a broadcast channel, as is the case with auxiliary data field ADF


2


, within the SCHs of two or more broadcast channels, as the case with the auxiliary data field ADF


1


, and across the entire broadcast channel, as is the case of the dynamic label byte streams. The service information and the appended SCH is subsequently scrambled, as indicated by


288


.




A pseudorandom sequence (PRS) generator or scrambler


290


, such as that shown in

FIG. 16

, is preferably used to randomize the data of a broadcast channel. The scrambler


290


is preferably used even when a service is encrypted. The scrambler produces a pseudorandom sequence that is bit-per-bit modulo 2 added to the broadcast channel frame sequence. The pseudorandom sequence preferably has a generated polynomical X


9


+X


5


+1. The pseudorandom sequence is initialized at each frame


100


with the value 111111111(binary) which is applied to the first bit of a frame


100


. Thus, the scrambler


290


generates a reproducible random bit stream which is added to the broadcast bit stream at the broadcast stations


23


in order to scramble or break-up strings of bits having a pattern of 1s or 0s which can cause demodulation at a radio receiver


29


to fail. The same reproducible random bit stream is added a second time at the radio receivers


29


to essentially subtract the bit stream from the received data.




With reference to

FIG. 13

, the transport layer of the radio segment


254


which is required to extract symbols from received TDM data streams, as indicated at


292


and


294


, and to recombine symbols into their respective broadcast channels, as indicated at


296


, is described above in connection with FIG.


10


. With regard to the service layer of the radio segment


254


(FIG.


13


), the service components from the service portion


104


of a frame


100


and the SCH


102


will now be described in connection with FIG.


17


.




The bit stream comprising multiple frames


100


is de-scrambled using a modulo 2 scrambler


290


as described above in connection with

FIG. 16

to subtract the pseudorandom sequence from the incoming bit stream, as indicated at


298


. The service control header


278


is then extracted prior to the decryption of those service components that were encrypted at the broadcast stations


23


, as indicated at


300


. As shown in both

FIGS. 15 and 17

, dynamic control is provided for each service, as indicated at blocks


273


and


275


in FIG.


15


and blocks


301


and


303


in

FIG. 17

, to allow a service provider to selectively control the content of the SCH


278


. In other words, a service provider can change encryption control information in the SCH on a frame-by-frame basis, or even on a service component-to-service component basis. Similarly, a service provider can change the contents of the auxiliary data fields ADF


1


and ADF


2


and their corresponding associated fields (i.e., ACI


1


for the ADF


1


, and ACI


2


, SF and SOLF for the ADF


2


). As stated previously, the association of a primary broadcast service with one or more secondary broadcast services can be changed dynamically, as can the transmission of multiframe sequences of information using the field ADF


2


, in addition to encryption control.




The transport layer of the broadcast segment


256


, as opposed to the service layer described above in connection with

FIG. 15

, will now be discussed in connection with FIG.


18


. The transport layer of the broadcast segment


250


preferably comprises an outer transport layer


306


, a communications lines transport layer


308


and an inner transport layer


310


. The outer transport layer


306


can be located remotely with respect to the inner transport layer


310


. The communications lines transport layer


308


includes all functionalities necessary for transmission over communication lines. Within the transport layer, a broadcast channel is preferably encoded for forward error correction (FEC) using concatenated Reed-Solomon encoding and interleaving, as indicated generally at


312


and


314


, prior to being demultiplexed into primary channels having a service rate equivalent to 16 kilobits per second. Accordingly, the FEC-encoded broadcast channel is transmitted as a protected broadcast channel between the outer transport layer


306


and the inner transport layer


310


, as shown in FIG.


18


.





FIG. 19

illustrates the bit stream processed by the outer transport layer


306


, as well as the bit stream processed by the inner transport layer


310


. The broadcast channel


316


and the prime rate channels


318


are preferably derived from the same clock reference. Further Reed-Solomon encoding and interleaving are preferably synchronized with the SCH. The prime rate channels of a broadcast channel are preferably time synchronized such that the location of the service preamble described above in connection with Table 1 is referred to as the prime rate channel preamble, as illustrated in FIG.


4


.




The Reed-Solomon (


255


,


223


) encoding


312


performed at the broadcast stations


23


(e.g.,


80




a


in

FIG. 3

) is preferably performed in terms of 8 bit symbols and used as the outer code of the concatenated coding process.




The code generator polynomial is preferably:







g


(
x
)


=




j
=
0

31







(

x
-

α
i


)












where α is a root of F(x)=x


8


+x


4


+x


3


+x


2


+1.




Coding is performed using the basis {1, α


1


, α


2


, α


3


, α


4


, α


5


, α


6


, α


7


}.




Each symbol is interpreted as:




[u


7


, u


6


, u


5


, u


4


, u


3


, u


2


, u


1


, u


0


], u


7


being the most significant bit (MSB), where the u


1


are the coefficients of α


1


, respectively:






u


7





7


+u


6





6


+u


5





5


+u


4





4


+u


3





3


+u


2





2


+u


1


*α+u


0








The code is systematic, that is, the first 223 symbols are the information symbols. Prior to encoding, the first symbol in time is associated to x


222


and the last symbol to x


0


. The 32 last symbols are the redundancy symbols. Following encoding, the first symbol in time is associated with x


31


and the last symbol to x


0


.




A block Interleaver, with a depth of preferably 4 Reed-Solomon (RS) blocks, is used as the Interleaver


314


in the concatenated coding process. RS coding


314


and interleaving


314


are preferably as follows:




Assuming that Sy(m) is the m-th 8 bit symbol among 892 symbols 320 to be RS encoded, as shown in

FIG. 20

, the RS encoding is performed on the following 4 sets of 223 symbols, as indicated at


322


in FIG.


20


.




Set 1: Sy(1), Sy(5), Sy(9), . . . , Sy(1+4*m), . . . , Sy(889); m from 0 to 222




Set 2: Sy(2), Sy(6), Sy(10), . . . , Sy(2+4*m), . . . , Sy(890); m from 0 to 222




Set 3: Sy(3), Sy(7), Sy(11), . . . , Sy(3+4*m), . . . , Sy(891); m from 0 to 222




Set 4: Sy(4), Sy(8), Sy(12), . . . , Sy(4+4*m), . . . , Sy(892); m from 0 to 222




Each set is increased by the following 32 symbols (8 bit) of redundancy data, as indicated at


324


,


326


,


328


and


330


in FIG.


20


.




Set 1: R(1), R(2), R(3), . . . , R(32)




Set 2: R(33), R(34), R(35), . . . , R(64)




Set 3: R(65), R(66), R(67), . . . , R(96)




Set 4: R(97), R(98), R(99), . . . , R(128)




Accordingly, the output symbol stream


332


has the following content, as shown in

FIG. 20

, Sy(1), Sy(2), Sy(3), . . . , Sy(892), R(1), R(33), R(65), R(97), R(2), R(34), R(66), . . . , R(j+32), R(j+64), R(j+96), . . . , R(32), R(64), R(96), R(128), with j from 1 to 32. Thus, the protected broadcast channel frame receives 1024 bits per 7136-bit broadcast channel


316


due to Reed-Solomon redundancy, as indicated at


334


in FIG.


19


. The first bit of Sy(1) is preferably the first bit of the Service Preamble (Table I) of the broadcast channel.




With regard to the interleaving


314


performed in the outer transport layer


306


at the broadcast stations


23


, a Viterbi convolutional code (rate ½, k=7), as indicated in

FIG. 21

, is preferably used as the inner code of the concatenated coding process of the outer transport layer


306


. The generator polynomials are g


1


=1111001 binary (B) and g


2


=1011011 (B). Each block


336


in

FIG. 21

represents a single bit delay. Modulo 2 adders indicated at


338


and an inverter


340


are implemented such that the output of the encoder depicted in

FIG. 21

is preferably g


1


and g


2


. For every input bit, a symbol is preferably generated with the switch “Sw” in position 1 and then in position 2.




The Viterbi encoder


342


depicted in

FIG. 18

generates bit streams which are subsequently demultiplexed in the inner transport layer


310


. The demultiplexer


344


preferably divides encoded broadcast channels into prime rate channels, each of which has a bit rate of 38000 bps, as shown in FIG.


22


. With reference to

FIG. 19

, the protected broadcast channel frame comprises a total of n×8160 bits, that is, n×7136 bits for the broadcast channels and 1024 bits for Reed-Solomon redundancy, as indicated at


346


in FIG.


22


. For the purposes of demultiplexing, symbols S(1), S(2) and so on are two-bit symbols from the FEC-encoded broadcast channel. S(1) is preferably the first symbol to be inserted into the first prime rate channel, as indicated at


348


in FIG.


22


. Thus, demultiplexing causes the content of the i


th


prime rate channel to be






S(i), S(i+n), S(i+


2*n), . . . , S(i+p*n), . . . , S(i+8159*n),




with p from 0 to 8159, as indicated at


350


in FIG.


22


. The broadcast channels are preferably demultiplexed into n prime channels. The number of bits from the FEC-encoded broadcast channel provided in each prime rate channel is preferably 16,320 bits per frame period. The prime rate channels are then each provided with a prime rate channel preamble, as indicated at


352


in FIG.


18


. The prime rate channel preambles within a broadcast channel are all preferably time coincident. The prime rate channel preamble length is preferably 96 bits or 48 symbols, as described above in connection with FIG.


4


. The prime rate channel preamble value is preferably 14C181EAC649 (hexadecimal), with the most significant bit being the first transmitted bit. The prime rate channel preamble is preferably composed of the same time coincident 48 bit sequence on both the I and the Q components of the QPSK modulation


86


(FIG.


3


).




When a protected broadcast channel is not available, a dummy broadcast channel is preferably generated within the inner transport layer


310


. The dummy protected broadcast channel has the same bit rate and the same frame period as the broadcast channel it replaces. The dummy protected broadcast channel includes a pseudorandom sequence and a SCH limited to a service preamble, as described previously, and a BRI filled with 0s. The pseudorandom sequence is created using a generator such as the PRS generator


290


depicted in

FIG. 16

, as well as using the same generator polynomial described above.




As stated previously, the communications lines transport layer


308


is preferably transparent to the protected broadcast channel digital format. This layer


308


performs the connection between the inner and outer transport layers


310


and


306


, respectively, which can be located in separate sites. Accordingly, the communications lines transport layer


308


can include communications lines. The outer transport layer


306


is used to protect a signal from errors coming from the communications lines. If errors issued from the communications lines are numerous, a greater level of protection is possible. For example, the protected broadcast channel can be protected by another FEC code, or the received protected broadcast channel can be Reed-Solomon decoded and corrected, and then Reed-Solomon encoded prior to reaching the inner transport layer


310


.




As previously described, the system


10


of the present invention comprises a processed mission and a transparent mission. The transport layer of the broadcast segment


250


of the transparent mission preferably comprises the broadcast segment transport layer and the space segment transport layer of the processed mission. Much of the re-alignment of the broadcast signals (i.e., the rate alignment of frames on-board the satellite


25


), however, is not necessary in the transparent mission because all of the broadcast channels therein originate from a common hub. Thus, time differences between a plurality of broadcast stations


23


do not exist.




The transport layer of the space segment


252


depicted generally in

FIG. 13

will now be described. The space segment transport layer receives prime rate channels from the broadcast stations


23


, as indicated at


354


in FIG.


13


. The space segment transport layer, hereinafter referred to generally as


356


, is illustrated in FIG.


23


. As described above in connection with

FIG. 7

, prime rate channels are rate aligned prior to being routed into a selected downlink beam and multiplexed for time division multiplex downlink transmission. The rate alignment process is indicated generally at


356


in FIG.


23


. The switching and routing performed on-board the satellite and described above in connection with

FIG. 8

is indicated at


358


and the time division multiplexing at


360


. A time slot control channel


362


is inserted in the time division multiplexed or TDM bit stream at the space segment


252


level. The time slot control channel (TSCC) will be described in more detail below. The multiplex prime rate channels and the TSCC


362


are scrambled, as indicated at


364


, prior to having a master frame preamble appended thereto, as indicated at


366


, which is used for TDM synchronization at the radio receivers


29


. The TDM frame period is preferably 138 milliseconds, as shown in FIG.


24


. The master frame preamble is preferably 192 bits or 96 symbols in length. The time slot control channel preferably includes 4224 bits.




The symbol rate alignment process performed on-board the satellite


25


and described above in connection with

FIG. 7

will now be illustrated using FIG.


25


. Rate alignment occurs between independent uplink channels received from broadcast stations


23


to correct for time differences between the bit rate reference for the various broadcast stations


23


and the satellite TDM rate reference. The rate alignment process is advantageous because it eliminates the need to synchronize all broadcast stations


23


to a single bit rate reference. Thus, the broadcast stations can be operated using less complicated equipment and therefore at lower cost. As described above in connection with

FIG. 7

, the rate alignment process consists of adjusting the length of the prime rate channel preamble by adding a bit, withdrawing a bit, or performing neither the adding or withdrawing of a bit, at the beginning of a preamble. The PRC bit stream


368


depicts when no lag exists between the satellite bit rate reference and that of the broadcast station


23


transmitting the received prime rate bit channel or PRC bit stream. The PRC bit stream indicated at


370


illustrates the insertion of a 0 into a preamble, resulting in a 49 symbol preamble to correct for when the broadcast station bit rate reference lags behind that of the satellite by one symbol. When the satellite bit rate reference lags behind that of the broadcast station by one symbol, a 0 is removed from a 48 symbol PRC preamble, resulting in a 47-symbol preamble, as indicated at


372


.




With continued reference to

FIG. 23

, the TSCC


362


preferably comprises a TDM identifier


374


, and a time slot control word


376


for each of the time slots 1 through 96. The TSCC


362


is depicted in FIG.


26


. The TSCC multiplex


362


preferably comprises 223 symbols of 8 bits per symbol. The TDM identifier


374


and the time slot control word or TSCW


376


for each of the 96 time slots are preferably 16 bits long each. The TSCC multiplex


362


further comprises a set of 232 bits which constitute a round-off sequence


378


. The round-off sequence


378


comprises 0s for the odd bits and 1s for the even bits. The first bit that is transmitted is preferably the most significant bit and is also a 1. The time slot control word for each of the 96 time slots comprises fields, as indicated in Table 4.












TABLE 4











TIME SLOT CONTROL WORD














Field





Length







Group




Field name




(bit)




Contents









Broadcast




BCID type




2




00: Local BCID






Channel






01: Regional BCID






Identifier






11: Worldwide BCID






(BDIC)






10: Extension to Worldwide BCID







BCID number




9




000000000: Reserved for









unused channels









111111111: Reserved for









Test Channel











Last Prime




1




0: Not last Prime Rate Channel







Rate





of the Broadcast Channel







Channel





1: Last Prime Rate Channel of the







flag





Broadcast Channel











Format




2




00: WorldStar 1







identified





else: RFU











Broadcast




1




0: Public audience







Audience





1: Private audience











Reserved




1




RFU














Each broadcast channel is preferably identified by a unique broadcast channel identifier (BCID) which is composed of a BCID type and a BCID number. BCID types preferably include a local BCID, a regional BCID, a worldwide BCID, and an extension to worldwide BCID. A worldwide BCID indicates that the BCID for that particular broadcast channel is valid for any time division multiplexed bit stream in any geographic region. In other words, the BCID uniquely identifies that particular broadcast channel to radio receivers


29


located anywhere in the world and on any time division multiplex carrier on any downlink beam. As stated previously, each satellite


25


is preferably configured to transmit signals on three downlink beams, each of which has two differently polarized TDM carriers, as discussed below. A regional BCID is valid for a specific geographic region such that the same BCID can be used to uniquely identify another broadcast channel in another geographic region. A regional BCID is valid on any TDM downlink in that particular region. A local BCID is valid for only a particular TDM carrier in a particular region. Thus, the same BCID can be used on another beam within the same geographic region or in another region to identify other broadcast channels.




With continued reference to Table 5, the content of the TDM identifier


374


includes a region identifier and a TDM number. The region identifier uniquely identifies the region of a received TDM bit stream. For example, one region can be the geographic region serviced by the downlink of a first satellite which has coverage over much of the African continent. The region identifier can also uniquely identify regions serviced by satellites covering Asia and the Caribbean region, respectively. The TDM number field in the TDM identifier


374


defines a particular TDM bit stream. Odd TDM numbers are preferably used for left hand polarized (LHCP) TDMs and even TDM numbers for right hand polarized (RHCP) TDMs.












TABLE 5











TDM IDENTIFIER













Field name




Length (bit)




Contents









Region Identifier




4




0000: Reserved








0001: AfriStar








0010: AsiaStar








0100: CaribStar








else: RFU






TDM number




4




0000: Reserved








0001: TDM 1 (LHCP)








0010: TDM 2 (RHCP)








...








0110: TDM 6 (RHCP)








else: RFU








Note: Odd TDM numbers are used








for Left Hand polarized (LHCP)








TDMs, and even TDM numbers are








used for Right Hand polarized








(RHCP) TDMs






Reserved




6




RFU














The TSCC multiplex is preferably also encoded using Reed-Solomon (


255


,


223


) encoding on 8 bit symbols, as indicated at block


380


in FIG.


23


. The code generator polynomial is preferably







g


(
x
)


=




j
=
112

143







(

x
-

α

11

j



)












where α is a root of F(x)=x


8


+x


7


+x


2


+x+1. Coding is performed using the basis {1, α


1


, α


2


, α


3


, α


4


, α


5


, α


6


, α


7


}. Each symbol is interpreted as:




[u


7


, u


6


, u


5


, u


4


, u


3


, u


2


, u


1


, u


0


], u


7


being the MSB, where the u


i


are the coefficients of α


1


, respectively:






u


7





7


+u


6





6


+u


5





5


+u


4





4


+u


3





3


+u


2





2


+u


1


*α+u


0


.






The Reed-Solomon code is systematic in that the first 223 symbols, composing the TSCC multiplex are the information symbols prior to encoding. The first symbol in time is associated with x


222


, and the last symbol with x


0


. The 32 last symbols are the redundancy symbols following encoding. The first symbol in time is associated with x


31


, and the last symbol with x


0


.




No interleaving is applied prior to Viterbi encoding


382


, as depicted in FIG.


23


. Prior to Viterbi encoding, a round-off set of 72 bits is added following the Reed-Solomon block of 255 symbols. The 72 bit round-off set comprises all odd bits at “0” and all even bits at “1”. The first bit to be transmitted is the MSB, that is, a “1”. A Viterbi encoding with R=½ and k−7 is used with the same characteristics as described above in connection with Viterbi encoding at the broadcast stations


23


. Viterbi encoding is synchronized to the Master Frame Preamble so that the first bit following the Master Frame Preamble is the first bit issued from the Viterbi encoder, which is affected by the first bit of the RS encoded data. During initialization of the Viterbi encoder, which takes place before the first bit of the multiplex bit stream following the Master Frame Preamble, the registers within the Viterbi encoder are set to zero.




As indicated in block


366


of

FIG. 23

, a master frame preamble is inserted in the serial symbol TDM stream. The master frame preamble comprises a unique word and is preferably composed of the same time synchronized 96-bit sequence on both the I and Q components of the QPSK modulated signals. The scrambling process (block


364


) can be implemented using a PRS generator


384


depicted in

FIG. 27

to randomize the data in a TDM carrier. The scrambler


384


produces a pseudorandom sequence which is preferably symbol-per-symbol space modulo 2 added to the TDM frame sequence. A symbol of the pseudorandom sequence is composed of two successive bits coming from descrambler


384


. The pseudorandom sequence can have a generator polynomial such as x


11


+x


2


+1. The pseudorandom sequence can be initialized at each frame with a value such as 11111111111(binary) which is applied to the first bit of the I component following the master frame preamble.




The transport layer of the radio segment


254


is depicted in

FIGS. 28



a


and


28




b.


The radio segment transport layer receives the TDM master frame preamble (block


386


) from the physical layer of the radio receiver


29


. The operations performed at the transport layer are essentially the inverse of those performed in the space segment (

FIG. 23

) and the broadcast segment (FIG.


18


). Following descrambling (


388


), data from the time slot control channel (


390


) is used to identify and select TDM time slots belonging to the same broadcast channel to which the radio receiver is tuned. A Viterbi decoder (block


392


) is used to remove the encoding performed on-board the satellite and described above in connection with block


382


in FIG.


23


. Further, a Reed-Solomon decoder (block


394


) decodes the encoding performed on-board the space craft and described in connection with block


380


in FIG.


23


. The TDM time slots belonging to a selected broadcast channel are then demultiplexed to obtain the prime rate channels, as indicated in block


396


. The demultiplexing is illustrated by blocks


294


and


296


in

FIG. 13

, as well as being described in connection with FIG.


10


. With reference to blocks


398


and blocks


400


in

FIG. 28



b,


the prime rate channels are rate-aligned using the headers of the individual prime rate channels, as described above in connection with FIG.


11


. Following prime rate channel synchronization and re-multiplexing (block


402


) Viterbi decoding (block


404


) is performed to remove the encoding performed in the transport layer of the broadcast segment and described in connection with block


342


in FIG.


18


. The symbols are subsequently de-interleaved (block


406


) and decoded using a Reed-Solomon decoder (block


408


), which is the reverse processing of the broadcast channels performed in the outer transport layer


306


of the broadcast segment to obtain the broadcast channel. Thus, a received time division multiplexed bit stream is descrambled to correct for errors in the TDM transmission, decoded to recover the broadcast channel and then descrambled to correct for broadcast channel errors.




While certain advantageous embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.



Claims
  • 1. A method of formatting a signal for broadcast transmission to remote receivers comprising the steps of:receiving a service comprising at least a first service component and a second service component each selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols; and generating a broadcast channel bit stream frame by appending a service control header to said service to dynamically control reception of said service at said remote receivers, said service control header comprising service control data, said service comprising an overall bit rate of K bits per second, said overall bit rate corresponding to n multiples of a minimum bit rate of L bits per second, said frame having a period of M seconds, said service having n×L×M=n×P bits per frame, said frame comprising n×P bits for said service and n×Q bits for said service control header, wherein K, n, L, M, P and Q are numerical values, respectively; providing said service control header with first service component control data for dynamically controlling the reception of said first service component at said remote receivers; and providing said service control header with second service component control data for dynamically controlling reception of said second service component at said remote receivers; wherein at least one of said first service component control data and said second service component control data comprises at least one of a plurality of fields comprising a service component length field, a service component type field, an encryption field, a program type field and a language field, wherein said service component length field indicates the bit rate of the corresponding one of said first service component and said second service component, said service component type field indicates which of a plurality of signals is contained in the corresponding one of said first service component and said second service component, said encryption field indicates which of a plurality of encryption methods is used to encrypt the corresponding one of said first service component and said second service component, said program type field indicates which of a plurality of programs is transmitted via the corresponding one of said first service component and said second service component, and said language field indicates in which of a plurality of languages the corresponding one of said first service component and said second service component is generated.
  • 2. A method as claimed in claim 1, further comprising the step of providing said service component length field with n bits to indicate said bit rate of the corresponding one of said first service component and said second service component, said bit rate being a multiple number of m bits per second, wherein 1≦said multiple number≦2n, m bits per second is a minimum bit rate, n and m are numerical values, and the contents of said service component length field is a binary number having a decimal value between 0 and 2n corresponding to said multiple number.
  • 3. A method as claimed in claim 2, further comprising the steps of:receiving said frame at said remote receivers; and demultiplexing the corresponding one of said first service component and said second service component from said frame using said service component length field.
  • 4. A method as claimed in claim 2, wherein n=4 bits and m=8000 bits per second.
  • 5. A method as claimed in claim 1, further comprising the step of providing said service component type field with one of a plurality of values corresponding to respective ones of said plurality of signals, said plurality of signals comprising Motion Pictures Expert Group (MPEG) coded audio, general data having no specified format, Joint Photographic Expert Group (JPEG) coded picture data, video and invalid data.
  • 6. A method as claimed in claim 1, further comprising the step of providing said encryption field with a first value and a second value when the corresponding one of said first service component and said second service component is encrypted and is not encrypted, respectively.
  • 7. A method as claimed in claim 1, further comprising the step of providing said program type field with one a plurality of values corresponding to respective ones of said plurality of programs, said plurality of programs comprising music, a talk radio show, video, text, a censored program, an advertisement, and a program directed to a selected topic.
  • 8. A method as claimed in claim 1, further comprising the step of providing said language field with one of a plurality of values corresponding to respective ones of said plurality of languages.
  • 9. A method of formatting a signal for broadcast transmission to remote receivers comprising the steps of:receiving a service comprising at least a first service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols; generating a broadcast channel bit stream frame by appending a service control header to said service to dynamically control reception of said service at said remote receivers, said service control header comprising service control header data selected from the group consisting of a preamble indicating the beginning of said frame, a bit rate index indicating the bit rate of said service, encryption control data, an auxiliary data field, an auxiliary field content indicator relating to the content of said auxiliary data field, data relating to multiframes in said auxiliary data field when said auxiliary data field is multiplexed, and data indicating the number of service components which constitute said frame, said service corresponding to a primary service transmitted to said broadcast remote receivers on a primary broadcast channel; receiving a second service comprising at least one service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols, said second service being transmitted to said remote receivers on a secondary broadcast channel; generating a second broadcast channel bit stream frame by appending a second service control header to said second service to dynamically control reception of said second service at said remote receivers; and providing bits in said service control header corresponding to said primary broadcast channel to indicate to said remote receivers that said primary broadcast channel is related to said secondary broadcast channel.
  • 10. A method as claimed in claim 9, further comprising the steps of:assigning each of said primary broadcast channel and said secondary broadcast channel with an identification code, each said identification code being operable to uniquely identify the corresponding one of said primary broadcast channel and said secondary broadcast channel; and providing said service control header of said primary broadcast channel with said identification code corresponding to said second broadcast channel.
  • 11. A method as claimed in claim 10, wherein a third broadcast channel is transmitted which is related to said primary broadcast channel, and has an identification code to uniquely identify said third broadcast channel, and further comprising the steps of:generating another said broadcast channel bit stream frame; and modifying said service control header of said primary broadcast channel to comprise said identification code corresponding to said third broadcast channel to indicate that said third broadcast channel is related to said primary broadcast channel in lieu of said secondary broadcast channel.
  • 12. A method as claimed in claim 10, wherein a third broadcast channel is transmitted which is also related to said primary broadcast channel, and has an identification code to uniquely identify said third broadcast channel, and further comprising the steps of:generating another said broadcast channel bit stream frame; and modifying said service control header of said secondary broadcast channel to comprise said identification code corresponding to said third broadcast channel to indicate that said third broadcast channel is also related to said primary broadcast channel.
  • 13. A method as claimed in claim 12, wherein said providing step further comprises the steps of:providing a bit in said service control header of said primary broadcast channel to indicate that said primary broadcast channel is a primary broadcast channel having other broadcast channels related thereto; and providing a bit in each said service control header corresponding to said secondary broadcast channel and said third broadcast channel to indicate a relationship with said primary broadcast channel.
  • 14. A method as claimed in claim 9, further comprising the step of assigning geographic-specific identification codes to said primary broadcast channel and said secondary broadcast channel to uniquely distinguish said primary broadcast channel and said secondary broadcast channel from each other and among a plurality of broadcast channels received within a selected one of a plurality of geographic areas.
  • 15. A method as claimed in claim 14, further comprising the step of providing at least one bit to said service control header of said primary broadcast channel to indicate which of a plurality of different identification code types corresponds to said geographic-specific identification codes, said plurality of different identification code types corresponding to respective ones of said plurality of geographic areas.
  • 16. A method as claimed in claim 9, further comprising the step of assigning identification codes to uniquely distinguish said primary broadcast channel and said secondary broadcast channel from each other and among a plurality of broadcast channels received within a local area, a regional area and worldwide, and said providing step comprising the step of adding at least two bits to said service control header of said primary broadcast channel to indicate which of a plurality of different identification code types corresponds to said identification codes, said type of code being selected from the group consisting of a local code, a regional code and a worldwide code, said local code being useful to uniquely identify one of said plurality of broadcast channels transmitted to a geographic area by a spot beam from a satellite transmitter, said regional code identifying one of said plurality of broadcast channels transmitted to one of a predetermined contiguous geographic area and predetermined non-contiguous geographic areas, said worldwide code being useful to distinguish said second broadcast channel from other ones of said plurality of broadcast channels worldwide.
  • 17. A method as claimed in claim 9, wherein said providing step comprises the step of providing said bits in said auxiliary field content indicator in said service control header to indicate to said remote receivers that said primary broadcast channel is related to said secondary broadcast channel.
  • 18. A method as claimed in claim 17, further comprising the steps of:assigning each of said primary broadcast channel and said secondary broadcast channel with an identification code, each said identification code being operable to uniquely identify the corresponding one of said primary broadcast channel and said secondary broadcast channel; inserting said identification code corresponding to said secondary broadcast channel into said auxiliary data field of said primary broadcast channel; and inserting said identification code corresponding to said primary broadcast channel into said auxiliary data field of said secondary broadcast channel.
  • 19. A method as claimed in claim 17, further comprising the step of inserting broadcast channel identification data in said auxiliary data field which identifies said secondary broadcast channel.
  • 20. A method as claimed in claim 19, wherein said broadcast channel identification data comprises an identification code to uniquely identify said secondary broadcast channel, and said inserting step further comprises the step of selecting said identification code to uniquely distinguish said secondary broadcast channel from among a plurality of broadcast channels received within a selected one of a plurality of geographic areas.
  • 21. A method as claimed in claim 9, wherein said auxiliary data field in each of said service control header and said second service control header comprises a Primary/Secondary (PS) flag, and further comprising the steps of:setting said PS flag to a first value when said frame corresponding to one of said service control header and said second service control header is a component of said primary broadcast channel; and setting said PS flag to a second value when said frame corresponding to one of said service control header and said second service control header is a component of said secondary broadcast channel, said remote receivers being operable to use said PS flag to identify a received broadcast channel as one of a primary broadcast channel and a secondary broadcast channel.
  • 22. A method as claimed in claim 9, further comprising the steps of:assigning each of said primary broadcast channel and said secondary broadcast channel with an identification code, each said identification code being operable to uniquely identify the corresponding one of said primary broadcast channel and said secondary broadcast channel; and providing said auxiliary data field corresponding to said primary broadcast channel with an associated service pointer (ASP) corresponding to said identification code of said secondary broadcast channel.
  • 23. A method as claimed in claim 22, wherein a third broadcast channel is transmitted which is related to said primary broadcast channel, and further comprising the steps of:generating another said broadcast channel bit stream frame of said primary broadcast channel; and modifying said service control header of said primary broadcast channel to comprise said identification code corresponding to said third broadcast channel to indicate that said third broadcast channel is related to said primary broadcast channel in lieu of said secondary broadcast channel.
  • 24. A method as claimed in claim 22, wherein a third broadcast channel is transmitted which is also related to said primary broadcast channel, and further comprising the steps of:generating another said second broadcast channel bit stream frame on said secondary broadcast channel; and modifying said service control header of said secondary broadcast channel to comprise said identification code corresponding to said third broadcast channel to indicate that said third broadcast channel is also related to said primary broadcast channel.
  • 25. A method as claimed in claim 24, further comprising the step of providing said service control header of said third broadcast channel with said identification code corresponding to said primary broadcast channel.
  • 26. A method as claimed in claim 25, wherein said providing step further comprises the steps of:providing a bit in said service control header of said primary broadcast channel to indicate that said primary broadcast channel is a primary broadcast channel and has other broadcast channels related thereto; and providing a bit in each said service control header corresponding to said secondary broadcast channel and said third broadcast channel to indicate a relationship with said primary broadcast channel.
  • 27. A method of formatting a signal for broadcast transmission to remote receivers comprising the steps of:receiving a service comprising at least a first service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols; generating a broadcast channel bit stream frame by appending a service control header to said service to dynamically control reception of said service at said remote receivers, said service control header comprising service control header data selected from the group consisting of a preamble indicating the beginning of said frame, a bit rate index indicating the bit rate of said service, encryption control data, an auxiliary data field, an auxiliary field content indicator relating to the content of said auxiliary data field, data relating to multiframes in said auxiliary data field when said auxiliary data field is multiplexed, and data indicating the number of service components which constitute said frame; providing said auxiliary data field with data relating to said service for reception at said remote receivers; and providing said auxiliary field content indicator in said service control header with bits for indicating a method of encryption used on the contents of said auxiliary data field.
  • 28. A method as claimed in claim 27, further comprising the steps of:generating a second broadcast channel bit stream frame by appending a second service control header to one of said service and a second service, said second service comprising at least one service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols, said second service control header dynamically controlling reception of the corresponding one of said service and a second service at said remote receivers, each of said service control header and said second service control header comprising a start flag for indicating when said auxiliary data field in each of said service control header and said second service control header is one of a plurality of segments in a multiframe signal; setting said start flag in said service control header to a first value when said auxiliary data field in said service control header is one of the first of said segments in said multiframe signal and an independent segment when no multiframe signal exists; and setting said start flag in said second service control header to a second value when said auxiliary data field in said service control header is the first of said segments in said multiframe signal and said auxiliary data field in said second service control header is another one of said segments in said multiframe signal, wherein said frame corresponding to said service need not be contiguous to said frame corresponding to said second service.
  • 29. A method as claimed in claim 28, further comprising the step of providing each of said service control header and said second service control header with a segment offset and length field (SOLF), said SOLF comprising bits relating to how many of said segments constitute said multiframe signal.
  • 30. A method as claimed in claim 29, wherein said step of providing said SOLF comprises the step of setting said SOLF to N−1 when said start flag is set to said first value wherein N is the total number of said segments that constitute said multiframe signal.
  • 31. A method as claimed in claim 28, further comprising the steps of:generating a third broadcast channel bit stream frame by appending a third service control header to one of said service said second service and a third service, said third service comprising at least one service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols, said third service control header dynamically controlling reception of the corresponding one of said service, said second service and a third service at said remote receivers, each of said service control header, said second service control header and said third service control header comprising a start flag for indicating when said auxiliary data field corresponding thereto is a segment in a multiframe signal; and providing each of said service control header, said second service control header and said third service control header with a segment offset and length field (SOLF), said SOLF comprising bits to relating to how many of said segments constitute said multiframe signal.
  • 32. A method as claimed in claim 31, further comprising the step of setting said SOLF in said service control header to N−1 when said start flag therein is set to said first value, N corresponding to the total number of said segments that constitute said multiframe signal.
  • 33. A method as claimed in claim 32, further comprising the step of setting said SOLF in said second service control header to N−(N−1) when said start flag therein is set to said second value.
  • 34. A method as claimed in claim 33, further comprising the step of setting said SOLF in said third service control header to N−(N−2) when said start flag therein is set to said second value and said frame comprising said third service control header is transmitted after said frame comprising said second service control header.
  • 35. A method as claimed in claim 32, further comprising the steps of:generating a plurality of frames comprising one of a plurality of services comprising said service, said second service, said third service and other services and respective ones of a plurality of service control headers, each of said plurality of service control headers comprising an auxiliary data field and start flag for indicating when said auxiliary data field corresponding thereto is a segment in a multiframe signal; setting said SOLF in said service control header to N−1 when said start flag therein is set to said first value, N corresponding to the total number of said segments that constitute said multiframe signal; setting said SOLF in said second service control header, said third service control header and each of said plurality of service control headers to 1, 2, 3, 4 . . . N−1, respectively when said corresponding start flag is set to said second value to indicate which of said N segments in said multiframe signal said auxiliary data field corresponds.
  • 36. A method of formatting data for transmission to remote receivers comprising the steps of:receiving broadcast channels from at least one broadcast station, each of said broadcast channels comprising a plurality of prime rate channels, each of said prime rate channels comprising a plurality of symbols; routing each of said plurality of prime rate channels to at least one of a plurality of time division multiplexed downlinks, each of said plurality of time division multiplexed downlinks comprising a plurality of time slots; multiplexing said symbols corresponding to each of said prime rate channels and routed to the same one of said plurality of time division multiplexed downlinks into said time slots in said same downlinks to generate a corresponding plurality of serial, time division multiplexed or TDM frame bit streams; and appending a time slot control word to each of said TDM frame bit streams to control the recovery of said prime rate channels corresponding to a selected one of said broadcast channels by at least one of said remote receivers, said time slot control word comprising at least one field selected from the group consisting of a broadcast channel identifier type field, a broadcast channel identifier number field, a last prime rate channel flag, a format identifier field, and a broadcast audience field; wherein said appending step further comprises the step of adding at least two bits to said time slot control word to indicate which of a plurality of different identification code types corresponds to said identification code of said selected one of said broadcast channels, said type of code being selected from the group consisting of a local code, a regional code and a worldwide code, said local code being useful to uniquely identify one of a plurality of broadcast channels transmitted to a geographic area by a spot beam from a satellite transmitter, said regional code identifying one of a plurality of broadcast channels transmitted to one of a predetermined contiguous geographic area and predetermined non-contiguous geographic areas, said worldwide code being useful to distinguish said second broadcast channel from other ones of a plurality of broadcast channels transmitted worldwide.
  • 37. A method as claimed in claim 36, wherein said appending step further comprises the step of adding at least two bits to said time slot control word to indicate which of a plurality of different identification code types corresponds to said identification code of said selected one of said broadcast channels, said type of code being selected from the group consisting of a local code, a regional code and a worldwide code, said local code being useful to uniquely identify one of a plurality of broadcast channels transmitted to a geographic area by a spot beam from a satellite transmitter, said regional code identifying one of a plurality of broadcast channels transmitted to one of a predetermined contiguous geographic area and predetermined non-contiguous geographic areas, said worldwide code being useful to distinguish said second broadcast channel from other ones of a plurality of broadcast channels transmitted worldwide.
  • 38. A method of formatting data for transmission to remote receivers comprising the steps of:receiving broadcast channels from at least one broadcast station, each of said broadcast channels comprising a plurality of prime rate channels, each of said prime rate channels comprising a plurality of symbols; routing each of said plurality of prime rate channels to at least one of a plurality of time division multiplexed downlinks, each of said plurality of time division multiplexed downlinks comprising a plurality of time slots; multiplexing said symbols corresponding to each of said prime rate channels and routed to the same one of said plurality of time division multiplexed downlinks into said time slots in said same downlinks to generate a corresponding plurality of serial, time division multiplexed or TDM frame bit streams; appending a time slot control word to each of said TDM frame bit streams to control the recovery of said prime rate channels corresponding to a selected one of said broadcast channels by at least one of said remote receivers, said time slot control word comprising at least one field selected from the group consisting of a broadcast channel identifier type field, a broadcast channel identifier number field, a last prime rate channel flag, a format identifier field, and a broadcast audience field; and assigning an identification code to uniquely distinguish said selected one of said broadcast channels from among a plurality of broadcast channels received within a selected one of a plurality of geographic areas.
  • 39. A method as claimed in claim 38, further comprising the step of providing at least one bit to said time slot control word to indicate which of a plurality of different identification code types corresponds to said identification code of said selected one of said broadcast channels, said plurality of different identification code types corresponding to respective ones of said plurality of geographic areas.
  • 40. A method of formatting a signal for broadcast transmission to remote receivers comprising the steps of:receiving a service comprising at least a first service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols; and generating a broadcast channel bit stream frame by appending a service control header to said service to dynamically control reception of said service at said remote receivers, said service control header comprising service control header data selected from the group consisting of a preamble indicating the beginning of said frame, a bit rate index indicating the bit rate of said service, encryption control data, an auxiliary data field, an auxiliary field content indicator relating to the content of said auxiliary data field, data relating to multiframes in said auxiliary data field when said auxiliary data field is multiplexed, and data indicating the number of service components which constitute said frame; wherein said preamble is one of a binary number and a hexadecimal number selected for effective auto-correlation to facilitate synchronization of said frame when said frame is received, said preamble comprising 20 bits and corresponding to 0474B hexadecimal.
  • 41. A method of formatting a signal for broadcast transmission to remote receivers comprising the steps of:receiving a service comprising at least a first service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols; generating a broadcast channel bit stream frame by appending a service control header to said service to dynamically control reception of said service at said remote receivers, said service control header comprising service control header data selected from the group consisting of a preamble indicating the beginning of said frame, a bit rate index indicating the bit rate of said service, encryption control data, an auxiliary data field, an auxiliary field content indicator relating to the content of said auxiliary data field, data relating to multiframes in said auxiliary data field when said auxiliary data field is multiplexed, and data indicating the number of service components which constitute said frame; and encrypting one of a broadcast channel comprising said service and said service control header, and a plurality of broadcast channels comprising different services and corresponding service control headers, said encryption control data comprising bits to indicate a type of key needed by said remote receivers to decrypt a corresponding one of said broadcast channel and said plurality of broadcast channels, said type of key being selected from a group of keys consisting of a static key, a common key and a specific key, said static key being useful to encrypt and broadcast said service in said broadcast channel to selected ones of said remote receivers which are configured perform decryption using said static key, said common key being useful for decryption at all of said remote receivers of each of said plurality of broadcast channels which were encrypt ed using the same encryption scheme, and said specific key being useful for decryption at all of said remote receivers of said broadcast channel when said broadcast channel has been encrypted using a selected encryption scheme.
  • 42. A method of formatting a signal for broadcast transmission to remote receivers comprising the steps of:receiving a service comprising at least a first service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols; generating a broadcast channel bit stream frame by appending a service control header to said service to dynamically control reception of said service at said remote receivers, said service control header comprising service control header data selected from the group consisting of a preamble indicating the beginning of said frame, a bit rate index indicating the bit rate of said service, encryption control data, an auxiliary data field, an auxiliary field content indicator relating to the content of said auxiliary data field, data relating to multiframes in said auxiliary data field when said auxiliary data field is multiplexed, and data indicating the number of service components which constitute said frame; and transmitting a Radio Data System (RDS) PI code for frequency modulated (FM) broadcasting in said auxiliary data field of service control header, said auxiliary field content indicator comprising bits to indicate that said auxiliary data field comprises said RDS PI code.
  • 43. A method of formatting a signal for broadcast transmission to remote receivers comprising the steps of:receiving a service comprising at least a first service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols; generating a broadcast channel bit stream frame by appending a service control header to said service to dynamically control reception of said service at said remote receivers, said service control header comprising service control header data selected from the group consisting of a preamble indicating the beginning of said frame, a bit rate index indicating the bit rate of said service, encryption control data, an auxiliary data field, an auxiliary field content indicator relating to the content of said auxiliary data field, data relating to multiframes in said auxiliary data field when said auxiliary data field is multiplexed, and data indicating the number of service components which constitute said frame; and providing said service control header with bits in said auxiliary field content indicator for display on a display device connected to at least one of said remote.
  • 44. A method of formatting a signal for broadcast transmission to remote receivers comprising the steps of:receiving a service comprising at least a first service component selected from the group consisting of audio, data, static images, dynamic images, paging signals, text, messages and panographic symbols; generating a broadcast channel bit stream frame by appending a service control header to said service to dynamically control reception of said service at said remote receivers, said service control header comprising service control header data selected from the group consisting of a preamble indicating the beginning of said frame, a bit rate index indicating the bit rate of said service, encryption control data, an auxiliary data field, an auxiliary field content indicator relating to the content of said auxiliary data field, data relating to multiframes in said auxiliary data field when said auxiliary data field is multiplexed, and data indicating the number of service components which constitute said frame; and providing said service control header with bits for display on a display device connected to at least one of said remote, said bits comprising a standard sequence service label.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 08/971,049, filed Nov. 14, 1997 now abandoned. Related subject matter is disclosed and claimed in co-pending U.S. patent application Ser. No. 08/569,346, filed by S. Joseph Campanella on Dec. 8, 1995; in co-pending U.S. patent application Ser. No. 08/746,019, filed by S. Joseph Campanella on Nov. 5, 1996; in co-pending U.S. patent application Ser. No. 08/746,020, filed by S. Joseph Campanella on Nov. 5, 1996; in co-pending U.S. patent application Ser. No. 08/746,067, filed by S. Joseph Campanella on Nov. 5, 1996; in co-pending U.S. patent application Ser. No. 08/746,069, filed by S. Joseph Campanella et al on Nov. 5, 1996; in co-pending U.S. patent application Ser. No. 08/746,070, filed by S. Joseph Campanella on Nov. 5, 1996; in co-pending U.S. patent application Ser. No. 08/746,071, filed by S. Joseph Campanella on Nov. 5, 1996; and in co-pending U.S. patent application Ser. No. 08/746,072, filed by S. Joseph Campanella on Nov. 5, 1996; all of said applications being expressly incorporated herein by reference.

US Referenced Citations (31)
Number Name Date Kind
3789142 Shimasaki et al. Jan 1974
4425639 Acampora et al. Jan 1984
4480328 Alaria et al. Oct 1984
4660196 Gray et al. Apr 1987
4792963 Campanella et al. Dec 1988
4881241 Pommier et al. Nov 1989
4901310 Ichiyoshi Feb 1990
4922483 Kobayashi May 1990
4931802 Assal et al. Jun 1990
5191576 Pommier et al. Mar 1993
5197061 Halbert-Lassalle Mar 1993
5228025 Le Floch et al. Jul 1993
5283780 Schuchman Feb 1994
5299192 Guo et al. Mar 1994
5303393 Noreen et al. Apr 1994
5347548 Messerges Sep 1994
5416774 Shigematsu May 1995
5418782 Wasilewski May 1995
5455823 Noreen et al. Oct 1995
5473601 Rosen et al. Dec 1995
5485464 Strodtbeck et al. Jan 1996
5550812 Philips Aug 1996
5555547 Lemaitre et al. Sep 1996
5583562 Birch et al. Dec 1996
5625624 Rosen et al. Apr 1997
5689245 Noreen et al. Nov 1997
5790171 Klopfer et al. Aug 1998
5835487 Campanella Nov 1998
5864546 Campanella Jan 1999
5867490 Campanella Feb 1999
5875178 Rahuel et al. Feb 1999
Non-Patent Literature Citations (11)
Entry
S. Joseph Campanella, “Communications Satellites: Orbitting Into the 90's”, IEEE Spectrum, pp. 49-52, Aug. 1990.
G. Losquadro, “Digital Audio Broadcasting: High-Grade Service Quality Through On-Board Processing Techniques”, SAT: Satellite Communications, Jul. 31, 1995, pp. 1-9.
Maral, Gerard, VSAT Networks, pp. 52-53 (John Wiley & Sons, Ltd., 1995).
Chitre, D.M., “The Role of Satellite Communications in the ISDN Era”, International Journal of Satellite Communications, vol. 10, No. 5, Sep.-Oct. 1992, pp. 210-215.
Chitre, D.M. et al, “Architectures for the Intelsat NISDN-Compatible Satellite Communications Network”, International Journal of Satellite Communications, vol. 10, pp. 217-225 (1992).
Digital Audio Broadcast, Stanford Telecom, STEL-VPR-0538, Apr. 1991.
Proceedings from Second International Symposium on Digital Audio Broadcasting: the Sound of 2000, Toronto, Canada, Mar. 14-17, 1994, vol. II, pp. 63-108 and pp. 240-248.
Principles for the Guidance of EBU Members for WARC-92 Broadcasting-Satellite Service, European Broadcasting Union, Feb. 1991 Draft SPB 483-E, pp. 1-75.
Advanced Digital Techniques for UHF Satellite Sound Broadcasting: Collected Papers on Concepts for Sound Broadcasting Into the 21st Century, European Broadcasting Union, Extracted from the EBU Document SPB 442, Jan. 1998, pp. 11-69.
Annex C to ITU-R Special Publication on Terrestrial and Satellite Digital Sound Broadcasting to Vehicular Portable and Fixed Receivers in the VHF/UHF Bands on “Digital System B”, Nov. 1, 1994.
Le Floch et al, “Digital Sound Broadcasting to Mobile Receivers”, IEEE, Transactions on Consumer Electronics, Aug. 1989, vol. 35, No. 3, pp. 493-503.
Continuation in Parts (1)
Number Date Country
Parent 08/971049 Nov 1997 US
Child 09/112349 US