SIGNALLING DEVICE, AND CONTROL METHOD, FOR AUTOMATISMS

Abstract
Method for controlling a signalling device inserted in an automatism of gates (G), movable barriers, doors or the like, and having at least one warning device (L, BZ), characterised in that it supplies power from the signalling device (LL) to at least one mechanical group (M) having a motor, detects in the signalling device (LL) the absorbed power from the at least one mechanical group (M) having a motor, and activates the at least one warning device (L, BZ) when the predefined absorbed power threshold has been exceeded.
Description

The advantages of a device in accordance with the invention will be in any case more evident from the following description of a preferred embodiment, which makes reference to the attached drawing where:



FIG. 1 shows a known automatism installation;



FIG. 2 shows a known automatism installation;



FIG. 3A shows an automatism installation with the DDS according to the invention;



FIG. 3B shows an automatism installation with the DDS according to the invention;



FIG. 4 shows the circuit diagram of a DDS according to the invention;



FIG. 5 shows a functioning flow diagram for a DDS according to the invention.





In FIG. 3A, 3B, the components of an automatism installation with a DDS are shown according to the invention, indicated with LL (flasher). The other components are indicated as, and correspond with, those components already described in FIGS. 1 and 2.


The DDS LL is interposed between the power supply line Supp, from which it obtains its power supply, and the command unit U, which supplies power to the gear motor device M (or the like). In this manner, the power supply of the gear motor M occurs through the DDS LL, as for the remaining components of the automatism.


Given the connection type of the DDS LL with respect to the overall installation, it does not require particular connectors but only standard or standardisable connections or terminals, at most a pair of connectors.


The DDS LL can be supplied from the Supp network or through internal or external sources (batteries, solar panels, power supply devices, etc.).



FIG. 4 shows the circuit diagram of a DDS LL according to the invention. It comprises a two-terminal input interface T-IN, where one terminal t1 is connected to the public network phase cable and a terminal t2 is connected to the neutral cable, and a corresponding output interface T-OUT.


The interface T-OUT is connected (or adapted to be connected) to the components downstream of the DDS LL. For example, the T-IN and T-OUT interfaces can simply comprise a terminal board or the like, and the connections with the components can be made with lead wires.


The following are shunt connected between phase and neutral: a light warning device (such as a lamp) L with in series an electronic switch Sw (for example a Triac) and a stabilised power supply circuit (or equivalent means) CPS for supplying power (see +V reference) to the components of the DDS LL.


The circuit CPS can comprise a half-wave rectifier, a levelling Zener diode and a capacitive drop impedance.


Between phase and neutral, a circuit RR (or equivalent means) is present for detecting the current absorbed at the interface T-OUT, comprising for example the parallel of a ballast resistor and two limiting antiparallel diodes.


Connected to the +V are the processing and control means EM (here a microcontroller or microprocessor), which:

    • read the output voltage from the cursor of a potentiometer PT (supplied from the +V) by means of a line A/D1 (to which a converter A/D internally is connected);
    • receive a signal from the RR circuit by means of a line A/D2 (to which a converter A/D internally is connected);
    • control the switch Sw of the lamp L;
    • drive a buzzer BZ.


The DDS LL functions in the following manner (see also FIG. 5).


(start step=STart block):


By initially providing voltage to the interface T-IN, the switch Sw is opened and the lamp L turned off (inactivated). The CPS circuit generates the +V and supplies power to the processing means EM.


(initial control step=CHecK #1 block):


The processing means EM read the line A/D1 and register the voltage present therein. According to its value, for example by means of comparison with predefined values, they set, in a subsequent setting step (SET FunctionParameter block), the functioning mode FP of the lamp L and/or of the DDS LL. Such mode FP can provide functioning for the lamp L with courtesy light or with flashing light.


(current detection step=DETect Ia):


By means of the circuit RR and the line A/D2 (i.e. reading a voltage at the terminals of the circuit RR), the means EM detect the absorbed current Ia at the terminal T-OUT by what is connected downstream thereof, i.e. of the automatism of FIG. 3A, 3B.


Then (see decision block ‘Ia>=Is?’) the EM means compare the current Ia with a threshold current value Is.


If the current Ia is greater than Is, the means EM evaluate the functioning mode FP (EVALuate FP block). According to FP, the program flow into the means EM can reach two different function blocks (Md #3 or Md #4), where for example Md #3 determines the flashing of the lamp L (or the activation of a generic warning device with a fixed or preestablished frequency) and Md #4 determines its constant lightning (or the continuous activation of a generic warning device). The system then returns to the current detection step (DETect Ia).


If the current is less than Is, the means EM evaluate the functioning mode FP (EVALuate FP block). According to FP, the program flow into the means EM can reach two different function blocks (Md #1 or Md #2), where for example Md #1 determines the turning off of the lamp L (or warning device) after a first time interval (for example very small for a nearly instantaneous turning off) and Md #2 determines the turning off of the lamp L (or warning device) after a second time interval (for example much greater than the first, such that the lamp L remains on for a certain time after the gear motor M has been inactivated, and thus turns off with a delay with respect to the sub-threshold detection of the absorbed power).


The system then returns to the initial control step CHK #1.


A current peak detected in Ia is due to the absorption of the gear motor M and therefore the lamp L signals its operation. Particular current profiles, however, can indicate other operative or malfunctioning conditions (for example an overload), and the means EM can consequently intervene, signalling by means of the lamp L or acting with other communication interfaces (not shown). It is clear that the lamp L can be substituted or can cooperate with other types of warning devices, as already described.

Claims
  • 1. Method for controlling a signalling device inserted in an automatism of gates (G), movable barriers, doors or the like, and having at least one warning device (L, BZ), characterised in that it supplies power from the signalling device (LL) to at least one mechanical group (M) having a motor;detects, in the signalling device (LL), the power absorbed from at least one mechanical group (M) having a motor;activating the at least one warning device (L, BZ) when a predefined absorbed power threshold has been exceeded.
  • 2. Method according to claim 1, wherein the detected absorbed power is compared with several predefined power thresholds.
  • 3. Method according to claim 2, wherein if the absorbed power is greater than one of the predefined power thresholds, the at least one warning device is activated (L, BZ).
  • 4. Method according to claim 1, wherein according to functional parameters established at the starting, the at least one warning device (L, BZ) is activated with a predetermined frequency.
  • 5. Method according to claim 1, wherein according to functional parameters established at the starting, the at least one warning device (L, BZ) is activated in a continuous manner.
  • 6. Method according to claim 2, wherein if the absorbed power is less than a predetermined power threshold, the at least one warning device (L, BZ) is deactivated.
  • 7. Method according to claim 6, wherein according to functional parameters established at the starting, the at least one warning device (L, BZ) is deactivated after a pre-established time interval with respect to the sub-threshold detection of the absorbed power.
  • 8. Method according to claim 1, wherein the absorbed power is detected by measuring the current absorbed (Ia) by the at least one mechanical group (M) having a motor.
  • 9. Method according to claim 1, wherein the signalling device (LL) also supplies power to a control unit (U) and/or at least one command device (C) of the automatism and/or at least one safety device (S).
  • 10. Signalling device (LL) for automatisms of gates (G), movable barriers, doors or the like, having a warning device (L, BZ), characterised in that it comprises power supply means (T-OUT) for supplying power to at least one mechanical group (M) having a motor;detection means (RR) of the power absorbed by the at least one mechanical group (M) having a motor from the power supply means (T-OUT);control means (EM) for activating the warning device (L, BZ) when a predefined power absorption threshold is exceeded, detected by the detection means (RR).
  • 11. Signalling device (LL) according to claim 10, wherein the control means (EM) are adapted to compare the absorbed power with several predefined power thresholds, and are adapted to deactivate the at least one warning device (L) if the absorbed power is lower than a predefined power threshold.
  • 12. Signalling device (LL) according to claim 10, wherein the absorbed power detection means comprise absorbed current detection means (RR) for detecting the power absorption of the at least one mechanical group (M) having a motor.
  • 13. Signalling device (LL) according to claim 10, wherein the control means (EM) are adapted to activate the at least one warning device (L, BZ) with a pre-established frequency.
  • 14. Signalling device (LL) according to claim 10, wherein the control means (EM) are adapted to activate the at least one warning device (L, BZ) in a continuous manner.
  • 15. Signalling device (LL) according claim 10, wherein the control means (EM), if the absorbed power or current is less than a predefined power or current threshold, are adapted to deactivate the at least one warning device (L, BZ) after a pre-established delay.
  • 16. Signalling device (LL) according to claim 10, wherein the control means (EM) comprise a microcontroller (EM) connected to variable voltage generation means (PT), the microcontroller being adapted to read said voltage so to obtain its power or current threshold value.
  • 17. Signalling device (LL) according to claim 10, wherein the control means comprise a microcontroller (EM) connected to variable voltage generation means (PT), the microcontroller being adapted to read said voltage so to obtain a parameter in relation to which the management of the at least one warning device is established (L, BZ).
  • 18. Signalling device (LL) according to claim 10, wherein the signalling device (LL) comprises power supply means for also supplying power to a control unit (U) and/or at least one command device (C) of the automatism and/or at least one safety device (S).
  • 19. Signalling device (LL) according to claim 10, wherein the warning device comprises a lamp (L).
  • 20. Signalling device (LL) according to claim 10, comprising power supply feeds (T-IN) from an external source (Supp) connected to stabilised power supply means (CPS) adapted to supply power to the components (EM) of the signalling device (LL).
  • 21. Signalling device (LL) according to claim 10, wherein the control means (EM) are adapted to count the number of activations of the at least mechanical group (M) having a motor.
  • 22. Automatism installation having a device (LL) as in claim 1.
Priority Claims (1)
Number Date Country Kind
TV2006A 000190 Oct 2006 IT national