The invention relates to communications, and particularly to communications between an industrial automation device and a terminal device of a communications system.
The following background description art may include insights, discoveries, understandings or disclosures, or associations together with disclosures not known to the relevant art prior to the present invention but provided by the present disclosure. Some such contributions disclosed herein may be specifically pointed out below, whereas other such contributions encompassed by the present disclosure the invention will be apparent from their context.
Frequency converters are used to change the frequency and magnitude of electricity supplied to a load. Frequency converters are being used for example in alternating current (AC) motor drives. In exemplary operation, a frequency converter receives AC current from an electrical power supply and converts the frequency of the received AC current to another frequency, after which the AC current is supplied to an AC electric motor. Also further parameters, for example, a voltage level of the received AC current may be changed. The AC motors are used in various applications including, for example, fans and pumps. In many applications, the use of frequency converters may provide significant energy savings compared to supplying electrical power having a constant frequency.
A standardized network interface and standardized protocols are a requirement to remote access to industrial automation devices such as frequency converters, PRCs, switches, controllable automation devices etc. In addition, knowledge on the capabilities and specifications on how to interact with the industrial device are required before the remote access is possible. This set of required information may be referred to as an interaction specification. The interaction specification may be quite large and complex depending on the industrial automation device. The interaction specification is typically different for different versions and models of industrial automation devices.
The following presents a simplified summary of features disclosed herein to provide a basic understanding of some exemplary aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts disclosed herein in a simplified form as a prelude to a more detailed description.
According to an aspect, there is provided the subject matter of the independent claims. Embodiments are defined in the dependent claims.
One or more examples of implementations are set forth in more detail in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
Some embodiments provide a method, system, apparatus and a computer program product for signalling of specification information between an industrial automation device and a terminal device of a communications system.
In the following the invention will be described in greater detail by means of preferred embodiments with reference to the attached drawings, in which
The following embodiments are exemplary. Although the specification may refer to “an”, “one”, or “some” embodiment(s) in several locations, this does not necessarily mean that each such reference is to the same embodiment(s), or that the feature only applies to a single embodiment. Single features of different embodiments may also be combined to provide other embodiments. Furthermore, words “comprising” and “including” should be understood as not limiting the described embodiments to consist of only those features that have been mentioned and such embodiments may contain also features/structures that have not been specifically mentioned.
A general architecture of a communication system is illustrated in
A network apparatus 109 may be a remote device such as a remote terminal device, server and/or database located at a service center, for facilitating service and maintenance of the frequency converter 101. The remote device 109 may facilitate different ways of how to communicate with the frequency converter 101 via the local terminal device 105. The remote device 109 may comprise e.g. a desktop computer, laptop computer, tablet computer, smartphone, mobile phone, server, database, etc. Any suitable technology that makes it possible to store frequency converter history data and other frequency converter specific data into a service center database 111 may be utilized. For example, a cloud service (cloud computing) may be used via the internet 107 to store frequency converter history data and other frequency converter data into the service center database 111. The local and remote devices may be capable of communicating with each other via the internet 107 by utilizing the cloud service.
Let us now describe embodiments of the invention with reference to
Referring to
In item 207, the remote device 109 is configured to receive the identification information 206 on the frequency converter 101. Further, in item 207, the remote device 109 is configured to use the received identification information to retrieve 207 the corresponding interaction specification from a database or memory. The interaction specification indicates at least one protocol for interacting with the frequency converter 101. The interaction specification may further indicate at least one capability of the frequency converter 101 (alternatively, information on the at least one capability of the frequency converter may be retrieved in a later step if needed, or the at least one capability of the frequency converter may be deduced from the interaction specification). After the interaction specification is retrieved from the database or memory, the remote device 109 is able to interact with the frequency converter 101 by utilizing the at least one protocol, and access the internal configuration settings of the frequency converter 101 by read and write requests, for example, by using an application programming interface (API). This means that the remote device 109 may request reading, changing or updating the information stored 201 by the frequency converter 101, by transmitting a corresponding read/write request 208, 209 via the local device 105 to the frequency converter 101. Upon receiving (item 210) the read/write request 209, the frequency converter 101 reads, changes or updates 210 the information accordingly, and may transmit a response 211, 212 including the read/changed/updated information, via the local device 105 to the remote device 109. The remote device 109 receives the response in item 213, wherein this read/changed/updated information may be used 213 in the remote device 109, for example, to define the status of the frequency converter 101 or solve problems regarding the frequency converter 101.
Referring to
In item 307, the remote device 109 is configured to receive the IS request (including the identification information on the frequency converter 101) from the local device 105. Further, in item 307, the remote device 109 is configured to use the identification information to retrieve 307 the corresponding interaction specification from a database or memory. In item 308, the remote device 109 is configured to transmit the retrieved interaction specification to the local device 105. After the interaction specification is received (item 309) in the local device 105, the local device 105 is able to interact with the frequency converter 101 by utilizing the at least one protocol, and access the internal configuration settings of the frequency converter 101 by read and write requests, for example, by using an application programming interface (API). This means that the local device 105 may request reading, changing or updating the information stored 301 by the frequency converter 101, by transmitting a corresponding read/write request 310 to the frequency converter 101. Upon receiving (item 311) the read/write request 310, the frequency converter 101 is configured to read, change or update 311 the information accordingly, and may transmit a response 312 including the read/changed/updated information, to the local device 105. The local device 105 receives the response in item 313, wherein the read/changed/updated information may be used 313 in the local device 105, for example, to define the status of the frequency converter 101 or solve problems regarding the frequency converter 101.
Referring to
In item 407, the remote device 109 is configured to receive the interaction specification 406 of the frequency converter 101. After the interaction specification is received 407 in the remote device 109, the remote device 109 is able to interact with the frequency converter 101 by utilizing the at least one protocol, and access the internal configuration settings of the frequency converter 101 by read and write requests, for example, by using an application programming interface (API). This means that the remote device 109 may request reading, changing or updating the information stored 401 by the frequency converter 101, by transmitting a corresponding read/write request 408, 409 via the local device 105 to the frequency converter 101. Upon receiving (item 410) the read/write request 409, the frequency converter 101 is configured to read, change or update 410 the information accordingly, and may transmit a response 411, 412 including the read/changed/updated information, via the local device 105 to the remote device 109. The remote device 109 receives the response in item 413, wherein the read/changed/updated information may be used 413 in the remote device 109, for example, to define the status of the frequency converter 101 or solve problems regarding the frequency converter 101.
Referring to
In maintenance and service operations of frequency converters and other industrial devices, it is helpful if the industrial device may be accessed and the industrial device status and possible faults are readable from a remote location before the maintenance personnel is to go to the actual site to perform maintenance operations. The industrial device may be accessed from the remote location, for example, by using an internet connection directly to the industrial device or by using a local router device between the industrial device and the internet. The remote device uses a remote user interface (UI) which may be a mobile device (phone, tablet etc.), PC or other internet-connected device. The connection between the industrial device and the remote UI may comprise a wireless or wired network connection or a series of different network connections where messages are routed.
To enable compatibility with various industrial device types, brands and versions, the remote user interface is to interwork with the supported functions, capabilities and services of the industrial device as well as the supported protocols and application programming interfaces (API) and their versions of the industrial device.
An exemplary system comprises a drive unit 101 which is equipped with a short range radio interface, e.g. Bluetooth or WiFi. The radio interface may be in the drive unit 101 or in a control panel 103 of the drive unit 101. The mobile device 105 may operate as a mobile router that routes data between the short range wireless radio network 104 and the internet-connected IP based network 107, for example, 3G, 4G, WiFi. The remote user device 109 is connected to the internet 107 by using Ethernet, WiFi or other network interface.
The remote connection may be mutually agreed between the local device user and the remote device user, for example, by a phone call, chat messages or similar. Then, a connection is initiated by the remote user by sending a connection request from the remote device. The local device user receives the connection request and approves the connection. After the remote connection is established, the remote user is able to communicate with the drive and access the internal configuration settings by means of read and write requests, for example, by using an application programming interface (API). These requests are routed through the network on top of the wired or wireless network used, e.g. Bluetooth, WiFi, 3G, 4G and/or Ethernet. The industrial device may store log files in its internal memory about fault situations, for example. The remote user may read these logs by sending a log read request from the remote device to the industrial device via the local device. Upon receiving the read request, the industrial device transmits the log file via the local device to the remote device. These log files may be used in the remote device to define the status of the industrial device or solve problem situations occurring in the industrial device.
In an embodiment, a smart user interface is comprised in a mobile phone, tablet, PC or other device connected to the industrial device by a wireless or wired network connection. The smart UI may be used to present the status or other information or control the industrial device. In addition, the smart user interface may download content from the internet and combine these two information sources in the user interface to increase the user experience and add functionalities. Examples of such functionalities include reading parameters, reading sensor values, reading actual values, reading waveforms, reading faults, reading warnings, reading log files, changing parameters, updating firmware.
In an embodiment, a small amount of data specifying the brand, model and version of the device, is stored in the industrial device. The user interface application reads this data from the industrial device. This data is then used to search and read the appropriate interaction specification from a remote database. Thus, the interaction specification may be discovered by reading the interaction specification from the remote database based on the identification information on the industrial device. The remote database may be connected to in the remote device via the internet or built in the remote device.
In another embodiment, the interaction specification of the industrial device is available in the memory of the industrial device or in a memory device connected to the industrial device. The user interface application in the mobile device may read the interaction specification from the industrial device by using a standardized read operation by means of a standardized API and protocol. Thus, the interaction specification may be stored in the industrial device and discovered by reading the interaction specification to the user interface application on demand.
Both of these methods use a standardized protocol and API to read the identification information or the complete interaction specification. In both cases, the interaction specification may be read on demand, for example, during the initialization of the user interface application or after the establishment of the remote connection. The interaction specification is then used to configure the user interface application of the remote device and/or the user interface application of the local device to be able to interact correctly with the industrial device.
In addition to a drive system/frequency converter, the embodiment are also applicable to other automated power conversion devices such as AC/DC modules, DC/AC modules, DC/DC modules, programmable logic controllers (PLC), switches, motion controllers, motion drives, servo motors, soft starters, robotics, cars, heavy equipment, and/or any other devices used for industrial automation.
An embodiment provides an apparatus comprising at least one processor and at least one memory including a computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to cause the apparatus to carry out the procedures of the above-described industrial automation device or terminal device.
The processing circuitry 10 may comprise the circuitries as subcircuitries, or they may be considered as computer program modules executed by the same physical processing circuitry. The memory 20 may store one or more computer program products (software 24) comprising program instructions that specify the operation of the circuitries. The memory may further store a database 26 comprising frequency controller interaction specification data, for example. The apparatus may further comprise an interface 22 (transmitter/receiver) providing the apparatus with communication capability with network nodes/devices.
As used herein, the term ‘circuitry’ refers to all of the following: (a) hardware-only circuit implementations such as implementations in only analog and/or digital circuitry; (b) combinations of circuits and software and/or firmware, such as (as applicable): (i) a combination of processor(s) or processor cores; or (ii) portions of processor(s)/software including digital signal processor(s), software, and at least one memory that work together to cause an apparatus to perform specific functions; and (c) circuits, such as a microprocessor(s) or a portion of a microprocessor(s), that require software or firmware for operation, even if the software or firmware is not physically present.
This definition of ‘circuitry’ applies to all uses of this term in this application. As a further example, as used herein, the term “circuitry” would also cover an implementation of merely a processor (or multiple processors) or portion of a processor, e.g. one core of a multi-core processor, and its (or their) accompanying software and/or firmware. The term “circuitry” would also cover, for example and if applicable to the particular element, a baseband integrated circuit, an application-specific integrated circuit (ASIC), and/or a field-programmable grid array (FPGA) circuit for the apparatus according to an embodiment of the invention.
The processes or methods described above in connection with
The present invention is applicable to cellular or mobile communication systems defined above but also to other suitable communication systems. The protocols used, the specifications of cellular communication systems, their network elements, and terminal devices develop rapidly. Such development may require extra changes to the described embodiments. Therefore, all words and expressions should be interpreted broadly and they are intended to illustrate, not to restrict, the embodiment.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
15199716.0 | Dec 2015 | EP | regional |