Silane-crosslinkable copolymer composition

Information

  • Patent Grant
  • 4689369
  • Patent Number
    4,689,369
  • Date Filed
    Wednesday, February 5, 1986
    38 years ago
  • Date Issued
    Tuesday, August 25, 1987
    37 years ago
Abstract
A silane-crosslinkable copolymer composition comprising:(A) 100 parts by weight of a copolymer prepared by radically polymerizing a polymerizable monomeric mixture consisting essentially of ethylene and an ethylenically unsaturated silane compound having a hydrolyzable organic group under a high pressure, and containing said silane compound in an amount of from 0.1 to 5 wt %;(B) from 0.001 to 10 parts by weight of a silanol condensation catalyst; and(C) from 0.01 to 5 parts by weight of a silane compound having a hydrolyzable organic group.
Description

FIELD OF THE INVENTION
The present invention relates to a silane-crosslinkable copolymer composition which can provide extrudates having improved appearance without decreasing the crosslinking rate at the initial stage of crosslinking of a crosslinkable ethylene copolymer and can be used in various molding fields.
BACKGROUND OF THE INVENTION
A method of silane-crosslinking a molded product of an ethylene copolymer graft-modified with an unsaturated silane compound, using water is described, for example, in Japanese Patent Publication No. 1711/13. This crosslinking method is advantageous over other methods, e.g., crosslinking using organic peroxides or radiation, in that equipment is simple, the limitations on the molding conditions are small, and the operation is easy.
For example, in the production of crosslinked electric power cables, the moldable temperature range in the crosslinking method using organic peroxides is from 20.degree. to 140.degree. C., whereas it is possible in the silane-crosslinking method to mold at the molding temperature of an uncrosslinked ethylene polymer, i.e., high temperatures.
Thus, the silane-crosslinking method which is industrially excellent is widely utilized in various fields, e.g., electric power cables, pipes, tubes, films, sheets, hollow moldings and foamed moldings.
An ethylene copolymer obtained by radical polymerization of ethylene and an unsaturated silane compound is economically advantageous and is used, as described, for example, in Japanese Patent Application (OPI) No. 9611/80 (the term "OPI" as used herein refers to a "published unexamined Japanese patent application").
However, in molding and crosslinking by the silane-crosslinking using the ethylene copolymer, condensation reaction occurs at the initial stage in an extruder during extrusion molding and unevenness tends to occur on the surface of a molding. This is an extremely great defect which deteriorates the commercial value of the product, and the improvement thereof is strongly demanded.
SUMMARY OF THE INVENTION
As a result of various studies to overcome the problems encountered in the prior arts, it has been found that the problems can be overcome without decreasing the rate of crosslinking in its initial stage if a specified amount of a silane compound having an organic group which is hydrolyzable during extrusion is added to a silane-crosslinkable ethylene copolymer to which a silanol condensation catalyst has been added. The present invention has been accomplished on the basis of this finding.
Accordingly, an object of the present invention is to provide a silane-crosslinkable copolymer composition comprising:
(A) 100 parts by weight of a copolymer prepared by radically polymerizing a polymerizable monomeric mixture consisting essentially of ethylene and an ethylenically unsaturated silane compound having a hydrolyzable organic group under a high pressure, and containing the silane compound in an amount of from 0.1 to 5 wt%;
(B) from 0.001 to 10 parts by weight of a silanol condensation catalyst; and
(C) from 0.01 to 5 parts by weight of a silane compound having a hydrolyzable organic group.
DETAILED DESCRIPTION OF THE INVENTION
The ethylene copolymer used as Component (A) in the composition of the present invention is a copolymer consisting essentially of ethylene and an ethylenically unsaturated silane compound having a hydrolyzable organic group.
The term "consisting essentially of" used herein means that the ethylene copolymer can contain up to 30 wt% of copolymerizable monomers other than ethylene and the ethylenically unsaturated silane compound having a hydrolyzable organic group. Examples of such optional monomers include .alpha.-olefins such as propylene, hexane-1 and 4-methylpentene-1; vinyl esters such as vinyl acetate and vinyl butyrate; unsaturated organic acid derivatives such as methyl acrylate and methyl methacrylate; unsaturated aromatic monomers such as styrene and .alpha.-methylstyrene; and vinyl ethers such as vinylmethyl ether and vinylphenyl ether. These optional monomers can be present in the ethylene copolymer in any forms, e.g., a graft form, a random form or a block form.
The ethylenically unsaturated silane compound which can be used is selected from various compounds having an ethylenically unsaturated bond copolymerizable with ethylene, and a hydrolyzable silane group. These compounds are represented by the formula:
RSiR'.sub.n Y.sub.3-n
wherein R is an ethylenically unsaturated hydrocarbyl or hydrocarbyloxy group; R' is an aliphatic saturated hydrocarbyl group; Y which is the same or different is a hydrolyzable organic group; and n is 0, 1 or 2.
Examples of the unsaturated silane compounds are the compounds of the above described formula wherein R is vinyl, allyl, isopropenyl, butenyl, cyclohexenyl or .gamma.-methacryloxypropyl; Y is methoxy, ethoxy, formyloxy, acetoxy, propionoxy, alkyl or arylamino; and R' is methyl, ethyl, propyl, decyl or phenyl.
The particularly preferred unsaturated silane compounds are compounds represented by the following formula, and .gamma.-methacryloxypropyltrimethoxysilane:
CH.sub.2 .dbd.CHSi(OA).sub.3
wherein A is a hydrocarbyl group having 1 to 8, preferably 1 to 4, carbon atoms.
The most preferred unsaturated silane compounds are vinyltrimethoxysilane, vinyltriethoxysilane and .gamma.-methacryloxypropyltrimethoxysilane.
Ethylene and the unsaturated silane compound are copolymerized under any conditions such that copolymerization of the two monomers occur. More specifically, those monomers are copolymerized under a pressure of 500 to 4,000 kg/cm.sup.2, preferably 1,000 to 4,000 kg/cm.sup.2, and at a temperature of 100.degree. to 400.degree. C., preferably 150.degree. to 350.degree. C., in the presence of a radical polymerization initiator, optionally together with up to about 30 wt% of a comonomer and a chain transfer agent. The two monomers are brought into contact with each other simultaneously or stepwise in a vessel or tube type reactor, preferably in a vessel type reactor.
In the copolymerization of ethylene and the unsaturated silane compound, any radical polymerization initiators, comonomers and chain transfer agents, which are conventionally used in homopolymerization of ethylene or copolymerization of ethylene with other monomers can be used.
Examples of radical polymerization initiators include (a) organic peroxides such as lauroyl peroxide, dipropionyl peroxide, benzoyl peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, and t-butyl peroxyisobutyrate; (b) molecular oxygen; and (c) azo compounds such as azobisisobutyronitrile and azoisobutylvaleronitrile.
Examples of the optional comonomers are the same as the above described copolymerizable monomers.
Examples of the chain transfer agent include (a) paraffinic hydrocarbons such as methane, ethane, propane, butane and pentane; (b) .alpha.-olefins such as propylene, butene-1 and hexene-1; (c) aldehydes such as formaldehyde, acetaldehyde and n-butylaldehyde; (d) ketones such as acetone, methyl ethyl ketone and cyclohexanone; (e) aromatic hydrocarbons; and (f) chlorinated hydrocarbons.
The copolymer used in the composition of the present invention contains 0.1 to 5 wt%, preferably 0.3 to 3 wt%, and more preferably 0.5 to 2 wt%, of the unsaturated silane compound unit.
The higher the content of the unsaturated silane compound in the copolymer, the greater the mechanical strength and heat resistance of the silane-crosslinked product thereof. However, if the content of such unsaturated silane compound is excessively high, the tensile elongation and heat sealability of the crosslinked product are reduced. In view of this, the content of the unsaturated silane compound in the copolymer is limited to the range of 0.1 to 5 wt%. This copolymer can be blended with other olefinic polymers, and even in this case, the content of the unsaturated silane compound in the blend must be limited to the range of 0.1 to 5 wt%.
The silanol condensation catalyst used as Component (B) in the composition of the present invention is generally selected from the compounds which can be conventionally used as a catalyst for accelerating dehydration condensation between silanol groups.
Examples of the silanol condensation catalysts are carboxylic acid salts of metals such as tin, zinc, iron, lead and cobalt, organic bases, inorganic acids, and organic acids.
Representative examples of the silanol condensation catalysts are (1) carboxylic acids of metals such as dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctoate, stannous acetate, stannous caprylate, lead naphthenate, lead caprylate and cobalt naphthenate; (2) organic bases such as ethylamine, dibutylamine, hexylamine and pyridine; (3) inorganic acids such as sulfuric acid and hydrochloric acid; and (4) organic acids such as toluenesulfonic acid, acetic acid, stearic acid and maleic acid.
The silanol condensation catalyst is used in an amount of 0.001 to 10 parts, preferably 0.01 to 5 parts, and more preferably 0.01 to 3 parts, by weight per 100 parts by weight of the ethylene copolymer as Component (A). If the amount of the silanol condensation catalyst is less than 0.001 part by weight per 100 parts by weight of Component (A), the crosslinking reaction does not proceed sufficiently. If, on the other hand, the amount of the silanol condensation catalyst is more than 10 parts by weight per 100 parts by weight of Component (A), local gelation proceeds in the extruder during extrusion and the extrudate has a very poor appearance.
The silane compound having a hydrolyzable organic group used as Component (C) can be saturated or unsaturated silanes so long as it has such hydrolyzable organic group. In view of easy availability, the ethylenically unsaturated silane compound constituting Component (A) is preferably used. The most preferred silane compounds are vinyltrimethoxysilane, vinyltriethoxysilane, and .gamma.-methacryloxypropyltrimethoxysilane.
Component (C) is used in an amount of 0.01 to 5 parts, preferably 0.05 to 3 parts, and more preferably 0.1 to 2 parts, by weight per 100 parts by weight of the ethylene copolymer used as Component (A). If the amount of Component (C) is less than 0.01 part by weight per 100 parts by weight of the ethylene copolymer, the desired effect of the present invention cannot be obtained. If, on the other hand, the amount of Component (C) is more than 5 parts by weight per 100 parts by weight of the ethylene copolymer, the rate of crosslinking at its initial stage decreases considerably and, in order to obtain a product having a sufficient heat resistance, the crosslinking treatment time increases, resulting in deterioration of operation efficiency.
The composition of the present invention is sufficient if only it has the above described compositions prior to kneading. For example, Components (A), (B) and (C) may be prepared into the desired composition in a kneader. Kneading can be conducted by conventional methods, and use of an extruder is preferred. The kneaded product is then silane-crosslinked with water (including moisture).
The composition of the present invention exhibits a remarkable effect such that the appearance of the molded product obtained is improved by the simple manner of adding a suitable amount of the silane compound as Component (C) at extrusion kneading, and this greatly increases the practical value of the composition of the present invention as a molding material for a resin molding.
The following examples and comparative examples are provided to further illustrate the composition of the present invention but are by no means intended as limiting.





EXAMPLES AND COMPARATIVE EXAMPLES
The ethylene copolymer of Example 1 shown in the Table below was prepared by the following procedures.
A reactor (inner capacity: 1.5 liters) equipped with a stirrer was fed with a mixture of ethylene, vinyltrimethoxysilane and propylene (molecular weight modifier), and t-butyl peroxyisobutyrate (radical generator) under the conditions shown below, so as to continuously produce an ethylene-vinyltrimethoxysilane copolymer.
______________________________________Amount Fed:Ethylene 43 kg/hrVinyltrimethoxysilane 0.39 kg/hrPropylene 0.65 kg/hrt-Butylperoxyisobutyrate 2.1 g/hrTemperature of Monomers Fed: 65.degree. C.Polymerization Pressure: 2,000 kg/cm.sup.2Maximum Reaction Temperature: 241.degree. C.Amount Produced: 5.8 kg/hr______________________________________
In Examples 2 to 12 and Comparative Examples 1 to 18, copolymers were prepared in the same manner as in Example 1 except that the starting materials and their amounts fed were changed as shown in the Table below.
To 100 parts by weight of each of the copolymers, 5 parts by weight of a catalyst master batch composed of polyethylene containing 1 wt% of dibutyltin dilaurate and a silane compound having a hydrolyzable organic group (the type and amount of the silane compound are shown in the Table) were added. The mixture was fed into a full tapered type screw extruder (diameter: 20 mm; L/D: 20; compression ratio: 2.5) and extrusion molded into a columnar strand having a diameter of 2 mm at extrusion temperature of 200.degree. C. and a number of revolution of screw of 50 rpm.
The strands were evaluated for their appearance by the following criteria.
o: Completely smooth surface
.DELTA.: Appreciable unevenness of the surface
x: Remarkable unevenness over the entire surface
The strands were immersed in hot water (80.degree. C.) for 7 hours and their gel fractions were measured by extracting a 0.5 g sample of each strand with boiling xylene in a Soxhlet extractor for 16 hours.
The content of the ethylenically unsaturated silane compound in each of the copolymers was measured with an infrared spectrophotometer.
The results of evaluation are shown in the Table below.
TABLE__________________________________________________________________________ Ethylenically Unsaturated Silane Compound Having Silane Compound Hydrolyzable Organic GroupComp. in Ethylene Copolymer Amount GelEx. Ex. Amount (parts by Appear- FractionNo. No. Type (wt %) Type weight*) ance (wt %)__________________________________________________________________________1 Vinyltrimethoxysilane 1.5 Vinyltrimethoxysilane 0.02 o 722 Vinyltrimethoxysilane 1.5 Vinyltrimethoxysilane 4.5 o 703 .gamma.-Methacryloylpropyl- 1.5 .gamma.-Methacryloxypropyl- 0.02 o 71 trimethoxysilane trimethoxysilane4 .gamma.-Methacryloxypropyl- 1.5 .gamma.-Methacryloxypropyl- 4.5 o 70 trimethoxysilane trimethoxysilane5 Vinyltriethoxysilane 2.0 .gamma.-Methacryloxypropyl- 0.02 o 71 trimethoxysilane6 Vinyltriethoxysilane 2.0 .gamma.-Methacryloxypropyl- 4.5 o 70 trimethoxysilane7 Vinyltrimethoxysilane 1.5 Vinyltriethoxysilane 0.02 o 728 Vinyltrimethoxysilane 1.5 Vinyltriethoxysilane 4.5 o 70 1 Vinyltrimethoxysilane 1.5 -- -- x 72 2 Vinyltrimethoxysilane 1.5 Vinyltrimethoxysilane 0.008 x 72 3 Vinyltrimethoxysilane 1.5 Vinyltrimethoxysilane 5.5 o 40 4 .gamma.-Methacryloxypropyl- 1.5 -- -- x 71 trimethoxysilane 5 .gamma.-Methacryloxypropyl- 1.5 .gamma.-Methacryloxypropyl- 0.008 x 71 trimethoxysilane trimethoxysilane 6 .gamma.-Methacryloxypropyl- 1.5 .gamma.-Methacryloxypropyl- 5.5 o 35 trimethoxysilane trimethoxysilane9 Vinyltrimethoxysilane 3.0 Vinyltrimethoxysilane 0.02 o 8010 Vinyltrimethoxysilane 3.0 Vinyltrimethoxysilane 4.5 o 80Methacryloxypropyl- 3.0 .gamma.-Methacryloxypropyl- 0.02 o 80 trimethoxysilane trimethoxysilaneMethacryloxypropyl- 3.0 .gamma.-Methacryloxypropyl- 4.5 o 80 trimethoxysilane trimethoxysilane 7 Vinyltrimethoxysilane 3.0 Vinyltrimethoxysilane 0.008 x 80 8 Vinyltrimethoxysilane 3.0 Vinyltrimethoxysilane 5.5 o 45 9 .gamma.-Methacryloxypropyl- 3.0 .gamma.-Methacryloxypropyl- 0.008 x 80 trimethoxysilane trimethoxysilaneMethacryloxypropyl- 3.0 .gamma.-Methacryloxypropyl- 5.5 o 45 trimethoxysilane trimethoxysilane 11 Vinyltrimethoxysilane 0.08 Vinyltrimethoxysilane 0.02 o 10 12 Vinyltrimethoxysilane 0.08 Vinyltrimethoxysilane 4.5 o 9Methacryloxypropyl- 0.08 .gamma.-Methacryloxypropyl- 0.02 o 8 trimethoxysilane trimethoxysilaneMethacryloxypropyl- 0.08 .gamma.-Methacryloxypropyl- 4.5 o 7 trimethoxysilane trimethoxysilane 15 Vinyltrimethoxysilane 5.5 Vinyltrimethoxysilane 0.02 x 90 16 Vinyltrimethoxysilane 5.5 Vinyltrimethoxysilane 4.5 x 89Methacryloxypropyl- 5.5 .gamma.-Methacryloxypropyl- 0.02 x 89 trimethoxysilane trimethoxysilaneMethacryloxypropyl- 5.5 .gamma.-Methacryloxypropyl- 4.5 x 88 trimethoxysilane trimethoxysilane__________________________________________________________________________ *Per 100 parts by weight of the ethylene copolymer
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
Claims
  • 1. A silane-crosslinkable copolymer composition, comprising:
  • (A) 100 parts by weight of a copolymer prepared by radically polymerizing a polymerizable monomeric mixture consisting essentially of ethylene and at least one ethylenically unsaturated silane compound selected from the group consisting of vinyltrimethoxysilane, vinyltriethoxysilane and .gamma.-methacryloxypropyltrimethoxysilane under a pressure ranging from 1000 to 4000 kg/cm.sup.2, and containing said silane compound in an amount of from 0.5 to 2 wt. %;
  • (B) from 0.001 to 10 parts by weight of a silanol condensation catalyst; and
  • (C) from 0.01 to 5 parts by weight of a silane compound of the formula RSiR'.sub.n (OA).sub.3-n, wherein R is an ethylenically unsaturated hydrocarbyl or hydrocarbyloxy group; R' is an aliphatic saturated hydrocarbyl group; OA is an alkoxy group of 1 to 8 carbon atoms; and n is 0,1 or 2.
  • 2. A composition as in claim 1, wherein the silanol condensation catalyst is used in an amount of 0.01 to 5 parts by weight per 100 parts by weight of Component (A).
  • 3. A composition as in claim 2, wherein the amount of the silanol condensation catalyst is 0.01 to 3 parts by weight.
  • 4. A composition as in claim 1, wherein the silane compound component (c) is vinyltrimethoxysilane, vinyltriethoxysilane, or .gamma.-methacryloxypropyltrimethoxysilane.
  • 5. A composition as in claim 1, wherein the amount of Component (C) is from 0.05 to 3 parts by weight per 100 parts by weight of Component (A).
  • 6. A composition as in claim 5, wherein the amount of Component (C) is 0.1 to 2 parts by weight.
Priority Claims (1)
Number Date Country Kind
60-36004 Feb 1985 JPX
US Referenced Citations (9)
Number Name Date Kind
3637899 Nametkin et al. Jan 1972
3764589 Bond, Jr. et al. Oct 1973
3776977 Chadha Dec 1973
3865897 Felender et al. Feb 1975
4191713 Yonezawa et al. Mar 1980
4297310 Akutsu et al. Oct 1981
4412042 Mutsuura et al. Oct 1983
4444948 Hochstrasser et al. Apr 1984
4446283 Doi et al. May 1984