1. Technical Field
The present invention relates generally to speech coding using a speech codec; and, more particularly, it relates to silence description coding for multi-rate speech codecs.
2. Description of Prior Art
Conventional speech codec systems that employ silence description coding typically employ some type of voice activity detection algorithm that determines the existence of a substantially speech-like signal contained within a speech signal. When no voice activity is detected in the speech signal, the conventional speech codec utilizes a reduced data transmission rate. In addition, in conventional speech codecs that employ discontinued transmission, operation at a full data transmission rate is performed only when there is an existence of the substantially speech-like signal contained within the speech signal.
A common approach to performing data transmission at the reduced rate, particularly within conventional speech codec systems that operate at multiple data transmission rates, is to employ a fixed reduced rate for each of a multiple data transmission rates. For example, a first reduced data transmission rate accompanies the highest of the multiple data transmission rates. A second reduced data transmission rate accompanies the lowest of the multiple data transmission rates. This convention solution of dedicating a separate reduced data transmission rate for each of the multiple data transmission rates results in gross over-allocation of encoder processing resources in the conventional speech codec, in that, more processing circuitry is required to accommodate each of the reduced data transmission rates. Additionally, it creates a computational complexity associated with the need to have a dedicated reduced data transmission rate for each of the multiple data transmission rates.
Another limitation associated with the conventional solution of having a separate reduced data transmission rate for each of the multiple data transmission rates is the intrinsic limitation of bandwidth available within any communication system. Inefficient allocation and management of the available bandwidth in the communication system provides undesirable limitations on the number of communication devices that may be employed at any given time. Additionally, the inefficient use of the available bandwidth precludes efficient use of the remaining bandwidth for other functions not associated exclusively with data transmission. In many conventional speech codec systems, the entire bandwidth spectrum is consumed, and there simply is no available remaining bandwidth in which to perform the other functions.
The traditional solution of detecting the existence of the substantially speech-like signal contained within a speech signal and adjusting the data transmission rate as a function of the substantially speech-like signal typically performs encoding and transmission of all speech segments. The encoding and transmission of all speech segments includes those speech segments that do not contain the substantially speech-like signal. This results in very inefficient allocation of the speech codec's processing resources, in that, every speech segment is encoded even in the absence of the substantially speech-like signal. Operation at the reduced data transmission rate typically involves transmitting a subset of parameters that the speech codec uses to encode the speech signal. The subset of parameters is typically transmitted only when there is a perceptual change in the substantially non-speech-like speech signal.
Other conventional speech codec systems discontinue data transmission altogether in the absence of the substantially speech-like signal. In these conventional speech codec systems, a voice activity detection algorithm is implemented that determines the existence of the substantially speech-like signal and simply discontinues data transmission when it is absent. Such systems suffer from the undesirable perceptual effect of apparent disconnection of the communication link, in that, the silence associated with no data transmission at all gives the listener the impression that no one is on the other end. This undesirable impression of disconnection of the communication link generated from interrupted data transmission greatly reduces the perceptual performance of such conventional speech codec systems. The conventional solution to generate the impression that another individual is on the other end involves performing comfort noise generation. Comfort noise generation is a specific mode of discontinued transmission wherein only a small number of speech parameters are transmitted from an encoder to a decoder in a speech codec, and intermediary values between the small number of speech parameters are generated via interpolation. The entirety of the speech parameters (including the interpolated values) are used to produce a reproduced non-speech signal that is perceptually indistinguishable from background noise. This solution of comfort noise generation provides the perceptual effect of background noise.
Further limitations and disadvantages of conventional and traditional systems will become apparent to one of skill in the art after reviewing the remainder of the present application with reference to the drawings.
Various aspects of the present invention can be found in a multi-rate speech codec that performs discontinued transmission. Specifically within the discontinued transmission, silence description coding of a speech signal is performed using a single silence description coding scheme independent of past, present, and future coding schemes that are employed to various portions of the speech signal. The speech signal has varying characteristics, and at least one of the varying characteristics is sometimes a substantially speech-like characteristic. The identification of the substantially speech-like characteristic is performed using voice detection circuitry. When there is an absence of the substantially speech-like characteristic in the speech signal, processing circuitry applies a predetermined coding mode to the speech signal independent of past, present, and future coding schemes. The predetermined coding mode is selected from among a plurality of coding modes.
In certain embodiments of the invention, the discontinued transmission involves voice activity detection, silence description coding, and comfort noise generation. The voice activity detection is performed in an encoder of the multi-rate speech codec that determines the existence of a substantially speech-like characteristic in the speech signal. The voice activity detection also detects a change in the perceptual characteristic of the speech signal. The silence description coding is also performed in the encoder wherein a small number of parameters used to code the speech signal are then transmitted to the decoder. The decoder performs the comfort noise generation to generate a non-speech-like signal that is perceptually indistinguishable from the speech signal. The silence description coding is performed to speech signals not having a substantially speech-like characteristic independent of past, present, and future coding schemes.
In certain embodiments of the invention, the predetermined coding mode fits within a predetermined bit rate budget. The predetermined bit rate budget is determined from the particular bit rate at which the multi-rate speech codec is operating. In other embodiments of the invention, the predetermined coding mode is a source coding mode that operates at a bit rate that is the lowest bit rate of all the source coding modes contained within the plurality of coding modes. Signaling coding and channel coding are also performed by the multi-rate speech codec in coding the speech signal. The multi-rate speech codes performs error checking within an unused portion of a bandwidth of the multi-rate speech codec's bit rate. This error checking involves majority voting in certain embodiments of the invention.
Other aspects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
Inherent to the design of the communication cells 160 and 170, there is a limited amount of bandwidth available in which each cell communication device 140 and 150 can communicate with the wireless communication devices 110, 120, and 130. Also, given the intrinsic complexity of any data communication system that handles the communication between a plurality of communication devices, to accommodate a larger number of communication devices, i.e. a larger plurality, either a broader amount of bandwidth must be dedicated to the data communication system or a more elegant method of data transfer between the devices must be performed. The more elegant and advanced the method, the greater the processing requirements, unless there is some intelligent manner of conserving the available data transmission bandwidth.
The wireless data communication system 100, as implemented in accordance with the present invention, performs silence description coding for each of the wireless communication devices 110, 120, and 130 to provide efficient allocation of processing resources of the cell communication devices 140 and 150. The wireless data communication system 100 is, in one embodiment, a multi-rate speech codec that switches between various data transmission rates available to the wireless communication devices 110, 120, and 130.
Discontinued transmission is performed within the wireless data communication system 100 when voice activity detection circuit (not shown) detects the absence of a substantially voice-like characteristic in a speech signal. Silence description coding is performed to code those portions of the speech signal that the voice activity detection circuit classifies as having a substantially non-voice-like characteristic. The silence description coding is applied using a data transmission bit rate that fits within a predetermined budget as governed by available data transmission rates within the multi-rate speech codec. In addition, the silence description coding is performed independent of past, present, and future coding schemes that are employed to various portions of the speech signal. That is to say, the silence description coding that is applied to a particular portion of the speech signal having a substantially non-voice-like characteristic is not coupled to the silence description coding that is applied to other portions of the speech signal. In certain embodiments of the invention, the data transmission bit rate that fits within a predetermined budget is the lowest data transmission rate within the multi-rate speech codec.
By operating at the lowest data transmission rate within the multi-rate speech codec, the wireless data communication system 100 serves to reduce erroneous data transmission by transmitting redundant data and performing majority voting in certain embodiments of the invention. The use of the lowest data transmission rate enables the use of the remaining bandwidth of the wireless data communication system 100 to perform error checking within the silence description coding. Such redundancy and error checking serve to compensate for electromagnetic interference and radio frequency interference, common to conventional wireless data communication systems, that typically results in either erroneous data transmission or a degraded perceptual quality of the data. Additionally, by ensuring proper data transmission using the redundancy and error checking, power may be conserved, in that, large segments of data need not be resent and repeated as errors are avoided during data transmission within the wireless data communication system 100.
In certain embodiments of the invention, the network communication devices 260 and 270 serve to interface various local area networks with a network. The wireline communication devices 220 and 230 form a first local area network, and the wireline communication devices 240 and 250 form a second local area network. Each of the first and the second local area networks interface with a network formed by the network communication devices 260 and 270 connected via the communication link 210.
Similar to the wireless data communication system 100, the wireline data communication system 200 suffers from an inherently limited amount of bandwidth available in which each network communication device 260 and 270 can communicate with the wireline communication devices 220, 230, 240 and 250. In order to accommodate a larger number of wireline communication devices within each of the local area networks, either a data transmission media having a larger bandwidth must be employed, i.e. fiber optic cable as opposed to coaxial twisted pair, or a more efficient manner of data transfer between the devices must be performed.
In certain embodiments of the invention, the wireline data communication system 200, as implemented in accordance with the present invention, performs silence description coding for each of the wireline communication devices 220, 230, 240 and 250 to provide efficient allocation of processing resources of the network communication devices 260 and 270. The wireline data communication system 200 is, in one embodiment, a multi-rate speech codec that switches between various data transmission rates available to the wireline communication devices 220, 230, 240 and 250.
Discontinued transmission is performed within the wireline data communication system 200 when voice activity detection circuit (not shown) detects the absence of a substantially voice-like characteristic in a speech signal. Similar to the wireless data communication system 100 of
Silence description coding is applied to the lowest data transmission rate within the multi-rate speech codec. Similar to the embodiment of the wireless data communication system 100 of
In certain embodiments of the invention, the data processing system 310 is processing circuitry that performs the loading of the plurality of unprocessed data 320 into a memory from which selected portions of the plurality of unprocessed data 320 are processed in a sequential manner. The processing circuitry possesses insufficient processing capability to handle the entirety of the plurality of unprocessed data 320 at a single, given time. The processing circuitry may employ any method known in the art that transfers data from a memory for processing and returns the plurality of processed data 330 to the memory.
In certain embodiments of the invention, the data processing system 310 is a system that converts a speech signal into encoded speech data. The encoded speech data may then be used to generate a reproduced speech signal perceptually indistinguishable from the speech signal using speech reproduction circuitry. In other embodiments of the invention, the data processing system 310 is a system that converts encoded speech data, represented as the plurality of unprocessed data 320, into the reproduced speech signal, represented as the plurality of processed data 330. In other embodiments of the invention, the data processing system 310 converts encoded speech data that is already in a form suitable for generating a reproduced speech signal perceptually indistinguishable from the speech signal, yet additional processing is performed to improve the perceptual quality of the encoded speech data for reproduction.
The data processing system 310 is, in one embodiment, a system that performs silence description coding and selects the lowest available data transmission rate in accordance with the embodiments described in
In certain embodiments of the invention, the decoder processing circuit 450 includes speech reproduction circuitry (not shown). Similarly, the encoder processing circuit 440 includes selection circuitry (not shown) that selects from a plurality of coding modes (not shown). The communication link 410 may be either a wireless or a wireline communication link without departing from the scope and spirit of the invention. The encoder processing circuit 440 identifies at least one perceptual characteristic of the speech signal and selects an appropriate silence description coding scheme depending on the identified perceptual characteristics of a speech signal. The at least one perceptual characteristic is a substantially speech-like signal in certain embodiments of the invention.
The speech codec 400 is, in one embodiment, a multi-rate speech codec that performs silence description coding to the speech signal 420 using the encoder processing circuit 440 and the decoder processing circuit 450. The silence description coding involves selecting the lowest data transmission rate within the multi-rate speech codec as described in the embodiments of
The speech codes 510 is, in one embodiment, a multi-rate speech codec that performs silence description coding to the speech signal 520 using the encoder processing circuit 570 and the decoder processing circuit 580. The silence description coding involves detecting the absence of a substantially speech-like signal in the speech signal 520 using the voice activity detection circuit 540 and selecting the lowest data transmission rate within the multi-rate speech codec as described in the embodiments of
The speech coding includes source coding, signaling coding, and channel coding in certain embodiments of the invention. The speech coding method 600 is silence description coding that is performed within a multi-rate speech codec wherein the scheme parameters are transmitted from an encoder to a decoder. The coding parameters may be transmitted from the cell communication device 150 (
In certain embodiments of the invention, the classification performed in the block 710 involves applying a weighted filter to the speech signal. Other characteristics of the speech signal are identified in addition to the existence of the substantially speech-like signal. The other characteristics include speech characteristics such as pitch, intensity, periodicity, or other characteristics familiar to those having skill in the art of speech signal processing.
In this particular embodiment of the invention, a block 830 determines whether the speech signal has either a substantially speech-like characteristic or a substantially non-speech-like characteristic. The block 830 uses the identified speech parameters extracted from the speech signal using the block 820. These speech parameters are processed to determine whether the speech signal has either the substantially speech-like characteristic or the substantially non-speech-like characteristic. A decision block 840 directs the speech coding method 800 to employ a speech coding, as shown in a block 850. The speech coding shown in the block 850 is applied to speech signals having a substantially speech-like signal. Alternatively, if the speech signal is found not to have a substantially speech-like signal, the speech signal is coded using silence description coding in a block 860. If desired, in an alternative block 870, error checking is performed in certain embodiments of the invention. The error checking of the alternative block 870 is the redundancy and error checking as described above that are used to ensure efficient allocation of the available bandwidth of a speech coding system, conservation of power resources, and minimization of electromagnetic interference and radio frequency interference.
Alternatively, when the speech signal is classified as having a substantially non-speech-like signal, a silence description coding scheme is employed. A lowest bit rate source coding is selected in a block 930. Redundancy of the source coding is performed in a block 940. Majority voting is employed in a block 950 using the redundancy of the block 940. Linear prediction coefficients and at least one gain corresponding to the speech signal in a block 960. A random excitation is employed in a block 970 within the speech coding method 900 as performed in accordance with the present invention.
In certain embodiments of the invention, the lowest bit rate source selected in a block 930 is the lowest data transmission rate within a multi-rate speech codec as described in specific embodiments employing the multi-rate speech codec of
In certain embodiments of the invention, the linear prediction coefficients and at least one gain corresponding to the speech signal are calculated in the block 960. The linear prediction coefficients and at least one gain are calculated using either a parametric coding scheme or a code-excited linear prediction coding scheme as known by those having skill in the art of speech signal processing. In certain embodiments of the invention as described above, the at least one gain corresponds to an energy level of the speech signal. The random excitation of the block 970 is a code-vector extracted from a randomly populated codebook. Alternatively, the random excitation of the block 970 is a randomly chosen code-vector.
In view of the above detailed description of the present invention and associated drawings, other modifications and variations will now become apparent to those skilled in the art. It should also be apparent that such other modifications and variations may be effected without departing from the spirit and scope of the present invention.
This application is a continuation of number 09/200,624, filed Nov. 30, 1998, now U.S. Pat. No. 6,256,606 which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5546395 | Sharma et al. | Aug 1996 | A |
5553243 | Harrison et al. | Sep 1996 | A |
5592586 | Maitra et al. | Jan 1997 | A |
5630016 | Swaminathan et al. | May 1997 | A |
5632005 | Davis et al. | May 1997 | A |
5687184 | Lorenz et al. | Nov 1997 | A |
5742930 | Howitt | Apr 1998 | A |
5778338 | Jacobs et al. | Jul 1998 | A |
5812965 | Massaloux | Sep 1998 | A |
5978761 | Johansson | Nov 1999 | A |
6029127 | Delargy et al. | Feb 2000 | A |
6182032 | Rapeli | Jan 2001 | B1 |
6256606 | Thyssen et al. | Jul 2001 | B1 |
Number | Date | Country |
---|---|---|
O680034 | Apr 1995 | EP |
WO9222891 | Dec 1992 | WO |
WO9815946 | Apr 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20010016811 A1 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09200624 | Nov 1998 | US |
Child | 09841764 | US |