For many years after sound suppressors for firearms were first developed, the sound suppressors were attached to firearm barrels by use of threads on the muzzle portion of the firearm barrel. Threads on the exterior of the firearm muzzle mated with threads on the interior of a sound suppressor, and the user of the firearm could install the sound suppressor by screwing it onto the firearm barrel.
Such an arrangement was unsatisfactory in many regards. Attaching a sound suppressor to a firearm took excessive time and effort. During use, the sound suppressor could rattle loose. The threads could become damaged and it would not be possible to install the sound suppressor. And use of a sound suppressor meant it was not possible to also use a flash hider, muzzle brake or other muzzle device on the same firearm.
As used herein, the terms “sound suppressor”, “suppressor” and “silencer” have the same meaning and are interchangeable, and should be interpreted to be a device attached to or attachable to a firearm which reduces the audible report of the firearm when it is used to discharge ammunition. Silencers are to be contrasted with “flash suppressors” or “flash hiders” which are designed to reduce the amount of muzzle flash that a firearm creates when it is fired, and silencers should be contrasted with “muzzle brakes” which redirect expanding gases from the discharge of ammunition in a firearm in order to reduce muzzle rise or recoil. The term “muzzle device” used herein refers collectively to flash suppressors, flash hiders and muzzle brakes which may be attached to the muzzle end of a firearm barrel, or which may be formed into the muzzle end of a firearm barrel.
The industry has address the problems in the prior art with several types of sound suppressor attachment arrangements.
U.S. Pat. No. 5,559,302 entitled “Bayonet Type Coupling for Firearms” which issued on Sep. 24, 1996 to inventor Gregory S. Latka discloses a spring-loaded mount for attaching a sound suppressor or other accessory to a firearm muzzle. The mount utilizes three (3) lugs located on the muzzle end of the firearm barrel. This is the type of sound suppressor mounting system commonly seen on HK MP5 submachine guns.
U.S. Pat. No. 4,893,426 entitled “Lugged Coupling Apparatus” which issued on Jan. 16, 1990 to inventor Timothy D. Bixler discloses a sound suppressor mount which uses three (3) lugs located on the muzzle end of a firearm barrel.
U.S. Pat. No. 8,091,462 entitled “Firearm Attachment Locking System” which issued on Jan. 10, 2012 to inventors Barry W. Dueck and Karl Honigmann discloses a firearm sound suppressor mount that affixes to a firearm barrel by using a radially-rotatable lock ring which is secured in place by a lever that presses against indentations in the lock ring.
U.S. Pat. No. 7,946,069 entitled “Systems for Attaching a Noise Suppressor to a Firearm” which issued on May 24, 2011 to inventors Barry W. Dueck, John W. Matthews and Brooke C. Smith discloses a firearm sound suppressor mount that rotatably locks a sound suppressor to a firearm muzzle using an eccentric nut and ratchet mechanism.
United States Patent Application Publication No. 2010/0229712 entitled “Muzzle Attachment System” filed by inventor James J. Graham and which was published on Sep. 16, 2010 discloses a sound suppressor mount that uses a wave washer/detent on the muzzle end of a firearm barrel combined with indentations on the end of the sound suppressor that attaches to the rifle barrel.
U.S. Pat. No. 8,794,376 entitled “Firearm Flash Suppressor System” which issued on Aug. 5, 2014 to inventors Jonathan Shults, Harrison Holden and Casey Brandol discloses a sound suppressor mount that uses cams and pins to secure a sound suppressor to the muzzle end of a firearm barrel. This system has proven to be unreliable because the cams can fail to secure the sound suppressor to a firearm barrel, and when ammunition is shot through the firearm barrel, expanding gases from the discharged ammunition cause the sound suppressor to disengage from the firearm barrel and travel downrange as a secondary projectile. Such a situation can result in user dissatisfaction as well as physical danger.
Notwithstanding prior art attempts to solve the problems associated with attaching a sound suppressor to a firearm, the existing solutions remain cumbersome, inconvenient, unreliable, fragile and/or expensive, showing a clear need for a viable silencer mount which serves the function of permitting a silencer to be releaseably mounted to the muzzle end of a firearm barrel and detached from the firearm barrel at will, preferably in conjunction with the use of a muzzle device on the muzzle end of the firearm barrel.
A novel and useful mount for attaching a silencer to the muzzle end of a firearm barrel has been invented.
It appears that the first successful firearm silencer or sound suppressor was invented by Hiram Percy Maxim, son of the great machine gun inventor Hiram Stevens Maxim. The Maxim firearm sound suppressor was patented on Mar. 30, 1909 as U.S. Pat. No. 916,885 under the title “Silent Firearm”. The Maxim silencer used a tube and a series of baffles to constrain expanding gases emitted by the discharge of ammunition in a firearm in order to reduce the sound or report caused by shooting the firearm.
In reality, a silencer or sound suppressor does not cause a firearm to be silent. Instead, it reduces the sound emitted by the firearm when it is shot by causing expanding gases that are released by burning gun powder to pass through a series of baffles within a confined cavity of the silencer. The speed of the expanding gases will be reduced by the silencer, and some of the energy of the expanding gases will be dissipated within the silencer, resulting in a lessened report when those gases exit the silencer compared to if those expanding gases had not been forced to travel through the silencer.
A lessened report from shooting a firearm is advantageous in many situations. In training or practicing with firearms, both the shooter and persons nearby a firearm that is being shot can suffer hearing loss, even when hearing protection is worn. The shooter and persons nearby can also find the loud report of some firearms, particularly short-barreled firearms, to be unpleasant. It is also an advantage in a military situation to conceal one's location when shooting a firearm in order to avoid attracting the attention of enemy troops. In a police situation, persons nearby can become alarmed or panicked as a result of hearing unexpected gunshots, leading them to experience stress and/or to flee the area in a manner that creates new dangers to themselves and to others. And in a hunting or pest control situation, the report of a firearm being discharged typically frightens game and pests alike, and can reduce the opportunity for the quarry to be bagged.
As noted in the BACKGROUND section above, it is desirable to provide for a silencer to be attached to a firearm by means other than simple threads on the end of the firearm barrel. A means for rapidly attaching the silencer to the firearm barrel, and for rapidly detaching the silencer from it will benefit the firearm user by permitting him to utilize or not utilize the silencer at will, depending upon his shooting environment and desirability for compactness of the firearm versus the desirability of reduced report from the firearm. Although permanently-mounted silencers or silencers which are constructed integral with a firearm are available, not all situations call for use of a silencer. In particular, using a firearm in confined areas can be more difficult when the length of the firearm is increased by having a silencer attached to it. Therefore the inventors desire to provide firearm users with a reliable and convenient mechanism for quickly and securely attaching a silencer to a firearm and removing the silencer from the firearm so that a firearm user can decide on a moment's notice whether or not to use his/her silencer in a particular situation.
Further, it is desirable to be able to use a silencer in conjunction with another type of muzzle device for a firearm, such as a flash hider or a muzzle brake. A flash hider serves to manage expanding gases created by shooting a firearm in a manner that a visible fireball or flash from escaping burning gases is reduced in size and/or intensity compared to shooting the firearm without the flash hider in place. Flash hiders are more appropriately called “flash suppressors” because they do not entirely hide or eliminate muzzle flash. A muzzle brake serves to reduce recoil and/or muzzle rise in a firearm by directing some of the expanding gases released by shooting the firearm to surfaces ports of the muzzle brake that will tend to generally draw the firearm muzzle forward or downward, compared to what its route of travel would be without the muzzle brake attached. Providing such functionality in addition to the noise reduction associated with use of a silencer is considered optimal.
In the invention, a firearm silencer mount is provided that permits a firearm sound suppressor to be quickly attached to and detached from either a muzzle device or a barrel without a muzzle device if the muzzle end of the barrel is configured for use with the invented silencer mount. The mount facilitates mounting a silencer or sound suppressor to a muzzle device by using a plurality of both primary lugs and backup lugs. A muzzle device configured to accept the silencer can affixed to the muzzle of a firearm barrel, or the muzzle of a firearm barrel can be machined or formed to have the structures necessary to mount the silencer to it. If a muzzle device is used, the muzzle device has axial slots to receive the primary lugs of the sound suppressor mount. The axial slots lead to sockets which permit the primary lugs to be rotated radially several degrees with respect to the longitudinal axis of the firearm barrel in order to secure the silencer to the muzzle device. The muzzle device also has an annular groove which accept the backup lugs and permits their rotation therein. The backup lugs can reach the annular groove by traveling through the aforementioned axial slots. This arrangement serves to interfere with the possible distal axial movement of the lugs with respect to the firearm barrel, thus preventing the sound suppressor from disengaging from the muzzle device during use.
When a silencer is mounted to a muzzle device using the invented mount as described in the prior paragraph and elsewhere in this document, the primary lugs firmly engage the sockets as the firearm silencer is rotated radially with respect to its longitudinal bore. Such rotation causes an angled bearing face of the firearm sound suppressor to press against an angled bearing face of the muzzle device, applying a force thereto which tends to draw the primary lugs distally away from the firearm muzzle and causing them to lock in their sockets. The rotation occurs within screw threads of the silencer compression nut and threaded keyed back cap that gradually force the two angled bearing faces to approach and eventually contact each other. A series of detents on the firearm sound suppressor gives the user the feel of positive clicks as the sound suppressor is rotated, causing the two bearing faces to bear against each other and causing the primary lugs to be tightly and securely fixed in the radial grooves. This securely mounts the firearm sound suppressor to the muzzle device.
In the event that the primary lugs are bent, broken or destroyed, or otherwise fail to function, then any force which would tend to move the firearm sound suppressor distally away from the muzzle device will cause the backup lugs to engage the annular groove in which they rest, thereby preventing undesirable departure of the firearm sound suppressor from the muzzle device.
Even more simply described, the invented firearm sound suppressor mount uses a plurality of lugs on the proximal end of a firearm sound suppressor to firmly engage a muzzle device which is affixed to a firearm barrel. On the firearm sound suppressor, a plurality of lugs on a compression nut secure into sockets on the muzzle device, while opposed bearing faces of the sound suppressor and muzzle device firmly press against each other to achieve secure fitment of the sound suppressor to the muzzle device so that they can operate together as a unitary device. This system keeps the firearm sound suppressor from unscrewing or loosening with respect to the muzzle device under extreme vibration and through vast thermal changes.
Referring to the figures, an example implementation of the inventive concepts is depicted. In
The silencer attaches to the muzzle brake or other muzzle device or specially-configured firearm barrel. The silencer is an elongate device with a longitudinal axis that generally aligns with the bore of a firearm barrel to which it attaches. The proximal end of the silencer attaches to the muzzle device, and the distal end of the silencer is free. Both a bullet and expanding gases from a firearm barrel enter the proximal end of the silencer and later exit the distal end of the silencer from where the bullet travels to its target.
The example silencer includes a lugged and threaded compression nut 2 which operates with threaded keyed back cap 3 to compress wave spring 13 against a detent 4 to create a rotationally securable and releasable lugged silencer attachment mechanism 15. The rotationally securable and releasable lugged silencer attachment mechanism 15 serves to attach the silencer to the muzzle device or brake 1 and to detach it therefrom using the principles explained in the SUMMARY section above.
The example silencer 14 also has a tube 5 which attaches to the rotationally securable and releasable lugged silencer attachment mechanism 15. The tube 5 serves to house a series of baffles 6 which provide a sound reduction function in the assembled silencer. The baffles 6 and tube 5 are assembled with a large spacer 7 oriented toward the proximal end of the silencer, a series of small spacers 8 in between the baffles 6, and a final spacer 9 oriented toward the distal end of the silencer. Generally, each baffle 6 has a spacer (7, 8 or 9) on its proximal and distal sides.
The example silencer 14 also has a front cap 10 at its distal end which completes its structural assembly. The front cap 10 has an internal opening for receiving therein a silencer escaping gas treatment mechanism 11 or its alternative embodiment 12. The escaping gas treatment mechanisms 11 and 12 tend to retain expanding gases from discharge of a firearm within the silencer 14 to provide a sound reduction function. The escaping gas treatment mechanisms 11 and 12 can also provide a flash reduction function, and are described in greater detail below.
Referring to
The example muzzle device 1 depicted in the figures provides a function not found in other muzzle devices. That function is not necessary to operation of the invented suppressor mount, but it enhances operation of the overall firearm system. The example muzzle device 1 is a muzzle brake with vent holes that create a gas chopping effect to hide muzzle flash. Traditional muzzle brakes allow expanding and burning gases from a rifle barrel to be vented to the side of the muzzle brake. The expanding gases set up a standing wave which provides somewhat optimal conditions for burning of powder residue, which results in a fireball around the muzzle brake when a firearm to which it is attached is fired. This fireball is known as muzzle flash.
The muzzle brake depicted in the figures has a body with a plurality of ports or gills through which expanding gas can exit to a region outside of the muzzle brake referred to herein as the flash region. In order to reduce muzzle flash, the invented muzzle brake has a small chamber area ahead of the rifle muzzle. The chamber area collects expanding and burning gases from the rifle muzzle, and builds up pressure as the bullet moves through a constricted bore of the muzzle brake ahead of the chamber area. A pair of vent tunnels extend from the chamber area to the exterior of the muzzle brake in an angled fashion so that gas in the chamber area passes through the vent tunnels to the flash region before the main body of burning and expanding gases reaches the flash region. Gas from the vent tunnels creates a chopping effect in the flash region in order to prevent a standing wave from being established in the flash region, thus creating sub-optimal conditions for powder burn. The sub-optimal conditions result in the expanding gases burning to a lesser extent than if the chopping effect were not used. Consequently the brake creates less flash than a brake without the unique chamber and vent tunnels.
The muzzle brake 1 of
The muzzle brake 1 has a chamber 203 which is distal to the attachment section and is in gas communication with the bore 202. When a round of ammunition is fired, the bullet travels from the firearm muzzle through the chamber 203 then down the bore 202 and out the distal end of the muzzle brake 1. The chamber 203 has a greater radial dimension than the bore 202. When the bullet reaches the bore 202, expanding gases build up in the chamber 203. Those gases are then directed laterally outward from the longitudinal axis of the muzzle brake 1, and forward from the firearm muzzle and from the attachment section 201a, by a pair of vent tunnels 204a and 204b. Gas which escapes the chamber 203 through the vent tunnels 204a and 204b reaches the flash region outside the periphery of the muzzle brake 1. As a bullet travels from the chamber 203 down the bore 202, it passes a plurality of vertical gas ports 205a, 205b and 205c, and a plurality of horizontal gas ports 206a, 206b, 206c, 206d, 206e and 206f. Gas exits the muzzle brake 1 through the vertical gas ports 205a, 205b and 205c, and gas exits the horizontal gas ports 206a, 206b, 206c, 206d, 206e and 206f to the flash region outside the periphery of the muzzle brake 1. Gas from the vent tunnels 204a and 204b reaches the flash region before gas from the vertical gas ports or horizontal gas ports reaches the flash region. By arriving at the flash region first, gas from the vent tunnels creates a chopping effect in the flash region. This chopping effect prevents gas from the horizontal and vertical gas ports from establishing a standing wave in the flash region. If a standing wave is established in the flash region, then burn conditions in the flash region will be relatively optimized and discharge gases from discharge of the firearm to which the muzzle brake 1 is attached will burn brightly. But the chopping effect provided by gas which the vent tunnels directs from the chamber 203 to the flash region and which arrives in the flash region prior to gas from the vertical and horizontal vent holes arriving in the flash region prevents a standing wave from being established in the flash region, thus creating sub-optimal conditions for powder burn in order to reduce muzzle flash. In this example, the vent tunnels are cylindrical, the vertical gas ports are round holes and the horizontal gas ports are rectangular with radiused corners, but they could be of any desired shape.
At least some of the gas ports such as horizontal gas ports 206a, 206b, 206d, 206e and 206f can include a push wall 207a, 207b and 207c against which escaping gas can press. By pressing forward against a push wall, the gas from a firearm discharge will tend to counteract some of the rearward recoil of shooting the firearm, making the firearm more controllable and more pleasant to shoot. In addition, the vertical gas ports will tend to push the firearm barrel downward to counteract muzzle rise.
In the example muzzle brake 1, a plurality of axial slots 210a, 210b and 210c facilitate axial movement of a silencer 14 with respect to the muzzle brake 1 by permitting lugs on the silencer 14 to move along the slots 210a, 210b and 210c. The axial slots 210a, 210b and 210c lead first to an annular groove 211. Backup lugs (discussed below) on a silencer 14 can travel axially through the axial slots 210a, 210b and 210c from the distal end of the muzzle brake 1 toward the proximal end of the muzzle brake 1 to the to the annular groove 211 there they can turn and travel in the annular groove. A distal groove wall 212 retains the backup lugs in place in the annular groove so that the silencer 14 is retained on the muzzle brake 1.
The axial slots 210a, 210b and 210c also lead to a plurality of retention sockets 215a, 215b and 215c. Primary lugs on a silencer 14 can travel down the axial slots to the retention sockets. The primary lugs can then turn into the retention sockets and be retained there. The primary lugs turn into the retention sockets by rotation of the silencer 14 with respect to the muzzle brake 1. The retention slots have a distal wall 216 against which the primary lugs bear to keep the silencer secured to the muzzle device. The retention slots on the muzzle device in combination with the primary lugs on the silencer are designed to secure the silencer on the muzzle device when the firearm to which these parts are attached is discharged. The backup lugs in their annular groove serve as a backup or secondary securement mechanism to retain the silencer on the muzzle device in case the primary lugs are broken or otherwise fail. This system prevents the sound suppressor from disengaging with the muzzle device during use.
Referring to
Referring to
Referring to
Referring to
When the invented silencer mount is constructed according to the example depicted herein, the primary and backup lugs on a silencer with their corresponding axial slots, annular groove and lug retention sockets on muzzle device are configured to ensure that the silencer can be installed on the muzzle device in one way only, so that improper installation is impossible. Installation is achieved by a user gripping the body of the silencer and turning it, so use of tools is avoided. Delicate pins and levers are avoided, for a sturdy and durable product. When the primary lugs enter their lug retention socks, further turning of the silencer with respect to the muzzle device draws the silencer toward the muzzle device causing an angled bearing face on the silencer (such as 1199a and 1199b in