This application claims priority on the basis of Japanese patent application 2008-012597, filed Jan. 23, 2008. The disclosure of Japanese application 2008-012597 is hereby incorporated by reference.
This invention relates to a silent chain having improvements by which the forces that act on the link plates as a result of tension applied to the chain are more uniformly distributed.
A typical silent chain comprising rows of plates, defined as guide rows and non-guide rows respectively. Each guide row is composed of a pair of opposed guide plates and a plurality of inner guide row plates disposed between the guide plates. Each of the inner guide row plates has a pair of pin holes. Each non-guide row is composed of a plurality of non-guide row plates, and each of the non-guide row plates also has a pair of pin holes. The number of non-guide row plates in each non-guide row exceeds, by one, the number of inner guide row plates in each guide row. The guide rows and non-guide rows are arranged alternately along the length of the chain, and the plates of the each non-guide row are interleaved with the plates of two adjacent guide rows and extend between the guide plates of the adjacent guide rows. Connecting pins, which are fixed to the guide plates, extend through pin holes in the interleaved inner guide row plates and non-guide row plates in order to connect the guide rows and the non-guide rows in articulating relationship.
As shown in
The pitch P of the connecting pins 511 and 512 is the same as that of the pin holes of the inner guide row plates 526, 527, 528 and 529. Equal annular clearances C exist between outer circumferential surfaces of the pins 511 and 512 and the inner circumferential surfaces of pin holes 551, etc., of the respective inner link plates 526, 527, 528 and 529.
When a tensile force acts on the silent chain 500, deflection occurs in the pins 511 and 512. As the deflections of the pins 511 and 512 increase, the pins come into abutting contact with the inner circumferential surfaces of the pin holes of the inner link plates 527 and 528, which are farthest from the outer link plates.
The tensile load becomes concentrated in the guide plates 521 and 522 and in the inner guide row plates 527 and 528. On the other hand, in the non-guide link row 530, tensile forces are concentrated in the outermost link plates 531 and 535 as a result of deflections of the pins 511 and 512, as explained in U.S. Pat. No. 5,989,141.
However, in the conventional silent chain, wear, elongation and rupture are liable to occur in the link plates in which the load is concentrated. To increase the plate strength, countermeasures such as increasing the plate thickness can be adopted. However, in the case of a chain used in the valve timing system of an engine, for example, where compactness and lightness in weight are important, increasing plate thickness has not been a satisfactory solution.
Accordingly, an object of the invention is to solve the above-described problems and to provide a silent chain, which is light in weight, compact, and torque resistant, and in which tensile force is more uniformly distributed despite deflection of the connecting pins, so that wear, elongation and the likelihood of rupture, are reduced.
The silent chain according to the invention comprising rows of plates, defined as guide rows and non-guide rows respectively. Each guide row is composed of a pair of opposed guide plates and a plurality of inner guide row plates disposed between the guide plates. Each of the inner guide row plates has a pair of pin holes. Each non-guide row is composed of a plurality of non-guide row plates, and each of the non-guide row plates also has a pair of pin holes. The number of non-guide row plates in each non-guide row exceeds, by one, the number of inner guide row plates in each guide row. The guide rows and non-guide rows are arranged alternately along the length of the chain, and the plates of the each non-guide row are interleaved with the plates of two adjacent guide rows and extend between the guide plates of the adjacent guide rows. Connecting pins extend through pin holes in the interleaved inner guide row plates and non-guide row plates in order to connect the guide rows and the non-guide rows in articulating relationship. The chain is characterized by the fact that the diameters of the pin holes in the plates of each non-guide row vary with increasing distance from the guide plates.
When a tensile force is exerted on the silent chain, causing its pins to be flexed, the tensile force is substantially uniformly transmitted to the link plates of the non-guide link row. Therefore, concentration of load on specific link plates is avoided. Wear, chain elongation, and likelihood of rupture are reduced. Moreover, these effects can be achieve in a chain that is both light in weight and compact, and that exhibits high torque resistance.
In an alternative embodiment, the diameters of the pin holes in the plates of each guide row can also vary with increasing distance from the guide plates. Therefore concentration of load on specific inner link plates of the guide rows is avoided, and wear, chain elongation, and likelihood of rupture are further reduced.
In the chain according to the invention, the diameters of the pin holes of the non-guide row plates, and, optionally, the diameters of the pin holes of the inner guide row plates, vary according to the distance from the guide plates of the chain. Varying the diameters of the pin holes tends to equalize the forces applied to the link plates when the connecting pins are deflected as a result of tension applied to the chain.
As shown in
Connecting pins 111 and 112 are respectively inserted into and fixed to, front and rear pin holes of the guide plates 121 and 122. Each pin extends through pin holes of the link plates 126, 127, 128, 129, 131, 132, 133, 134 and 135, connecting the interleaved rows of plates together while allowing articulation of the chain.
The diameters of pin holes 123 and 124 in the respective guide plate 121 and 122 are smaller than the diameters of pins 111 and 112. The pins 111 and 112 are press-fit into the guide plates 121 and 122. Further, the diameters of the pin holes of the inner link plates of the guide rows 120 and the diameters of the pin holes of the link plates of the non-guide link rows 130 are larger than the diameters of pins 111 and 112 so that toothed link plates can rotate relative to the connecting pins.
As shown in
The inner link plates 126, 127, 128 and 129 of the guide link row 120 are all the same size, and, as shown in
As shown in
When tensile force is exerted on the silent chain 100, as shown in
In a second embodiment, shown in
In the inner link plates 226, 227, 228 and 229 of the guide link row 220, as shown in
The pin holes in the non-guide row link plates 231, 232, 233, 234 and 235 have the same diameter relationship as that of the pin holes of the non-guide row guide plates in the first embodiment, as shown in
When tensile force is exerted on the silent chain 200, as shown in
It should be understood that the diameters of the holes in the link plates can be selected depending on materials, pin size, flexion characteristics of the connecting pins, conditions of use, etc., and that the chains do not necessarily include plates having pin holes diameters of the pin holes of standard diameters.
Number | Date | Country | Kind |
---|---|---|---|
2008-012597 | Jan 2008 | JP | national |