The FIGURE is a schematic representation of a substrate having a silicate resistant thermal barrier coating in accordance with the present invention.
It has been discovered that certain coatings react with fluid sand deposits and a reaction product forms that inhibits fluid sand penetration into the coating. The present invention relates to a coating system for a component, such as a turbine engine component, which takes advantage of this discovery.
Referring now to the FIGURE, there is shown a substrate 10 which may be a portion of a turbine engine component, such as an airfoil or a platform. The substrate 10 may be formed from any suitable metallic material known in the art such as a nickel based superalloy, a cobalt based alloy, a molybdenum based alloy, a niobium based alloy, or a titanium based alloy. Alternatively, the substrate 10 may be a ceramic based material or a ceramic matrix composite material.
The FIGURE schematically shows an optional layer 11 deposited on the substrate that consists of an oxidation resistant bondcoat. The bondcoat may be formed from any suitable oxidation resistant coating known in the art such as NiCoCrAlY or (Ni,Pt) Al bondcoats, i.e. a simple NiAl CrPtAl bondcoat. Alternatively, and especially for ceramic substrates, the bondcoat material could consist of MoSi2, or MoSi2 composites containing Si3N4 and/or SiC. Furthermore, the bondcoat material could consist of elemental Si. The bondcoat layer could be formed on the substrate by any suitable technique known in the art, including air plasma spraying, vacuum plasma spraying, pack aluminizing, over-the-pack aluminizing, chemical vapor deposition, directed vapor deposition, cathodic arc physical vapor deposition, electron beam physical vapor deposition, sputtering, sol-gel, or slurry-dipping.
In accordance with the present invention, a thermal barrier coating 12 is formed on at least one surface of the substrate 10. The thermal barrier coating 12 comprises a first layer 14 of a stabilized zirconia, hafnia, or titania material deposited onto at least one surface of the substrate 10. Rare earth materials may be used to stabilize the zirconia, hafnia, or titania. The rare earth materials may be at least one oxide selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, homium, erbium, thulium, ytterbium, lutetium, scandium, indium, and mixtures thereof. The rare earth materials may be present in an amount from 5.0 to 99 wt %, preferably 30 to 70 wt %. Alternatively, the zirconia, hafnia, or titania, may be stabilized with from about 1.0 to 25 wt %, preferably from 5.0 to 9.0 wt %, yttria. The first layer may have a thickness in the range of from 0.5 to 50 mils, preferably from 0.5 to 5.0 mils.
After the first layer 14 has been deposited, a second layer 16 of oxyapatite and/or garnet is then applied on top of the first layer 14. The second layer 16 has a thickness from 0.5 to 50 mils, preferably from 0.5 to 5.0 mils. If the second layer contains both oxyapatite and garnet, each can be present in an amount from 5.0 to 90 wt %, preferably from 5.0 to 50 wt %.
Thereafter, this process of forming alternating layers 14 and 16 is continued until the thermal barrier coating has a desired thickness in the range of from 0.5 to 40 mils.
In a preferred embodiment of the present invention, the last or outermost layer of the thermal barrier coating 12 is an oxyapatite and/or garnet layer. The oxyapatite and/or garnet layers act as barrier to molten sand penetration into the coating.
The layers 14 and 16 may be deposited using any suitable technique known in the art. For example, each layer may be deposited using electron beam physical vapor deposition (EB-PVD) or air-plasma spray (APS). Other application methods which can be used include sol-gel techniques, slurry techniques, chemical vapor deposition (CVD), and/or sputtering.
The benefit of the present invention is a thermal barrier coating that resists penetration of molten silicate material and provides enhanced durability in environments where sand induced distress of turbine airfoils occurs. The alternating layers of oxyapatite/garnet and yttria-stabilized zirconia seal the thermal barrier coating from molten sand infiltration.
It is apparent that there has been provided in accordance with the present invention a silicate resistant thermal barrier coating with alternating layers which fully satisfies the objects, means, and advantages set forth hereinbefore. While the present invention has been described in the context of the specific embodiments thereof, other unforeseeable alternatives, modifications, and variations may become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations as fall within the broad scope of the appended claims.