1. Field of the Invention
The invention relates generally to optic structures and optic devices. More particularly, the invention relates to acousto-optic structures and acousto-optic devices.
2. Description of the Related Art
Commercially available acousto-optic modulators often operate by releasing a traveling acoustic wave from an inter-digitated transducer (IDT) into an acousto-optically active medium, thereby creating a modulated refractive index in the acousto-optically active medium. Incident light is diffracted and frequency shifted from this modulated refractive index region and can be processed depending upon an output direction. To shrink the acousto-optic modulator to chip-scale size, structures to convert acoustic phase modulation into intensity phase modulation, such as a Mach-Zehnder interferometer or a photonic microcavity, have been demonstrated.
Since optical signal propagation characteristics and optical signal switching characteristics are important considerations within advanced data processing systems, desirable are additional acousto-optic modulator structures and their methods of fabrication.
Embodiments include an electro-optic structure, such as an acousto-optic modulator structure, a method for fabricating the electro-optic structure, such as the acousto-optic modulator structure and a method for operating an electro-optic device that results from the electro-optic structure, such as the acousto-optic modulator structure.
An electro-optic structure in accordance with the embodiments includes: (1) an electro-mechanical resonator; integrated with at least one of; (2)(a) a photonic resonator; and (2)(b) a radiation pressure driven detector. The foregoing integrated resonators may be located upon and formed using a single silicon-on-insulator substrate, although such is not necessarily a limitation of the embodiments.
An exemplary non-limiting electro-optic structure in accordance with the embodiments includes at least one substrate. The electro-optic structure also includes a plurality of rigidly connected resonator core components located movably suspended at least in-part over the at least one substrate and anchored to the at least one substrate at an anchor point. The electro-optic structure also includes at least one actuator electrode located over the at least one substrate and operatively spaced from a first one of the plurality of rigidly connected resonator core components. The electro-optic structure also includes an optical waveguide located over the at least one substrate and operatively spaced from a second one of the plurality of rigidly connected resonator core components.
Another exemplary non-limiting electro-optic structure in accordance with the embodiments includes at least one substrate. The electro-optic structure also includes at least three rigidly connected resonator core components located suspended at least in-part over the at least one substrate and anchored to the at least one substrate at an anchor point. The electro-optic structure also includes at least one actuator electrode located over the at least one substrate and operatively spaced from a first one of the plurality of rigidly connected resonator core components. The electro-optic structure also includes a first waveguide located over the substrate and operatively spaced from a second one of the plurality of rigidly connected resonator core components. The structure also includes a second waveguide located over the substrate and operatively spaced from a third one of the plurality of rigidly connected resonator core components, where the first one of the plurality of rigidly connected resonator core components is interposed between the second one of the plurality of rigidly connected resonator core components and the third one of the plurality of rigidly connected resonator core components.
Also considered within the context of non-limiting embodiments are opto-acoustic oscillators that include the foregoing electro-optic structures that may comprise acousto-optic modulator structures.
An exemplary non-limiting method for fabricating an electro-optic structure in accordance with the embodiments includes patterning a surface semiconductor layer within a silicon-on-insulator substrate to form upon a buried oxide layer a plurality of rigidly connected resonator core components, at least one actuator electrode operatively spaced from a first one of the plurality of rigidly connected resonator core components and an optical waveguide operatively spaced from a second one of the plurality of rigidly connected resonator core components. The method also includes etching portions of the buried oxide layer to provide the plurality of rigidly connected resonator core components separated from and movably suspended at least in-part over the substrate, but anchored to the substrate.
Exemplary non-limiting methods for operating an electro-optic device in accordance with the embodiments provide for use of an exemplary non-limiting structure in accordance with the embodiments for either: (1) modulating an optical signal within a waveguide within the structure by introducing an electrical signal into an actuator electrode within the structure; or (2) introducing a modulated optical signal into the waveguide within the structure and measuring an electrical signal at the actuator electrode within the structure.
Within the embodiments and the claimed invention with respect to the terminology of “operatively spaced” component structures of an electro-optic structure, such operative spacing is intended as a spacing that provides an operational electro-optic device (i.e., such as an acousto-optic modulator device) from an electro-optic structure (i.e., such as an acousto-optic modulator structure) in accordance with the embodiments when the electro-optic structure in accordance with the embodiments is electro-optically actuated to provide the electro-optic device. Thus, the description that follows also intends that an electro-optic structure or acousto-optic modulator structure in accordance with the embodiments once electro-optically actuated may be described as an electro-optic device or an acousto-optic modulator device.
The objects, features and advantages of the embodiments are understood within the context of the Detailed Description of the Embodiments, as set forth below. The Detailed Description of the Embodiments is understood within the context of the accompanying drawings, that form a material part of this disclosure, wherein:
The embodiments, which include an electro-optic structure that may comprise an acousto-optic modulator structure, a method for fabricating the electro-optic structure that may comprise the acousto-optic modulator structure and a method for operating an electro-optic device that may result from the electro-optic structure that may comprise the acousto-optic modulator structure, are understood within the context of the description set forth below. The description set forth below is understood within the context of the drawings described above. Since the drawings are intended for illustrative purposes, the drawings are not necessarily drawn to scale.
The embodiments are predicated upon a scheme of electro-optic modulation and acousto-optic modulation that utilizes: (1) a radio frequency powered electro-mechanical resonator for exciting mechanical motion in a first movable core component within a first electro-mechanical resonator; where (2) the mechanical motion in the first movable core component within the first electro-mechanical resonator is rigidly mechanically coupled to a second movable core component within a second resonator that is used to modify and modulate intensity transmission characteristics of an optical signal within an optical waveguide operatively coupled to the second movable core component within the second resonator. Thus, the second movable core component comprises a photonic resonator that is rigidly integrated with the first movable core component that comprises the electro-mechanical resonator.
Since significant mechanical motion in the electro-mechanical resonator core component is typically excited when a radio frequency and direct current electrical drive for the electro-mechanical resonator is at a resonant frequency, the modulator in accordance with the embodiments is typically anticipated to be narrowband. A particular application for the electro-optic modulator and the acousto-optic modulator in accordance with the embodiments is the monolithic integration of an opto-electronic oscillator within a silicon substrate.
Although the disclosure that follows illustrates the embodiments within the context of a movable electro-mechanical core component within an electro-mechanical resonator rigidly connected to a movable photonic core component within an optical resonator, where each of the movable electro-mechanical core component and the movable optical core component comprises one of a circular disk component and a circular ring component, the embodiments in general are not intended to be so limited. Rather each of a movable electro-mechanical core component within an electro-mechanical resonator rigidly connected with a movable photonic core component within a photonic resonator in accordance with the embodiments may comprise a movable core component including but not limited to a circular disk or a circular ring, an elliptical disk or an elliptical ring, a regular or irregular polygonal disk or ring, an alternative regular or irregular disk or ring shape, or a linear resonator cavity formed by Bragg reflectors.
Opto-electronic oscillators often have superior phase-noise performance characteristics in comparison with traditional quartz and acoustic-MEMS oscillators that operate in the 1-30 GHz range. Unlike crystal oscillators whose phase-noise performance characteristics are limited by an fQ product of a resonator, the phase-noise performance characteristics of an opto-electronic oscillator is only dependent on laser source output characteristics and optical delay element characteristics.
However, opto-electronic oscillators are often hand-assembled using discrete components that may include, but are not necessarily limited to, a surface acoustic wave (SAW) filter for frequency selection followed by a Mach-Zehnder modulator (MZM) for up-conversion. Within these more traditional opto-electronic oscillators, a signal chain includes electrical→acoustic→filter→electrical→impedance-match→electrical→optical progression. A silicon electro-optic modulator or acousto-optic modulator in accordance with the embodiments monolithically integrates the signal processing into one device by converting a signal from electrical→acoustic-filter→optical with minimal inefficiency. Moreover, a silicon electro-optic modulator or acousto-optic modulator in accordance with the embodiments may be fabricated with less than about 100 μm2 footprint and zero direct current power consumption.
1. General Considerations
2. Principle of Operation
A schematic diagram of an acousto-optic modulator in accordance with the embodiments is illustrated in
Within the acousto-optic modulator whose schematic plan-view diagram is illustrated in
Moreover, the radio frequency and direct current electrodes within the electro-mechanical disk resonator are separated from the disk within the electro-mechanical disk resonator by a distance from about 50 to about 250 nanometers. Similarly, the waveguide at the far right of
As will be illustrated in a schematic diagram that follows, each of the rigidly connected electro-mechanically actuated disk and optical disk that is illustrated in
3. Photonic Resonator
The optical resonator in the acousto-optic modulator as illustrated in
m λo=2JI R neff (1)
where m is an integer, λo is free space wavelength at resonance, R is the radius of the disk and neff is the effective index of the mode in the radius of the disk obtained by solving Maxwell's equation with appropriate boundary conditions.
The transmission spectrum dip observed at the output of the waveguide is a Lorentzian centered at the resonant wavelength λo as shown in
The silicon acousto-optic modulator is a photonic resonator based modulator similar to electro-optic modulators that have been demonstrated. In many electro-optic modulators, an effective index is changed by charge injection to obtain a resonance wavelength shift. In an acousto-optic modulator, the radial vibrations change the radius by a small displacement Δr. This in turn changes the resonance wavelength to:
m(λo+Δλ)=2JI (R+ΔR) neff (2)
which simplifies to:
Δλ/λo=ΔR/R (3)
The expected shift in the resonance wavelength for displacements of 0.5 nm for a 10 μm disk with resonance at 1581.76 nm is approximately 80 μm and is shown in
4. Mechanical Resonator
The radial contour mode resonator is excited by using an air gap capacitive electrostatic transduction. The frequency of operation of the disk is obtained by solving the equation:
δ Jo (δ)/J1 (δ)=1−σ (4)
where δ=ωo R sqrt (ρ(1−σ2)/E), ωo is the angular resonant frequency, R is the radius of the disk. ρ, E and σ are the density, Young's modulus and Poisson's ratio of silicon respectively. J0 and J1 are Bessel functions of the first kind.
The embodiments utilize separate disks for the mechanical resonator and the photonic resonator to inhibit the distortion and attenuation of the optical mode travelling in the photonic resonator from the free-electron charges on the MEMS resonator and the actuation electrodes. Further isolation is achieved by selectively implanting only the MEMS resonator (i.e., with either an n-type or a p-type dopant at a concentration from about 1017 to about 1020 dopant atoms per cubic centimeter) while keeping the photonic resonator and waveguide region undoped.
The coupling beam between the two disks enables strong mechanical interaction and connection between the two resonators. The scattering loss from the coupling beam is kept to a minimum by using a small beam width (i.e., a vertical dimension of the coupling beam as illustrated in
5. Fabrication Methodology
The acousto-optic modulator in accordance with the embodiments was fabricated using a three mask process on a custom “photonic-SOI” wafer (i.e., undoped 250 nm device layer for low optical loss and 3 μm thick buried oxide for isolation of the waveguides on device layer from the silicon substrate). The top silicon was thermally oxidized to obtain a thin oxide hard mask layer and a silicon device layer thickness of 220 nm as is illustrated in
The patterns were transferred into the oxide using a trifluoromethane/oxygen based reactive ion etch and then into the silicon device layer using a chlorine based reactive ion etch to define the modulator, waveguides and bond-pads as is illustrated in
A second resist mask was used to open implant windows to dope the MEMS resonator, electrodes and bond pads with boron ions as is illustrated in
Release windows (i.e., using a third resist mask) were then patterned near the modulator followed by a timed release etch in buffered oxide etchant to undercut the devices as is illustrated in
A top down optical microscopy image of a resulting acousto-optic modulator structure is shown in
6. Experimental Setup
To measure the optical resonance characteristics of an acousto-optic modulator device in accordance with the embodiments, light from a tunable laser was coupled into a waveguide, in conjunction with a cleaved optical fiber end and a grating coupler. The light output from the device was recollected from an output grating into a cleaved fiber and sent to a photodiode. A transmission spectrum similar to that shown in
The response of the acousto-optic modulator as described above was observed with the measurement apparatus shown in
7. Results
The MEMS resonator was actuated by applying 0 dBm radio frequency power over the frequency range from 220 MHz to 260 MHz along with a 20 V DC bias. The optical modulation at the mechanical resonant frequency is seen as a peak in the S21 plot of the network analyzer as shown in
8. Radiation Pressure-Driven Acousto-Optic Detector
Conventional silicon photonics use germanium or III-V detectors for measuring light intensity. In concert with the foregoing embodiments, additionally proposed is a direct transduction of the modulated light signal into mechanical motion in silicon, without the need for exotic materials. Transduction of an optical signal into a mechanical resonance in a high Q optical resonator has recently been reported (see, e.g., Carmon et al., Phy. Rev. Lett. 94, 223902 (2005) and Rokhsari et al., Optics Express, 13 (14), 5293 (11 Jul. 2005)).
Thus,
The radiation pressure forces the disk to expand with radial motion governed by:
mr″(t)+br′(t)+kr(t)=Frp=2|Ares(t)|2 ns/c (5)
where r(t) is the effective radial displacement, m is the effective disk mass, b is the mechanical dissipation, k is effective spring constant and Frp is the horizontal force applied by action of radiation pressure.
Thus, for resonators fabricated within the context of the foregoing reference to Carmon et al., a force generated is about 1 micro-newton as the power in the resonator reaches about 30 watts.
In turn, the harmonic motion of the disk modulates the field Ares within the optical resonator, is defined by:
dA
res(r,t)/dt+((1−T*/τ0)+(αc/ns)+(r(t)/R)Ares(r,t))=K*c Ain(t)/ns2JI R (6)
where: (1) Ain(t) is optical field amplitude normalized such that |Ain(t)|2 is the input optical power to the optical resonator; (2) a is the loss per unit length within the resonator; (3) c is the velocity of light; (4) ns the effective refractive index of the resonator; (5) T and K are the transmission and coupling coefficients of the coupler and T* and K* are their complex conjugate; (6) τ0 is the round trip travel time for the light in the resonator; (7) R is the radius of the optical resonator; and (8) r(t) is the effective radial displacement , in accordance with the definitions provided in
This optical pressure effect was confirmed in the case of a constant amplitude input Ain. In the case of the acousto-optic oscillator, Ain for the detector is the modulated optical output from the disk in the modulator. The modulation frequency is chosen near the mechanical resonant frequency ωmech of the detector. The amplitude variation and the phase information of the modulated Ain can be transferred to acoustic vibrations in the detection disk according to equation 5 and equation 6. It is proposed to derive analytically the opto-mechanical transduction mechanism in the presence of a modulated light source. The proposed configuration has been solved numerically and enables phase locking of the detector disk to the acousto-optic modulator, providing stable feedback for the oscillator. Thus, the opto-acoustic oscillator as illustrated in
The embodiments also contemplate that a radiation pressure driven detector in conjunction with a micro-electro-mechanical-system (MEMS) disk resonator absent an optical disk resonator (i.e., the bottom two disks at the left hand side of
9. Simulation Results of Opto-Acoustic Oscillator
Analytical and numerical models of the four components of the opto-acoustic oscillator as illustrated in
Results of the foregoing simulation experiments are shown in the graphs of
1. Disk Resonator Based Modulator
To obtain higher mechanical frequencies closer to a GHz disk resonators are scaled to a smaller radius of 3.8 μm (i.e., a range from about 1 μm to about 4 μm) compared to the 10 μm radius used for the foregoing first embodiment 236 MHz demonstration.
The vibrational motion in the mechanical resonator is driven by the air gap capacitive actuators surrounding the mechanical resonator disk (and separated from the mechanical resonator disk by similar or other operational dimensions as described above within the context of the first embodiment) and the optomechanical disk resonator converts these vibrations to an optical intensity modulation at the output of the waveguide (which is separated from the optomechanical resonator disk by similar or other operational dimensions as described above within the context of the first embodiment). In order to reduce anchor loss and obtain high mechanical quality factors, a balanced (i.e., see-saw) anchor scheme was used. In this scheme, the anchor was connected at the nodal point of the coupling beam interposed between the two movably but rigidly connected resonator disks. The anchor has a length from about 3.0 to about 4.0 microns that separates the two resonator disks, and a width from about 0.03 to about 0.04 microns. On observing the optical transmission spectrum through the waveguides, an optical resonance with an optical quality factor of 5,500 was obtained. Light from a tunable laser with wavelength corresponding to the half maximum point of the optical resonance was input to the waveguide to measure the electro-optic response. The light at the output of the waveguide was sent to a photodiode whose electrical output was connected to port 2 of a network analyzer. RF output from port 1 along with a DC bias was applied to the electrodes surrounding the mechanical resonator. The electro-optic response as is illustrated in
2. Ring Resonator Based Modulator
An alternate scheme for obtaining high frequency resonators without reducing the size of resonators is to use higher order mode ring resonators. The second order radial mode of a ring resonator is set mainly by the width of the ring with little dependence on the radius of the ring This allows access to GHz frequencies using the second order modes without a need for scaling the radius. A SEM image of the ring resonator modulator structure is shown in
The optical resonance observed for the rings had a quality factor of ˜45,000 due to the relatively larger radius. The larger size also ensures a large capacitive actuation area which gives rise to a larger force, larger displacements and thereby higher optical modulation at the output.
3. 1.12 GHz Oscillator
The electrical output from the photodiode was fed back as the electrical input into the mechanical resonator to obtain an oscillator. For oscillations to start the unity gain condition was met by using an amplifier to compensate for the losses in the loop. A phase shifter was used to ensure that the phase around the loop is a multiple of 2π. From the electro optic response, it was seen that the insertion loss was lower for the fundamental mode at 175.76 MHz. On using a broadband amplifier, the gain condition was satisfied first at the fundamental resonance frequency of 175.76 MHz. This oscillator output as seen on the spectrum analyzer was shown in
To get the loop to oscillate at the frequency of the second order mode at 1.12 GHz where the insertion loss is higher, an experimental apparatus as shown in
4. Phase Noise
The phase noise of the oscillator at 1.12 GHz is measured using an Agilent 505 Signal source analyzer. The measured phase noise of the 1.12 GHz oscillator at an oscillation power of 8.8 dBm is shown in
where S(f) Φ is the phase noise power spectral density at the oscillator output, f is the frequency offset from the oscillator frequency v0, S(f) ψ is the phase noise power spectral density of the components forming the oscillator loop and Qmech is the mechanical quality factor. S(f) ψ includes the white noise at the detector, white noise and flicker noise of the amplifier. The Leeson frequency is specified by (v0/2Qmech) and represents the offset frequency beyond which the phase noise power spectral density shows white noise behavior. The expected Leeson frequency for the 1.12 GHz oscillator with a mechanical quality factor of 2,500 is 224 MHz. This predicted value corresponds well with the measured phase noise corner frequency as shown in
The foregoing embodiments are illustrative rather than limiting. To that end, revisions and modifications may be made to methods, materials, structures and dimensions of an electro-optic structure such as an acousto-optic modulator structure or related method in accordance with the embodiments while still providing an electro-optic structure, such as an acousto-optic modulator and related method in accordance with the invention, further in accordance with the accompanying claims.
As is understood by a person skilled in the art, within the context of the above disclosure, all references, including publications, patent applications and patents cited herein are hereby incorporated by reference in their entireties to the extent allowed, and to the same extent as if each reference was individually and specifically indicated to be incorporated by reference and was set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is some other element intervening.
The recitation of ranges of values herein is merely intended to serve as an efficient method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not impose a limitation on the scope of the invention unless otherwise indicated.
No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
It will be thus further apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. There is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions and equivalents falling within the spirit and scope of the invention, as defined in the appended claims. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application is a Continuation-in-Part (OP) bypass application from International Application PCT/US 2011/22211, filed 24 Jan. 2011, which in turn is related to, and derives priority from, U.S. Provisional Patent Application Ser. No. 61/298,330, filed 26 Jan. 2010, and titled “Silicon Opto-acoustic Oscillator Apparatus and Method,” the content of which is incorporated herein fully by reference.
This work was supported by the National Science Foundation under Cornell University Account Number E70-8345. The U.S. Government has rights in this invention.
Number | Date | Country | |
---|---|---|---|
61298330 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2011/002211 | Jan 2011 | US |
Child | 13556617 | US |