The present application relates to methods for providing storable and transportable energy carriers.
Carbon dioxide (often called carbonic acid gas) is a chemical compound of carbon and oxygen. Carbonic acid gas is a color- and odorless gas. It is a natural, component of the air with a little concentration and is generated in animals (resp. living beings) in the cell respiration, but also in the combustion of carbon-containing substances under (supply of) sufficient oxygen. Since the advent of the industrialization, the CO2 proportion in the atmosphere has risen significantly. A main cause for this are the CO2 emissions caused by humans, the so-called anthropogenic CO2 emissions. The carbonic acid gas in the atmosphere absorbs a portion of the heat radiation. This property renders carbonic acid gas to be a so-called green-house gas and is one of the co-originators of the green-house effect.
For these and also for other reasons, research and development is performed at present to find a way to reduce the anthropogenic CO2 emissions. In particular, for the generation of power, which is often carried out by the combustion of fossil energy carriers, such as coal or gas, but also in other combustion processes, for example in waste incineration, there is a strong demand for reducing CO2. By such processes, billions of tons of CO2 are emitted into the atmosphere per year.
Now, it is an object to provide a method that is capable of generating other energy carriers, for example as fuels or combustibles. The provision of the energy carriers should be preferably without emission of CO2.
According to the invention, a method is proposed for providing storable and transportable energy carriers. In one step, transformation of silicon-dioxide-containing or metal-oxide-containing starting material (herein also termed oxygen-containing starting material) to silicon or a metal occurs in a reduction process, wherein the primary energy for this reduction process is provided from a renewable energy source. A portion of the reduction products of the reduction process is then applied in a process for generating methanol, wherein, a synthesis gas composed of carbon monoxide and oxygen is used.
The industrial extraction of metals from their oxides by carbo-thermal and electrolytical processes requires high temperatures and produces large amounts of green-house gases (e.g. CO2). It is an advantage of the invention that the required energy input originates wholly or partially from renewable energy sources (e.g. solar energy) and that thereby no or hardly any green-house gases are emitted.
Further preferable embodiments can be taken from the description, the figures and the claims.
In the figures, different aspects of the invention are represented schematically, wherein:
The method according to the invention is based on a novel concept, which provides so-called reaction products under application of existing starting materials, which reaction products can be utilized either directly as energy carriers, or which can then further processed in intermediate steps be utilized as energy carriers.
The term “energy carrier” is used herein to designate compounds, which can be used as a fuel or combustible directly (such as, e.g., methanol 104 or hydrogen 118) and also compounds (such as, e.g., silicon 103 or elementary metals), which have an energy content or an elevated energy level and which can be converted in further steps with delivery of energy (refer to the energy E1 and E2 in
The transportability of an energy carrier is characterized herein by the chemical reaction potential. For a safe transportability of the energy carrier, this reaction potential should be as low as possible. In the case of silicon 103 as an energy carrier, specific framework conditions concerning the storage and transport should be observed, so as to avoid initiating an undesired or uncontrolled reaction (oxidation) of the silicon or the metal. The silicon 103 or the metal should preferably be stored and transported in a dry state. In addition, the silicon 103 or the metal should not be heated, because otherwise the probability of a reaction with water vapor from the ambient air or with oxygen increases.
Investigations have shown that, e.g., silicon up to approximately 300° C. has only a little tendency of reacting with water or oxygen. It is ideal to store and transport the silicon 103 or the metal together with a water-getter (i.e. a compound that is hydrophilic attracting water) and/or an oxygen-getter (i.e. a compound attracting oxygen).
The term silicon-dioxide-containing or metal-oxide-containing starting material 101 is used herein to designate compounds which contain a large portion of silicon dioxide (SiO2) or a large portion of at least one metal oxide (e.g. bauxite).
Sand and/or shale (SiO2+[CO3]2) are particularly suitable. Sand is a naturally occurring uncompacted sedimentary rock and occurs everywhere on the surface of the Earth in more or less large concentrations. A majority of the occurrences of sand consists of quartz (silicon dioxide; SiO2).
In
By a transformation, a silicon-dioxide-containing starting material 101 is converted into elementary silicon 103 by means of an endothermal reduction process 105. The elementary silicon 103 is called herein silicon for reasons of simplicity. According to the invention, the required primary energy (refer to primary energy P1 in
Basic details concerning solar-thermal processes can be taken from the book of Steinfeld A., Palumbo R., “Solar Thermochemical Process Technology”, Encyclopedia of Physical Science and Technology, Academic Press, ISBN 0-12-227410-5, vol. 15, pp. 237-256, 2001.
The transformation 105 is preferably a thermo-chemical transformation 105.1 (under application of heat energy), as indicated schematically in
MxOy→xM+0.5yO2(g) (1)
In the thermo-chemical transformation 105.1 of
In the electro-chemical transformation 105.2 according to
Preferably, the reduction process 105.1 is performed at a temperature of approximately 1900° Kelvin (=1630° C.), in order to reduce the silicon dioxide to silicon (Si). When a catalyst is utilized, the reduction process temperature is somewhat lower. In the electro-chemical transformation 105.2, significantly lower temperatures (preferably less than 500° C.) are required.
An electro-chemical transformation 105.2 is particularly suitable because, beside the provision of heat energy, it is also supported by electric current so as to be able to set the temperature required for the endothermal reduction lower. Additionally or alternatively to the input of electric current, it is however also possible to utilize a reduction agent and/or a catalyst. It is a disadvantage that here, though, depending on the process control and the reduction agent, CO2 can be generated according to circumstances.
Preferably, the reduction processes 105.1, 105.2 are performed in an oxygen-poor or an oxygen-free environment, because otherwise the elementary silicon 103 occurring in the reduction would (re-)oxidize immediately. In addition, oxygen together with silicon form a layer of silicon dioxide on the melt, which may hinder the reduction process.
Therefore, a process is ideal in which the starting material (e.g. sand) is supplied via a drop distance so as to offer a surface that is as large as possible for the reduction process 105, 105.1, 105.2. The starting material (e.g. sand) may however also be vortexed, stirred, blown up or foamed so as to offer a large surface for the reduction process 105, 105.1, 105.2.
A further method according to the invention is shown in
silicon 103,
carbonic oxide gas and/or carbonic acid gas and
hydrogen.
This reduction process 109 can be described by the following equation:
MxOy+yCH4→xM+y(2H2+CO) (2)
It is important that the hydrocarbon-containing gas 108 is dosed in the process to avoid silicon carbide (SiC) being formed instead of silicon as a consequence of a surplus of carbon (C).
The term biogas is used herein to denominate gases which may be generated, e.g., by a fermentation process under exclusion of air. Examples of biogases are the gases from sewage treatment plants, from useful animal husbandry, but also gases that are provided by facilities which convert biomass. Here, preferably, only biogases come to application, which originate from renewable sources and which are not in concurrency with the cultivation of food products. The methane can for example, be produced in a pyrolysis process, wherein the pyrolysis process is powered by biomass.
In this fourth method according to the invention, the hydrocarbon-containing gas 108 is applied on one hand to serve as a reduction agent for the reduction of the silicon dioxide or of another starting material. On the other hand, the hydrocarbon-containing gas 108 serves as a “starting material” for the provision of the synthesis gas composed of carbonic oxide gas and/or carbonic acid gas and hydrogen. The following reaction (3) takes place, e.g. according to
SiO2+CH4(g)→Si+2CO+4H2(g) (3)
The reaction equation (3) reflects a method according to
Instead of the reaction (3), the following carbo-thermal reduction can also be carried out:
MxOy+0.5yC→xM+0.5yCO2 (3.1)
In the method according to
The synthesis gas 110 (here, e.g., 2 CO+4H2 (g)) is further converted here to methanol 104 in a method 112 for generating methanol.
A further method according to the invention is shown in
In relation with
Si+2H2→SiO2+2H2 (4)
In addition to the silicon dioxide 117, hydrogen 118 is generated, which can for example be utilized as an energy carrier or fuel. Preferably, the hydrolysis 116 takes place at elevated temperatures. Temperatures, which are significantly above 100° C., are preferred. In the temperature range between 100° C. and 300° C., a conversion in usable quantities is achieved in cases when the silicon has a very fine-grained or a powdery consistency and is brought in contact with water vapor and stirred. Since otherwise silicon up to approximately 300° C. has only a very low tendency to react with water, the hydrolysis 116 is preferably carried out at temperatures in a temperature range between 300° C. and 600° C.
According to the invention, in a method according to
Under these framework conditions, hydrogen is then liberated in the reaction area in gaseous form. The hydrogen is extracted from the reaction area.
In the following, a numerical example is given for a method according to
1 Mol (=60.1 g) SiO2 yields 1 Mol (=28 g) Si. 1 Mol (=28 g) Si in turn yields 1 Mol (=451 g) H2. That is, 2.15 kg SiO2 form 1 kg Si, and from this 1 kg Si, 1.6 m3 H2 is generated.
The silicon 103 also has the tendency to oxidize again with oxygen to silicon dioxide 117, as represented in
The method according to
The oxidation of the silicon 103 should preferably be carried out with dry oxygen so as to exclude a simultaneous concurrent hydrolysis process.
The method according to
A further aspect of the invention is the conversion of CO2 to CO. A direct conversion requires temperatures in the range of far beyond 2000° C. and is therefore not economical depending on the circumstances. However, there is the known approach to conduct the conversion via the so-called water gas-shift-reaction, which takes place according to the following equation (5):
CO2+H2(g)CO(g)+H2O (5)
The ΔH in this reaction (5) is close to +41.19 kJ. At about 830° C., there is a 1:1 mixture of CO and CO2 (i.e. at approx. 830° C. the equilibrium constant K is close to one, i.e. K=1). From this mixture, CO can easily be separated from CO2. The CO2 can then, for example, be supplied back to this reaction (5). The required temperature can, for example, be generated by a mirror arrangement (e.g. a parabolic mirror). A synthesis gas can then be produced from the CO, and methanol can be produced from the synthesis gas.
The conversion of CO2 to CO may, however, also take place according to the following inventive principal:
MxOy→xM+0.5yCO2 (6.1)
xM+yCO2→MxOy+yCO (6.2)
The CO can be utilized as a combustible or can be converted together with hydrogen to methanol, as described above. Thus it is possible to reduce a silicon-dioxide-containing or a metal-oxide-containing starting material 101 in a reduction process to the corresponding metal, for example in sun-rich regions or at sites where other renewable energy forms are available. The metal can be utilized at another site (e.g. in the vicinity of an industrial facility or a power plant) so as to convert the CO2 that is generated into CO.
A reduction process according to equation (6.3) is particularly preferred, wherein the water is utilized together with the CO2 so as to generate a synthesis gas.
2xM+yH2O+yCO2→2MxOy+yCO+yH2 (6.3)
In a mixture composed of CO and CO2, the CO2 can simply be separated into water, methanol or other alcohols of CO by dissolution, because the CO does not dissolve or dissolves hardly at all.
In the hydrolysis 116 of the silicon 103 or the metal, hydrogen is generated as described. This hydrogen can, as shown in the equation (5), be converted together with CO2 (for example CO2 from flue gases) to CO. Then methanol can be produced from CO plus a portion of hydrogen (synthesis gas).
The generation of methanol can be performed according to one of the methods which are known and utilized at large scale. A method is preferred in which a catalyst (e.g. a CuO—ZnO—Cr2O3 or a Cu—Zn—Al2O3 catalyst) is utilized.
The invention has the advantage that in the reduction of the silicon dioxide or of one of the other metal oxides, no CO2 or less CO2 is disseminated. The required energy is provided from renewable energy sources, preferably from solar power plants 200 or 300.
The elementary silicon 103 is applied preferably in a powdery form or in a granular or grainy form so as to offer a preferably large surface in the oxidation (refer to step 119 in
Silicon plays an essential role for electronic components, such as solar cells and semiconductor chips, as well as for the generation of polysiloxanes. The elementary silicon 103 can thus also be further processed or graded up in a corresponding process.
The processes according to the invention are characterized by the fact, that they do not necessarily concern circulation processes, in which the products (e.g. the silicon dioxide or a metal oxide) is lead back to the beginning of the process for then being reduced again (e.g., to silicon or a metal). Due to the fact that silicon dioxide is a cheap starting material, the circulation can be designed openly. In this case the silicon dioxide which is generated at the end, or the metal oxide generated, are extracted from the process so as to be utilized, for example, for the manufacturing of glass.
In order to facilitate or accelerate the reduction reaction of the different reduction processes 105, 105.1, 105.2, 109, a catalyst and/or a reduction agent is preferably utilized. Beside the carbon or hydrocarbon for a so-called carbo-thermal reduction, metals also may serve as a reduction agent. Here, for example, it is possible to utilize magnesium (Mg) or zinc (Zn). The magnesium (Mg) can be produced using an electro-thermal reduction (analogously to
The thermal dissociation according to equation (1) can preferably be linked with an oxidation process for the generation of methanol. In this oxidation process, a hydrocarbon (e.g. methane gas) is brought together with the oxygen from the reaction of equation (1) and converted to methanol. The methanol can be generated by means of a direct oxidation or through a partial oxidation or through a reforming. Details in this respect can be taken from the parallel application PCT/EP2009/061707), which has been filed on 9 Sep. 2009.
Number | Date | Country | Kind |
---|---|---|---|
PCT/EP2008/067895 | Dec 2008 | EP | regional |
09152292.0 | Feb 2009 | EP | regional |
PCT/EP2009/061707 | Sep 2009 | EP | regional |
The present application claims the priorities of Patent Cooperation Treaty Application No. PCT/EP2009/065165, filed on Nov. 13, 2009; Patent Cooperation Treaty Application No. PCT/EP2009/061707, filed on Sep. 9, 2009; European Patent Application No. 09152292.0, filed Feb. 6, 2009; and Patent Cooperation Treaty Application No. PCT/EP2008/067895, filed Dec. 18, 2008; all of which are incorporated herein by reference in their entirety for all purposes.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/065165 | 11/13/2009 | WO | 00 | 9/29/2011 |