Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition

Information

  • Patent Grant
  • 8084097
  • Patent Number
    8,084,097
  • Date Filed
    Thursday, January 11, 2007
    17 years ago
  • Date Issued
    Tuesday, December 27, 2011
    12 years ago
Abstract
A method of preparing a silicone resin film comprising coating a release liner with a nanomaterial-filled silicone composition comprising (i) a free radical-curable silicone composition comprising a silicone resin and (ii) a carbon nanomaterial, and curing the silicone resin of the coated release liner; a silicone resin film prepared according to the preceding method; and a nanomaterial-filled silicone composition.
Description
FIELD OF THE INVENTION

The present invention relates to a method of preparing a silicone resin film and more particularly to a method comprising coating a release liner with a nanomaterial-filled silicone composition comprising (i) a free radical-curable silicone composition comprising a silicone resin and (ii) a carbon nanomaterial, and curing the silicone resin of the coated release liner. The present invention also relates to a silicone resin film prepared according to the preceding method, and to a nanomaterial-filled silicone composition.


BACKGROUND OF THE INVENTION

Silicone resins are useful in a variety of applications by virtue of their unique combination of properties, including high thermal stability, good moisture resistance, excellent flexibility, high oxygen resistance, low dielectric constant, and high transparency. For example, silicone resins are widely used as protective or dielectric coatings in the automotive, electronic, construction, appliance, and aerospace industries.


Although silicone resin coatings can be used to protect, insulate, or bond a variety of substrates, free standing silicone resin films have limited utility due to low tear strength, high brittleness, low glass transition temperature, and high coefficient of thermal expansion. Consequently, there is a need for free standing silicone resin films having improved mechanical and thermal properties.


SUMMARY OF THE INVENTION

The present invention is directed to a method of preparing a silicone resin film, the method comprising the steps of:


coating a release liner with a nanomaterial-filled silicone composition, wherein the silicone composition comprises:

    • a free radical-curable silicone composition comprising a silicone resin, and
    • a carbon nanomaterial; and


curing the silicone resin of the coated release liner.


The present invention is also directed to a silicone resin film prepared according to the aforementioned method.


The present invention is further directed to a nanomaterial-filled silicone composition, comprising:


a free radical-curable silicone composition comprising a silicone resin; and


a carbon nanomaterial.


The silicone resin film of the present invention has low coefficient of thermal expansion, high tensile strength, and high modulus compared to a silicone resin film prepared from the same silicone composition absent the carbon nanomaterial. Also, although the filled (i.e., carbon nanomaterial-containing) and unfilled silicone resin films have comparable glass transition temperatures, the former film exhibits a smaller change in modulus in the temperature range corresponding to the glass transition.


The silicone resin film of the present invention is useful in applications requiring films having high thermal stability, flexibility, mechanical strength, and transparency. For example, the silicone resin film can be used as an integral component of flexible displays, solar cells, flexible electronic boards, touch screens, fire-resistant wallpaper, and impact-resistant windows. The film is also a suitable substrate for transparent or nontransparent electrodes.







DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term “free of aliphatic unsaturation” means the hydrocarbyl or halogen-substituted hydrocarbyl group does not contain an aliphatic carbon-carbon double bond or carbon-carbon triple bond. Also, the term “mol % of the groups R2 in the silicone resin are alkenyl” is defined as the ratio of the number of moles of silicon-bonded alkenyl groups in the silicone resin to the total number of moles of the groups R2 in the resin, multiplied by 100.


A nanomaterial-filled silicone composition according to the present invention comprises:


a free radical-curable silicone composition comprising a silicone resin; and


a carbon nanomaterial.


The free radical-curable silicone composition can be any free radical curable silicone composition containing a silicone resin. Examples of free radical-curable silicone compositions include peroxide-curable silicone compositions, radiation-curable silicone compositions containing a free radical photoinitiator, and high energy radiation-curable silicone compositions. Typically, the free radical-curable silicone composition comprises the aforementioned silicone resin and, optionally, a cross-linking agent and/or a free radical initiator (e.g., a free radical photoinitiator or organic peroxide).


The silicone resin can be any silicone resin that can be cured (i.e., cross-linked) by at least one method selected from (i) exposing the silicone resin to radiation having a wavelength of from 150 to 800 nm in the presence of a free radical photoinitiator, (ii) heating the silicone resin in the presence of an organic peroxide, and (iii) exposing the silicone resin to an electron beam. The silicone resin is typically a copolymer containing T siloxane units and/or Q siloxane units in combination with M and/or D siloxane units.


For example, the free radical-curable silicone composition can comprise a silicone resin having the formula (R1R22SiO1/2)w(R22SiO2/2)x(R1SiO3/2)y(SiO4/2)z (I), wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation; R2 is R1, alkenyl, or alkynyl; w is from 0 to 0.99; x is from 0 to 0.99; y is from 0 to 0.99; z is from 0 to 0.65; w+x is from 0.01 to 0.99; y+z is from 0.01 to 0.99; and w+x+y+z=1.


The hydrocarbyl and halogen-substituted hydrocarbyl groups represented by R1 are free of aliphatic unsaturation and typically have from 1 to 10 carbon atoms, alternatively from 1 to 6 carbon atoms. Acyclic hydrocarbyl and halogen-substituted hydrocarbyl groups containing at least 3 carbon atoms can have a branched or unbranched structure. Examples of hydrocarbyl groups represented by R1 include, but are not limited to, alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, heptyl, octyl, nonyl, and decyl; cycloalkyl, such as cyclopentyl, cyclohexyl, and methylcyclohexyl; aryl, such as phenyl and naphthyl; alkaryl, such as tolyl and xylyl; and aralkyl, such as benzyl and phenethyl. Examples of halogen-substituted hydrocarbyl groups represented by R1 include, but are not limited to, 3,3,3-trifluoropropyl, 3-chloropropyl, chlorophenyl, dichlorophenyl, 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, and 2,2,3,3,4,4,5,5-octafluoropentyl.


The alkenyl groups represented by R2, which may be the same or different, typically have from 2 to about 10 carbon atoms, alternatively from 2 to 6 carbon atoms, and are exemplified by, but not limited to, vinyl, allyl, butenyl, hexenyl, and octenyl.


The alkynyl groups represented by R2, which may be the same or different, typically have from 2 to about 10 carbon atoms, alternatively from 2 to 6 carbon atoms, and are exemplified by, but not limited to, ethynyl, propynyl, butynyl, hexynyl, and octynyl.


In the formula (I) of the silicone resin, the subscripts w, x, y, and z are mole fractions. The subscript w typically has a value of from 0 to 0.99, alternatively from 0.02 to 0.75, alternatively from 0.05 to 0.3; the subscript x typically has a value of from 0 to 0.99, alternatively from 0 to 0.45, alternatively from 0 to 0.25; the subscript y typically has a value of from 0 to 0.99, alternatively from 0.25 to 0.8, alternatively from 0.5 to 0.8; the subscript z typically has a value of from 0 to 0.65, alternatively from 0 to 0.25, alternatively from 0 to 0.15. Also, the sum w+x is typically from 0.01 to 0.99, alternatively from 0.05 to 0.5, alternatively from 0.1 to 0.35. Further, the sum y+z is typically from 0.01 to 0.99, alternatively from 0.5 to 0.95, alternatively from 0.65 to 0.9.


In one embodiment of the silicone resin, the resin contains an average of at least one alkenyl group or alkynyl group, per molecule.


The silicone resin typically has a number-average molecular weight (Mn) of from 500 to 50,000, alternatively from 500 to 10,000, alternatively 1,000 to 3,000, where the molecular weight is determined by gel permeation chromatography employing a refractive index detector and silicone resin (MQ) standards.


The silicone resin typically contains less than 10% (w/w), alternatively less than 5% (w/w), alternatively less than 2% (w/w), of silicon-bonded hydroxy groups, as determined by 29Si NMR.


The silicone resin contains R1SiO3/2 units (i.e., T units) and/or SiO4/2 units (i.e., Q units) in combination with R1R22SiO1/2 units (i.e., M units) and/or R22SiO2/2 units (i.e., D units), where R1 and R2 are as described and exemplified above. For example, the silicone resin can be a DT resin, an MT resin, an MDT resin, a DTQ resin, and MTQ resin, and MDTQ resin, a DQ resin, an MQ resin, a DTQ resin, an MTQ resin, or an MDQ resin.


Examples of silicone resins include, but are not limited to, resins having the following formulae:


(Vi2MeSiO1/2)0.25(PhSiO3/2)0.75, (ViMe2SiO1/2)0.25(PhSiO3/2)0.75, (ViMe2SiO1/2)0.25(MeSiO3/2)0.25(PhSiO3/2)0.50, (ViMe2SiO1/2)0.15(PhSiO3/2)0.75(SiO4/2)0.1, and (Vi2MeSiO1/2)0.15(ViMe2SiO1/2)0.1(PhSiO3/2)0.75, where Me is methyl, Vi is vinyl, Ph is phenyl, and the numerical subscripts outside the parenthesis denote mole fractions. Also, in the preceding formulae, the sequence of units is unspecified.


The silicone resin can be a single silicone resin or a mixture comprising two or more different silicone resins, each as described above.


Methods of preparing silicone resins are well known in the art; many of these resins are commercially available. Silicone resins are typically prepared by cohydrolyzing the appropriate mixture of chlorosilane precursors in an organic solvent, such as toluene. For example, a silicone resin consisting essentially of R1R22SiO1/2 units and R1SiO3/2 units can be prepared by cohydrolyzing a compound having the formula R1R22SiCl and a compound having the formula R1SiCl3 in toluene, where R1 and R2 are as defined and exemplified above. The aqueous hydrochloric acid and silicone hydrolyzate are separated and the hydrolyzate is washed with water to remove residual acid and heated in the presence of a mild condensation catalyst to “body” the resin to the requisite viscosity. If desired, the resin can be further treated with a condensation catalyst in an organic solvent to reduce the content of silicon-bonded hydroxy groups. Alternatively, silanes containing hydrolysable groups other than chloro, such —Br, —I, —OCH3, —OC(O)CH3, —N(CH3)2, —NHCOCH3, and —SCH3, can be utilized as starting materials in the cohydrolysis reaction. The properties of the resin products depend on the types of silanes, the mole ratio of silanes, the degree of condensation, and the processing conditions.


The free radical-curable silicone composition of the present invention can comprise additional ingredients, provided the ingredient does not prevent the silicone resin of the nanomaterial-filled silicone composition from curing to form a silicone resin film having low coefficient of thermal expansion, high tensile strength, and high modulus, as described below. Examples of additional ingredients include, but are not limited to, silicone rubbers; unsaturated compounds; free radical initiators; organic solvents; UV stabilizers; sensitizers; dyes; flame retardants; antioxidants; fillers, such as reinforcing fillers, extending fillers, and conductive fillers; and adhesion promoters.


The free radical-curable silicone composition can further comprise at least one silicone rubber having an average of at least one silicon-bonded alkenyl group per molecule. As used herein, the term “silicone rubber” refers to a linear polydiorganosiloxane. The alkenyl group(s) can be located at terminal, pendant, or at both terminal and pendant positions.


The silicone rubber typically has a number-average molecular weight of from 500 to 1,000,000, alternatively from 1,000 to 100,000, alternatively from 1,500 to 10,000, where the molecular weight is determined by gel permeation chromatography employing a refractive index detector and silicone rubber standards.


The silicone rubber can be represented by the formula R1R32SiO(R32SiO)a SiR32R1 (II), wherein R1 is as described and exemplified above for the silicone resin, R3 is R1 or alkenyl, and the subscript a has a value such that the silicone rubber has a number-average molecular weight of from 500 to 1,000,000, provided the silicone rubber has an average of at least one silicon-bonded alkenyl group per molecule.


Examples of silicone rubbers include, but are not limited to, silicone rubbers having the following formulae: ViMe2SiO(Me2SiO)aSiMe2Vi, ViMe2SiO(Ph2SiO)aSiMe2Vi, and ViMe2SiO(PhMeSiO)aSiMe2Vi, where Me is methyl, Ph is phenyl, Vi is vinyl, and the subscript a has a value such that the silicone rubber has a number-average molecular weight of from 500 to 1,000,000.


The silicone rubber can be a single silicone rubber or a mixture comprising two or more different silicone rubbers, each as described above.


The concentration of the silicone rubber is typically from 0 to 50% (w/w), alternatively from 1 to 20% (w/w), alternatively from 5 to 10% (w/w), based on the total weight of the free radical-curable silicone composition.


Methods of preparing silicone rubbers containing silicon-bonded alkenyl groups are well known in the art; many of these compounds are commercially available.


The free radical-curable silicone composition can further comprise an unsaturated compound selected from (i) at least one organosilicon compound having at least one silicon-bonded alkenyl group per molecule, (ii) at least one organic compound having at least one aliphatic carbon-carbon double bond per molecule, and (iii) mixtures comprising (i) and (ii), wherein the unsaturated compound has a molecular weight less than 500. Alternatively, the unsaturated compound has a molecular weight less than 400 or less than 300. Also, the unsaturated compound can have a linear, branched, or cyclic structure.


The organosilicon compound can be an organosilane or an organosiloxane. The organosilane can be a monosilane, disilane, trisilane, or polysilane. Similarly, the organosiloxane can be a disiloxane, trisiloxane, or polysiloxane. Cyclosilanes and cyclosiloxanes typically have from 3 to 12 silicon atoms, alternatively from 3 to 10 silicon atoms, alternatively from 3 to 4 silicon atoms. In acyclic polysilanes and polysiloxanes, the silicon-bonded alkenyl group(s) can be located at terminal, pendant, or at both terminal and pendant positions.


Examples of organosilanes include, but are not limited to, silanes having the following formulae:


Vi4Si, PhSiVi3, MeSiVi3, PhMeSiVi2, Ph2SiVi2, and PhSi(CH2CH═CH2)3, where Me is methyl, Ph is phenyl, and Vi is vinyl.


Examples of organosiloxanes include, but are not limited to, siloxanes having the following formulae:


PhSi(OSiMe2Vi)3, Si(OSiMe2Vi)4, MeSi(OSiMe2Vi)3, and Ph2Si(OSiMe2Vi)2, where Me is methyl, Vi is vinyl, and Ph is phenyl.


The organic compound can be any organic compound containing at least one aliphatic carbon-carbon double bond per molecule, provided the compound does not prevent the silicone resin of the nanomaterial-filled silicone composition from curing to form a silicone resin film having low coefficient of thermal expansion, high tensile strength, and high modulus, as described below. The organic compound can be an alkene, a diene, a triene, or a polyene. Further, in acyclic organic compounds, the carbon-carbon double bonds can be located at terminal, pendant, or at both terminal and pendant positions.


The organic compound can contain one or more functional groups other than the aliphatic carbon-carbon double bond. Examples of suitable functional groups include, but are not limited to, —O—, >C═O, —CHO, —CO2—, —C≡N, —NO2, >C═C<, —C≡C—, —F, —Cl, —Br, and —I. The suitability of a particular unsaturated organic compound for use in the free-radical-curable silicone composition of the present invention can be readily determined by routine experimentation using the methods in the Examples below.


The organic compound can have a liquid or solid state at room temperature. Also, the organic compound can be soluble, partially soluble, or insoluble in the free radical-curable silicone composition. The normal boiling point of the organic compound, which depends on the molecular weight, structure, and number and nature of functional groups in the compound, can vary over a wide range. Preferably, the organic compound has a normal boiling point greater than the cure temperature of the silicone resin. Otherwise, appreciable amounts of the organic compound may be removed by volatilization during cure.


Examples of organic compounds containing aliphatic carbon-carbon double bonds include, but are not limited to, 1,4-divinylbenzene, 1,3-hexadienylbenzene, and 1,2-diethenylcyclobutane.


The unsaturated compound can be a single unsaturated compound or a mixture comprising two or more different unsaturated compounds, each as described above. For example, the unsaturated compound can be a single organosilane, a mixture of two different organosilanes, a single organosiloxane, a mixture of two different organosiloxanes, a mixture of an organosilane and an organosiloxane, a single organic compound, a mixture of two different organic compounds, a mixture of an organosilane and an organic compound, or a mixture of an organosiloxane and an organic compound.


The concentration of the unsaturated compound is typically from 0 to 70% (w/w), alternatively from 10 to 50% (w/w), alternatively from 20 to 40% (w/w), based on the total weight of the free radical-curable silicone composition.


Methods of preparing organosilanes and organosiloxanes containing silicon-bonded alkenyl groups, and organic compounds containing aliphatic carbon-carbon double bonds are well known in the art; many of these compounds are commercially available.


The free radical-curable silicone composition can further comprise at least one free radical initiator. The free radical initiator is typically a free radical photoinitiator or an organic peroxide. Further, the free radical photoinitiator can be any free radical photoinitiator capable of initiating cure (cross-linking) of the silicone resin upon exposure to radiation having a wavelength of from 200 to 800 nm.


Examples of free radical photoinitiators include, but are not limited to, benzophenone; 4,4′-bis(dimethylamino)benzophenone; halogenated benzophenones; acetophenone; α-hydroxyacetophenone; chloro acetophenones, such as dichloroacetophenones and trichloroacetophenones; dialkoxyacetophenones, such as 2,2-diethoxyacetophenone; α-hydroxyalkylphenones, such as 2-hydroxy-2-methyl-1-phenyl-1-propanone and 1-hydroxycyclohexyl phenyl ketone; α-aminoalkylphenones, such as 2-methyl-4′-(methylthio)-2-morpholiniopropiophenone; benzoin; benzoin ethers, such as benzoin methyl ether, benzoin ethyl ether, and benzoin isobutyl ether; benzil ketals, such as 2,2-dimethoxy-2-phenylacetophenone; acylphosphinoxides, such as diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide; xanthone derivatives; thioxanthone derivatives; fluorenone derivatives; methyl phenyl glyoxylate; acetonaphthone; anthraquinone derivatives; sulfonyl chlorides of aromatic compounds; and O-acyl α-oximinoketones, such as 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime.


The free radical photoinitiator can also be a polysilane, such as the phenylmethylpolysilanes defined by West in U.S. Pat. No. 4,260,780, which is hereby incorporated by reference; the aminated methylpolysilanes defined by Baney et al. in U.S. Pat. No. 4,314,956, which is hereby incorporated by reference; the methylpolysilanes of Peterson et al. in U.S. Pat. No. 4,276,424, which is hereby incorporated by reference; and the polysilastyrene defined by West et al. in U.S. Pat. No. 4,324,901, which is hereby incorporated by reference.


The free radical photoinitiator can be a single free radical photoinitiator or a mixture comprising two or more different free radical photoinitiators. The concentration of the free radical photoinitiator is typically from 0.1 to 6% (w/w), alternatively from 1 to 3% (w/w), based on the weight of the silicone resin.


The free radical initiator can also be an organic peroxide. Examples of organic peroxides include, diaroyl peroxides such as dibenzoyl peroxide, di-p-chlorobenzoyl peroxide, and bis-2,4-dichlorobenzoyl peroxide; dialkyl peroxides such as di-t-butyl peroxide and 2,5-dimethyl-2,5-di-(t-butylperoxy)hexane; diaralkyl peroxides such as dicumyl peroxide; alkyl aralkyl peroxides such as t-butyl cumyl peroxide and 1,4-bis(t-butylperoxyisopropyl)benzene; and alkyl aroyl peroxides such as t-butyl perbenzoate, t-butyl peracetate, and t-butyl peroctoate.


The organic peroxide can be a single peroxide or a mixture comprising two, or more different organic peroxides. The concentration of the organic peroxide is typically from 0.1 to 5% (w/w), alternatively from 0.2 to 2% (w/w), based on the weight of the silicone resin.


The free radical-curable silicone composition can further comprise at least one organic solvent. The organic solvent can be any aprotic or dipolar aprotic organic solvent that does not react with the silicone resin or additional ingredients) and is miscible with the silicone resin. Examples of organic solvents include, but are not limited to, saturated aliphatic hydrocarbons such as n-pentane, hexane, n-heptane, isooctane and dodecane; cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; cyclic ethers such as tetrahydrofuran (THF) and dioxane; ketones such as methyl isobutyl ketone (MIBK) halogenated alkanes such as trichloroethane; and halogenated aromatic hydrocarbons such as bromobenzene and chlorobenzene. The organic solvent can be a single organic solvent or a mixture comprising two or more different organic solvents, each as described above.


The concentration of the organic solvent is typically from 0 to 99% (w/w), alternatively from 30 to 80% (w/w), alternatively from 45 to 60% (w/w), based on the total weight of the free radical-curable silicone composition.


The carbon nanomaterial of the nanomaterial-filled silicone composition can be any carbon material having at least one physical dimension (e.g., particle diameter, fiber diameter, layer thickness) less than about 200 nm. Examples of carbon nanomaterials include, but are not limited to, carbon nanoparticles having three dimensions less than about 200 nm, such as quantum dots, hollow spheres, and fullerenes; fibrous carbon nanomaterials having two dimensions less than about 200 nm, such as nanotubes (e.g., single-walled nanotubes and multi-walled nanotubes) and nanofibers (e.g., axially aligned, platelet, and herringbone or fishbone nanofibers); and layered carbon nanomaterials having one dimension less than about 200 nm, such as carbon nanoplatelets (e.g., exfoliated graphite and graphene sheet). The carbon nanomaterial can be electrically conductive or semiconductive.


The carbon nanomaterial can also be an oxidized carbon nanomaterial, prepared by treating the aforementioned carbon nanomaterials with an oxidizing acid or mixture of acids at elevated temperature. For example, the carbon nanomaterial can be oxidized by heating the material in a mixture of concentrated nitric and concentrated sulfuric acid (1:3 v/v, 25 mL/g carbon) at a temperature of from 40 to 150° C. for 1-3 hours.


The carbon nanomaterial can be a single carbon nanomaterial or a mixture comprising at least two different carbon nanomaterials, each as described above.


The concentration of the carbon nanomaterial is typically from 0.0001 to 99% (w/w), alternatively from 0.001 to 50% (w/w), alternatively from 0.01 to 25% (w/w), alternatively from 0.1 to 10% (w/w), alternatively from 1 to 5% (w/w), based on the total weight of the nanomaterial-filled silicone composition.


Methods of preparing carbon nanomaterials are well-known in the art. For example, carbon nanoparticles (e.g., fullerenes) and fibrous carbon nanomaterials (e.g., nanotubes, and nanofibers) can be prepared using at least one of the following methods: arc discharge, laser ablation, and catalytic chemical vapor deposition. In the arc discharge process, an arc discharge between two graphite rods produces, depending on the gas atmosphere, single-walled nanotubes, multi-walled nanotubes, and fullerenes. In the laser ablation method, a graphite target loaded with a metal catalyst is irradiated with a laser in a tube furnace to produce single- and multi-walled nanotubes. In the catalytic chemical vapor deposition method, a carbon-containing gas or gas mixture is introduced into a tube furnace containing a metal catalyst at a temperature of from 500 to 1000° C. (and different pressures) to produce carbon nanotubes and nanofibers. Carbon nanoplatelets can be prepared by the intercalation and exfoliation of graphite.


The nanomaterial-filled silicone composition can be a one-part composition containing the silicone resin, carbon nanomaterial, and any additional ingredients in a single part or, alternatively, a multi-part composition comprising these components in two or more parts.


A method of preparing a silicone resin film according to the present invention comprises the steps of:


coating a release liner with a nanomaterial-filled silicone composition, wherein the silicone composition comprises:

    • a free radical-curable silicone composition comprising a silicone resin, and
    • a carbon nanomaterial; and


curing the silicone resin of the coated release liner.


In the first step of the method of preparing a silicone resin film, a release liner is coated with a nanomaterial-filled silicone composition, wherein the nanomaterial-filled silicone composition is as described and exemplified above.


The release liner can be any rigid or flexible material having a surface from which the silicone resin film can be removed without damage by delamination after the silicone resin is cured, as described below. Examples of release liners include, but are not limited to, silicon, quartz; fused quartz; aluminum oxide; ceramics; glass; metal foils; polyolefins such as polyethylene, polypropylene, polystyrene, and polyethyleneterephthalate; fluorocarbon polymers such as polytetrafluoroethylene and polyvinylfluoride; polyamides such as Nylon; polyimides; polyesters such as poly(methyl methacrylate); epoxy resins; polyethers; polycarbonates; polysulfones; and polyether sulfones. The release liner can also be a material, as exemplified above, having a surface treated with a release agent, such as a silicone release agent.


The release liner can be coated with the nanomaterial-filled silicone composition using conventional coating techniques, such as spin coating, dipping, spraying, brushing, or screen-printing. The amount of silicone composition is sufficient to form a cured silicone resin film having a thickness of from 1 to 500 μm in the second step of the method, described below.


In the second step of the method of preparing a silicone resin film, the silicone resin of the coated release liner is cured. The silicone resin can be cured using a variety of methods, depending on whether the nanomaterial-filled silicone composition used to coat the release liner contains a free radical initiator. For example, when the nanomaterial-filled silicone composition does not contain a free radical initiator, the silicone resin can be cured by exposing the coating to high energy radiation in the form of an electron beam. Typically, the accelerating voltage is from about 0.1 to 100 keV, the vacuum is from about 10 to 10−3 Pa, the electron current is from about 0.0001 to 1 ampere, and the power varies from about 0.1 watt to 1 kilowatt. The dose is typically from about 100 microcoulomb/cm2 to 100 coulomb/cm2, alternatively from about 1 to 10 coulombs/cm2. Depending on the voltage, the time of exposure is typically from about 10 seconds to 1 hour.


Also, when the nanomaterial-filled silicone composition contains a free radical photoinitiator, described above, the silicone resin can be cured by exposing the coating to radiation having a wavelength of from 150 to 800 nm, alternatively from 250 to 400 nm, at a dosage sufficient to cure (cross-link) the silicone resin. The light source is typically a medium pressure mercury-arc lamp. The dose of radiation is typically from 10 to 20,000 mJ/cm2, alternatively from 100 to 2,000 mJ/cm2. Furthermore, the coating can be externally heated during or after exposure to radiation.


Further, when the nanomaterial-filled silicone composition contains an organic peroxide, the silicone resin can be cured by exposing the coating to an electron beam, as described above, or by heating the coating. For example, the silicone resin can be cured by heating the coating at a temperature of from 50 to 250° C., for a period of from 1 to 50 h.


The method can further comprise the step of separating the silicone resin film from the release liner. The silicone resin film can be separated from the release liner by mechanically peeling the film away from the release liner.


The method of the present invention can further comprise forming a coating on at least a portion of the silicone resin film. Examples of coatings include, but are not limited to, cured silicone resins prepared by curing hydrosilylation-curable silicone resins or condensation-curable silicone resins; cured silicone resins prepared by curing sols of organosilsesquioxane resins; inorganic oxides, such as indium tin oxide, silicon dioxide, and titanium dioxide; inorganic nitrides, such as silicon nitride and gallium nitride; metals, such as copper, silver, gold, nickel, and chromium; and silicon, such as amorphous silicon, microcrystalline silicon, and polycrystalline silicon.


The silicone resin film typically has a thickness of from 1 to 500 μm, alternatively from 15 to 500 μm, alternatively from 15 to 300 μm, alternatively from 20 to 150 μm, alternatively from 30 to 125 μm.


The silicone resin film typically has a flexibility such that the film can be bent over a cylindrical steel mandrel having a diameter less than or equal to 3.2 mm without cracking, where the flexibility is determined as described in ASTM Standard D522-93a, Method B.


The silicone resin film has low coefficient of linear thermal expansion (CTE), high tensile strength, and high modulus. For example the film typically has a CTE of from 0 to 80 μm/m° C., alternatively from 0 to 20 μm/m° C., alternatively from 2 to 10 μm/m° C., at temperature of from room temperature (˜23±2° C.) to 200° C. Also, the film typically has a tensile strength at 25° C. of from 2 to 200 MPa, alternatively from 4 to 50 MPa, alternatively from 5 to 25 MPa. Further, the silicone resin film typically has a Young's modulus at 25° C. of from 0.1 to 10 GPa, alternatively from 1 to 6 GPa, alternatively from 3 to 5 GPa.


The transparency of the silicone resin film depends on a number of factors, such as the composition of the cured silicone resin, the thickness of the film, and the type and concentration of the carbon nanomaterial. The silicone resin film typically has a transparency (% transmittance) of at least 50%, alternatively at least 60%, alternatively at least 75%, alternatively at least 85%, in the visible region of the electromagnetic spectrum.


The silicone resin film of the present invention has low coefficient of thermal expansion, high tensile strength, and high modulus compared to a silicone resin film prepared from the same silicone composition absent the carbon nanomaterial. Also, although the filled (i.e., carbon nanomaterial-containing) and unfilled silicone resin films have comparable glass transition temperatures, the former film typically exhibits a smaller change in modulus in the temperature range corresponding to the glass transition.


The silicone resin film of the present invention is useful in applications requiring films having high thermal stability, flexibility, mechanical strength, and transparency. For example, the silicone resin film can be used as an integral component of flexible displays, solar cells, flexible electronic boards, touch screens, fire-resistant wallpaper, and impact-resistant windows. The film is also a suitable substrate for transparent or nontransparent electrodes.


EXAMPLES

The following examples are presented to better illustrate the nanomaterial-filled silicone composition, method, and silicone resin film of the present invention, but are not to be considered as limiting the invention, which is delineated in the appended claims. Unless otherwise noted, all parts and percentages reported in the examples are by weight. The following methods and materials were employed in the examples:


Measurement of Mechanical Properties


Tensile strength and Young's modulus were measured using an MTS Alliance RT/5 testing frame, equipped with a 100-N load cell. Tensile strength and Young's modulus were determined at room temperature (˜23±2° C.) for the test specimens of Examples 4 and 5.


The test specimen was loaded into two pneumatic grips spaced apart 25 mm and pulled at a crosshead speed of 1 mm/min. Load and displacement data were continuously collected. The steepest slope in the initial section of the load-displacement curve was taken as the Young's modulus. Reported values for tensile strength (MPa) and Young's modulus (MPa) each represent the average of three measurements made on different dumbbell-shaped test specimens from the same reinforced silicone resin film.


The highest point on the load-displacement curve was used to calculate the tensile strength according to the equation:

σ=F/(wb),

where:


σ=tensile strength, MPa,


F=highest force, N,


w=width of the test specimen, mm, and


b=thickness of the test specimen, mm.


Pyrograf®-III grade HHT-19 carbon nanofiber, sold by Pyrograf Products, Inc. (Cedarville, Ohio), is a heat-treated (up to 3000° C.) carbon nanofiber having a diameter of 100 to 200 nm and a length of 30,000 to 100,000 nm.


WN1500 Vacuum Bagging Film, sold by Airtech, Inc. (Huntington Beach, Calif.), is a nylon bagging film having a thickness of 50 μm.


Example 1

This example demonstrates the preparation of a chemically oxidized carbon nanofiber. Pyrograf®-III carbon nanofiber (2.0 g), 12.5 mL of concentrated nitric acid, and 37.5 mL of concentrated sulfuric acid were combined sequentially in a 500-mL three-neck flask equipped with a condenser, thermometer, Teflon-coated magnetic stirring bar, and a temperature controller. The mixture was heated to 80° C. and kept at this temperature for 3 h. The mixture was then cooled by placing the flask on a layer of dry ice in a one gallon pail. The mixture was poured into a Buchner funnel containing a nylon membrane (0.8 μm) and the carbon nanofibers were collected by vacuum filtration. The nanofibers remaining on the membrane were washed several times with deionized water until the pH of the filtrate was equal to the pH of the wash water. After the last wash, the carbon nanofibers were kept in the funnel for an additional 15 min. with continued application of the vacuum. Then the nanofibers, supported on the filter membrane, were placed in an oven at 100° C. for 1 h. The carbon nanofibers were removed from filter membrane and stored in a dry sealed glass jar.


Example 2

This example demonstrates the preparation of the silicone resin used in Example 3. Trimethoxyphenylsilane (200 g), tetramethyldivinyldisiloxane (38.7 g), deionized water (65.5 g), toluene (256 g), and trifluoromethanesulfonic acid (1.7 g) were combined in a 3-neck, round-bottom flask equipped with a Dean-Stark Trap and thermometer. The mixture was heated at 60 to 65° C. for 2 hours. The mixture was then heated to reflux and water and methanol were removed using a Dean-Stark trap. When the temperature of the mixture reached 80° C. and the removal of water and methanol was complete, the mixture was cooled to less than 50° C. Calcium carbonate (3.3 g) and water (about 1 g) were added to the mixture. The mixture was stirred at room temperature for 2 hours and then potassium hydroxide (0.17 g) was added to the mixture. The mixture was then heated to reflux and water was removed using a Dean-Stark trap. When the reaction temperature reached 120° C. and the removal of water was complete, the mixture was cooled to less than 40° C. Chlorodimethylvinylsilane (0.37 g) was added to the mixture and mixing was continued at room temperature for 1 hour. The mixture was filtered to give a solution of a silicone resin having the formula (PhSiO3/2)0.75(ViMe2SiO1/2)0.25 in toluene. The resin has a weight-average molecular weight of about 1700, has a number-average molecular weight of about 1440, and contains about 1 mol % of silicon-bonded hydroxy groups.


The volume of the solution was adjusted to produce a solution containing 79.5 percent by weight of the silicone resin in toluene. The resin concentration of the solution was determined by measuring the weight loss after drying a sample (2.0 g) of the solution in an oven at 150° C. for 1.5 hours.


Example 3

The oxidized carbon nanofiber of Example 1 (0.05 g) was mixed with 20.00 g of the silicone resin solution of Example 2 in a glass vial. The vial was placed in an ultrasonic bath for 210 min. The mixture was then subjected to centrifugation at 1500 rpm for 30 min. The supernatant was transferred to a clean vial.


Example 4

The silicone composition of Example 3 (5.0 g) was mixed with t-butyl peroxybenzoate (0.4% w/w). The resulting composition (0.5 g) was applied to the surface of WN1500 Vacuum Bagging Film (8 in.×12 in.) using a bound wire draw coating bar. The coated bagging film was then heated in an air-circulating oven according to the following cycle: room temperature to 150° C. at 2.5° C./minute, 150° C. for 60 min., 150° C. to 200° C. at 2.5° C./min., 200° C. for 60 min. The oven was turned off and the coated film was allowed to cool to room temperature inside the oven. The silicone resin film was separated from the Bagging Film. The silicone resin film had a thickness of from 0.03-0.05 mm. The tensile strength and Young's modulus of the coated bagging film and an uncoated bagging film were measured at room temperature. The corresponding properties for the silicone resin film, shown in Table 1, were calculated using the values for the uncoated and coated bagging films.


Example 5

A silicone resin film was prepared according to the method of Example 4, except the concentration of t-butyl peroxybenzoate in the silicone composition was 1.0% w/w. The mechanical properties of the silicone resin film are shown in Table 1.














TABLE 1








Thickness
Tensile Strength
Young's Modulus



Ex.
(mm)
(MPa)
(MPa)









4
0.03-0.05
>0.9
517.2 ± 40.5



5
0.03-0.05
>0.9
476.2 ± 28.2









Claims
  • 1. A nanomaterial-filled silicone composition, comprising: a free radical-curable silicone composition comprising a free radical initiator; a silicone resin; and a carbon nanomaterial, wherein the carbon nanomaterial is selected from fibrous carbon nanomaterials, layered carbon nanomaterials, and carbon nanoparticles selected from carbon quantum dots, carbon hollow spheres, and carbon fullerenes.
  • 2. The nanomaterial-filled silicone composition according to claim 1, wherein the free radical-curable silicone composition comprises a silicone resin having the formula (R1R22SiO1/2)w(R22SiO2/2)x(R1SiO3/2)y(SiO4/2)z (I), wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation; R2 is R1, alkenyl, or alkynyl; w is from 0 to 0.99; x is from 0 to 0.99; y is from 0 to 0.99; z is from 0 to 0.65; w+x is from 0.01 to 0.99; y+z is from 0.01 to 0.99; and w+x+y+z=1.
  • 3. The nanomaterial-filled silicone composition according to claim 2, wherein the resin contains an average of at least one alkenyl group or alkynyl group, per molecule.
  • 4. The nanomaterial-filled silicone composition according to claim 1, wherein the free radical-curable silicone composition further comprises at least one silicone rubber having an average of at least one silicon-bonded alkenyl group per molecule.
  • 5. A nanomaterial-filled silicone composition, comprising: a free radical-curable silicone composition comprising a free radical initiator; a silicone resin; and a carbon nanomaterial, wherein the free radical-curable silicone composition further comprises an unsaturated compound selected from (i) at least one organosilicon compound having at least one silicon-bonded alkenyl group per molecule, (ii) at least one organic compound having at least one aliphatic carbon-carbon double bond per molecule, and (iii) mixtures comprising (i) and (ii), wherein the unsaturated compound has a molecular weight less than 500.
  • 6. The nanomaterial-filled silicone composition according to claim 1, wherein the free radical initiator is selected from a free radical photoinitiator and an organic peroxide.
  • 7. The nanomaterial-filled silicone composition according to claim 1, wherein the concentration of the carbon nanomaterial is from 0.001 to 50% (w/w), based on the total weight of the nanomaterial-filled silicone composition.
  • 8. A method of preparing a silicone resin film, the method comprising the steps of: coating a release liner with a nanomaterial-filled silicone composition, wherein the silicone composition comprises: a free radical-curable silicone composition comprising a free radical initiator; a silicone resin, and a carbon nanomaterial; andcuring the silicone resin of the coated release liner.
  • 9. The method according to claim 8, wherein the carbon nanomaterial is selected from carbon nanoparticles, fibrous carbon nanomaterials, and layered carbon nanomaterials.
  • 10. The method according to claim 8, wherein the concentration of the carbon nanomaterial is from 0.001 to 50% (w/w), based on the total weight of the nanomaterial-filled silicone composition.
  • 11. A silicone resin film prepared according to the method of claim 8.
  • 12. A method of preparing a silicone resin film, the method comprising the steps of: providing a carbon nanomaterial;oxidizing the carbon nanomaterial, thereby forming an oxidized carbon nanomaterial;coating a release liner with a nanomaterial-filled silicone composition, wherein the silicone composition comprises a free radical-curable silicone composition comprising a free radical initiator, a silicone resin, and the oxidized carbon nanomaterial; andcuring the silicone resin of the coated release liner.
  • 13. The method of claim 12, wherein oxidizing the carbon nanomaterial includes heating the carbon nanomaterial in an acid or mixture of acids.
  • 14. The method of claim 13, wherein heating the carbon nanomaterial includes heating the carbon nanomaterial at a temperature of from 40 to 150° C. for 1 to 3 hours.
  • 15. The method of claim 14, wherein the mixture of acids is a mixture of concentrated nitric acid and concentrated sulfuric acid.
  • 16. A silicone resin film prepared according to the method of claim 12.
  • 17. A silicone resin film prepared according to the method of claim 15.
  • 18. A nanomaterial-filled silicone composition, comprising: a free radical-curable silicone composition comprising a free radical initiator; a silicone resin; and an oxidized carbon nanomaterial.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a U.S. national stage filing under 35 U.S.C. §371 of PCT Application No. PCT/US2007/000721 filed on 11 Jan. 2007, currently pending, which claims the benefit of U.S. Provisional Patent Application No. 60/775,142 filed 20 Feb. 2006 under 35 U.S.C. §119 (e). PCT Application No. PCT/US2007/000721 and U.S. Provisional Patent Application No. 60/775,142 are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2007/000721 1/11/2007 WO 00 7/25/2008
Publishing Document Publishing Date Country Kind
WO2007/097835 8/30/2007 WO A
US Referenced Citations (141)
Number Name Date Kind
736971 Jenkins Aug 1903 A
2702764 Painter et al. Feb 1955 A
2915475 Bugosh Dec 1959 A
3031417 Bruce Apr 1962 A
3419593 Willing Dec 1968 A
3445420 Kookootsedes et al. May 1969 A
4087585 Schulz May 1978 A
4260780 West Apr 1981 A
4273697 Sumimura et al. Jun 1981 A
4276424 Peterson et al. Jun 1981 A
4314956 Haney et al. Feb 1982 A
4324901 West et al. Apr 1982 A
4332525 Cheney, Jr. Jun 1982 A
4395443 Shimizu et al. Jul 1983 A
4460638 Haluska Jul 1984 A
4460639 Chi et al. Jul 1984 A
4460640 Chi et al. Jul 1984 A
4500447 Kobayashi et al. Feb 1985 A
4510094 Drahnak et al. Apr 1985 A
4530879 Drahnak et al. Jul 1985 A
4537829 Blizzard et al. Aug 1985 A
4568566 Tolentino Feb 1986 A
4618666 Port Oct 1986 A
4761454 Oba et al. Aug 1988 A
4766176 Lee et al. Aug 1988 A
4898689 Hamada et al. Feb 1990 A
4916169 Boardman et al. Apr 1990 A
4952658 Kalchauer et al. Aug 1990 A
5017654 Togashi et al. May 1991 A
5135980 Watanabe Aug 1992 A
5166287 Kalchauer et al. Nov 1992 A
5194649 Okawa Mar 1993 A
5213868 Liberty et al. May 1993 A
5256480 Inoue et al. Oct 1993 A
5278272 Lai et al. Jan 1994 A
5281455 Braun et al. Jan 1994 A
5283309 Morita Feb 1994 A
5310843 Morita May 1994 A
5312946 Stank et al. May 1994 A
5358983 Morita Oct 1994 A
5371139 Yokoyama et al. Dec 1994 A
5468826 Gentle et al. Nov 1995 A
5468827 Morita Nov 1995 A
5474608 Beisswanger Dec 1995 A
5486588 Morita Jan 1996 A
5496961 Dauth et al. Mar 1996 A
5530075 Morita et al. Jun 1996 A
5580915 Lin Dec 1996 A
5581008 Kobayashi Dec 1996 A
5738976 Okinoshima et al. Apr 1998 A
5747608 Katsoulis et al. May 1998 A
5794649 Spear et al. Aug 1998 A
5801262 Adams Sep 1998 A
5824761 Bujanowski et al. Oct 1998 A
5861467 Bujanowski et al. Jan 1999 A
5904796 Freuler et al. May 1999 A
5959038 Furukawa et al. Sep 1999 A
5972512 Boisvert et al. Oct 1999 A
6046283 Katsoulis et al. Apr 2000 A
6194063 Oura et al. Feb 2001 B1
6204301 Oshima et al. Mar 2001 B1
6287639 Schmidt et al. Sep 2001 B1
6297305 Nakata et al. Oct 2001 B1
6310146 Katsoulis et al. Oct 2001 B1
6352610 Schmidt et al. Mar 2002 B1
6368535 Katsoulis et al. Apr 2002 B1
6376078 Inokuchi Apr 2002 B1
6378599 Schmidt et al. Apr 2002 B1
6387487 Greenberg et al. May 2002 B1
6407922 Eckland et al. Jun 2002 B1
6432497 Bunyan Aug 2002 B2
6451869 Butts Sep 2002 B1
6617674 Becker et al. Sep 2003 B2
6644395 Bergin Nov 2003 B1
6652958 Tobita Nov 2003 B2
6656425 Benthien et al. Dec 2003 B1
6660395 McGarry et al. Dec 2003 B2
6689859 Li et al. Feb 2004 B2
6730731 Tobita et al. May 2004 B2
6783692 Bhagwagar Aug 2004 B2
6791839 Bhagwagar Sep 2004 B2
6831145 Kleyer et al. Dec 2004 B2
6838005 Tepper et al. Jan 2005 B2
6841213 Parsonage et al. Jan 2005 B2
6884314 Cross et al. Apr 2005 B2
6902688 Narayan et al. Jun 2005 B2
6908682 Mistele Jun 2005 B2
7029603 Wang et al. Apr 2006 B2
7037592 Zhu et al. May 2006 B2
7074481 Watson Jul 2006 B2
7132062 Howard Nov 2006 B1
7147367 Balian et al. Dec 2006 B2
7163720 Dhaler et al. Jan 2007 B1
7253442 Huang et al. Aug 2007 B2
7311967 Dani et al. Dec 2007 B2
7339012 Prasse Mar 2008 B2
7381470 Suto et al. Jun 2008 B2
7459192 Parsonage et al. Dec 2008 B2
7563515 Ekeland et al. Jul 2009 B2
7622159 Mertz et al. Nov 2009 B2
7658983 Mormont et al. Feb 2010 B2
7799842 Anderson et al. Sep 2010 B2
7850870 Ahn et al. Dec 2010 B2
20030047718 Narayan et al. Mar 2003 A1
20030054162 Watson Mar 2003 A1
20030077478 Dani et al. Apr 2003 A1
20030096104 Tobita et al. May 2003 A1
20030170418 Mormont et al. Sep 2003 A1
20030175533 McGarry et al. Sep 2003 A1
20030213939 Narayan et al. Nov 2003 A1
20040053059 Mistele Mar 2004 A1
20040089851 Wang et al. May 2004 A1
20040101679 Mertz et al. May 2004 A1
20040126526 Parsonage et al. Jul 2004 A1
20040166332 Zhu et al. Aug 2004 A1
20050113749 Parsonage et al. May 2005 A1
20050227091 Suto et al. Oct 2005 A1
20050281997 Grah Dec 2005 A1
20070020468 Ekeland et al. Jan 2007 A1
20070120100 Glatkowski et al. May 2007 A1
20070246245 Ahn et al. Oct 2007 A1
20080051548 Bailey et al. Feb 2008 A1
20080138525 Bailey et al. Jun 2008 A1
20090005499 Fisher et al. Jan 2009 A1
20090090413 Katsoulis et al. Apr 2009 A1
20090105362 Anderson et al. Apr 2009 A1
20090155577 Anderson et al. Jun 2009 A1
20090246499 Katsoulis et al. Oct 2009 A1
20100028643 Zhu Feb 2010 A1
20100062247 Fisher et al. Mar 2010 A1
20100068538 Fisher Mar 2010 A1
20100075127 Fisher et al. Mar 2010 A1
20100086760 Zhu Apr 2010 A1
20100087581 Fisher et al. Apr 2010 A1
20100112321 Zhu May 2010 A1
20100129625 Zhu May 2010 A1
20100143686 Zhu Jun 2010 A1
20100209687 Zhu Aug 2010 A1
20100233379 Fisher et al. Sep 2010 A1
20100280172 Zhu Nov 2010 A1
20100308279 Zhou et al. Dec 2010 A1
Foreign Referenced Citations (46)
Number Date Country
1528000 Sep 2004 CN
1558931 Dec 2004 CN
1676568 Oct 2005 CN
19647368 May 1998 DE
915378 Oct 2000 DE
4033157 Sep 2003 DE
0126535 Nov 1984 EP
0358452 Mar 1990 EP
0480680 Apr 1992 EP
0566311 Oct 1993 EP
0 562 922 May 1997 EP
0850998 Jul 1998 EP
0936250 Aug 1999 EP
1050538 Nov 2000 EP
1065248 Jan 2001 EP
1454962 Sep 2004 EP
1391492 Jun 2006 EP
2564470 Nov 1985 FR
736971 Sep 1955 GB
59-096122 Jun 1984 JP
10-001549 Jan 1998 JP
2004-339427 Dec 2004 JP
2007-090817 Apr 2007 JP
200418964 Oct 2004 TW
9417003 Aug 1994 WO
02082468 Oct 2002 WO
02085612 Oct 2002 WO
03078079 Sep 2003 WO
03099828 Dec 2003 WO
2004035661 Apr 2004 WO
2004060472 Jul 2004 WO
2004106420 Dec 2004 WO
2005114324 Dec 2005 WO
2006088645 Aug 2006 WO
2006088646 Aug 2006 WO
2007013135 Feb 2007 WO
2007018756 Feb 2007 WO
2007092118 Aug 2007 WO
2007097835 Aug 2007 WO
2007121006 Oct 2007 WO
2007123901 Nov 2007 WO
2008013611 Jan 2008 WO
2008013612 Jan 2008 WO
2008045104 Apr 2008 WO
2008051242 May 2008 WO
2009007786 Jan 2009 WO
Related Publications (1)
Number Date Country
20100233379 A1 Sep 2010 US
Provisional Applications (1)
Number Date Country
60775142 Feb 2006 US