Features for systems and methods of providing a sill pan for door systems are described. More specifically, features for systems and methods for flashing and sealing around exterior door systems such as pocket doors, stacking doors, French doors, and traditional sliding doors.
In the construction of new homes, it is important to provide a water-tight seal at the seams of any openings in exterior walls, specifically windows and doors. A number of different devices and methods of providing such a seal are in current use. All of these methods have at least one major drawback. Some are expensive, some are time consuming, some must be performed just right in order to be effective, some are not durable, and some create sharp edges that cut subsequent layers of building materials.
Door systems along the exterior of a building create an entry point for water or other debris to enter the structure between the door and door opening. Water entering through the door opening can cause water damage to the building. Sill pans decrease water penetration at these entry points by collecting and directing the water and other debris outside the building.
The embodiments disclosed herein each have several aspects no single one of which is solely responsible for the disclosure's desirable attributes. Without limiting the scope of this disclosure, its more prominent features will not be briefly discussed. After considering this discussion, and particularly after reading the section entitled “Detailed Description,” one will understand how the features of the embodiments described herein provide advantages over existing systems, devices, and methods.
The following disclosure describes non-limiting examples of some embodiments. For instance, other embodiments of the disclosed systems and methods may or may not include the features described herein. Moreover, disclosed advantages and benefits can apply only to certain embodiments of the invention and should not be used to limit the disclosure.
In one aspect described herein, a method of installing a multi-piece, flexible, sill pan in a framed wall condition in a building wall that is configured to receive a pocket door for a doorway is disclosed. The framed wall condition includes an inner frame, an outer frame, and a first door stud together defining an internal space for receiving the pocket door. A bottom of the internal space is formed by a channel in a subfloor, the channel in the subfloor extends from the first door stud to a second door stud disposed on an opposite side of the doorway. The method comprises securing a first flexible end dam member between the inner and outer frames, and against the first door stud such that a first vertical seating flange of the first flexible end dam member contacts a generally vertical surface of the first door stud, a second vertical seating flange of the first flexible end dam member contacts a generally vertical surface of the inner frame, a third vertical seating flange of the first flexible end dam member contacts a generally vertical surface of the outer frame, and a generally horizontal base of the first flexible end dam member contacts a generally horizontal surface of the subfloor in the channel. The method further includes securing a first flexible corner member against the second door stud such that a first vertical seating flange of the first flexible corner member contacts a first generally vertical surface of the second door stud, a second vertical seating flange of the first flexible corner member contacts a second generally vertical surface of the second door stud outside the channel, a generally horizontal seating flange of the first flexible corner member contacts a generally horizontal surface of the subfloor in the channel. The method further includes securing a second flexible corner member to the outer frame and the subfloor such that a first vertical seating flange of the second flexible corner member contacts a generally vertical surface of an end of the outer frame, a second vertical seating flange of the second flexible corner member contacts a generally vertical surface of the outer frame, a third generally vertical seating flange of the second flexible corner member contacts a generally vertical surface of the subfloor outside the channel, and a generally horizontal seating flange of the second flexible corner member contacts a generally horizontal surface of the subfloor in the channel. The method further includes securing a second flexible end dam member against the first flexible corner member such that a first vertical seating flange of the second flexible end dam member contacts the first vertical seating flange of the first flexible corner member, a second vertical seating flange of the second flexible end dam member contacts the second vertical seating flange of the first flexible corner member, and a generally horizontal base of the second flexible end dam member contacts the generally horizontal seating flange of the first flexible corner member. The method further includes securing a flexible insert in the channel in the subfloor and between the first and second flexible end dams such that a base of the flexible insert contacts a generally horizontal surface of the subfloor in the channel and overlaps the horizontal seating flange of the second flexible corner member, a first end of the flexible insert overlaps at least a portion of the horizontal seating flange of the first flexible end dam member, and a second end of the flexible insert overlaps at least a portion of the horizontal seating flange of the second flexible end dam member.
In another aspect described herein, a method of installing a multi-piece sill pan in a framed wall condition in a building wall that is configured to receive a door for a doorway is disclosed. The framed wall condition includes a first door stud and a second door stud defining a doorway therebetween for receiving the door. The method comprises securing a first corner member against the first door stud such that a first vertical seating flange of the first corner member overlaps a first vertical surface of the first door stud, a second vertical seating flange of the first corner member overlaps a second vertical surface of the first door stud outside the doorway, a horizontal seating flange of the first corner member overlaps a horizontal surface in the doorway. The method further includes securing a second corner member against the second door stud such that a first vertical seating flange of the second corner member overlaps a first vertical surface of the second door stud, a second vertical seating flange of the second corner member overlaps a second vertical surface of the second door stud outside the doorway, a horizontal seating flange of the second corner member overlaps the horizontal surface in the doorway. The method further includes securing a first end dam member over the first corner member such that a first vertical seating flange of the first end dam member overlaps the first vertical seating flange of the first corner member, a second vertical seating flange of the first end dam member overlaps the second vertical seating flange of the first corner member, and a generally horizontal base of the first end dam member overlaps the horizontal seating flange of the first corner member. The method further includes securing a second end dam member over the second corner member such that a first vertical seating flange of the second end dam member overlaps the first vertical seating flange of the second corner member, a second vertical seating flange of the second end dam member overlaps the second vertical seating flange of the second corner member, and a generally horizontal base of the second end dam member overlaps the horizontal seating flange of the second corner member. The method further includes securing an insert in the doorway and between the first and second end dams such that a base of the insert overlaps a horizontal surface in the doorway, a first end of the insert overlaps at least a portion of the horizontal seating flange of the first end dam member and at least a portion of the horizontal seating flange of the first corner member, and a second end of the insert overlaps at least a portion of the horizontal seating flange of the second end dam member and at least a portion of the horizontal seating flange of the second corner member.
In another aspect described herein, a kit for a multi-piece sill pan to be installed in a framed wall condition in a building wall that is configured to receive a door for a doorway is disclosed. The framed wall condition includes a first door stud and a second door stud defining a doorway therebetween for receiving the door. The kit comprises a first corner member configured to be secured against the first door stud such that a first vertical seating flange of the first corner member overlaps a first vertical surface of the first door stud, a second vertical seating flange of the first corner member overlaps a second vertical surface of the first door stud outside the doorway, a horizontal seating flange of the first corner member overlaps a horizontal surface in the doorway.
The kit further comprises a second corner member configured to be secured against the second door stud such that a first vertical seating flange of the second corner member overlaps a first vertical surface of the second door stud, a second vertical seating flange of the second corner member overlaps a second vertical surface of the second door stud outside the doorway, a horizontal seating flange of the second corner member overlaps the horizontal surface in the doorway.
The kit further comprises a first end dam member configured to be secured over the first corner member such that a first vertical seating flange of the first end dam member overlaps the first vertical seating flange of the first corner member, a second vertical seating flange of the first end dam member overlaps the second vertical seating flange of the first corner member, and a generally horizontal base of the first end dam member overlaps the horizontal seating flange of the first corner member.
The kit further comprises a second end dam member configured to be secured over the second corner member such that a first vertical seating flange of the second end dam member overlaps the first vertical seating flange of the second corner member, a second vertical seating flange of the second end dam member overlaps the second vertical seating flange of the second corner member, and a generally horizontal base of the second end dam member overlaps the horizontal seating flange of the second corner member.
The kit further comprises an insert configured to be secured in the doorway and between the first and second end dams such that a base of the insert overlaps a horizontal surface in the doorway, a first end of the insert overlaps at least a portion of the horizontal seating flange of the first end dam member and at least a portion of the horizontal seating flange of the first corner member, and a second end of the insert overlaps at least a portion of the horizontal seating flange of the second end dam member and at least a portion of the horizontal seating flange of the second corner member.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are not considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings. In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the drawing, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. It should be apparent that the aspects herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative of one or more embodiments of the invention. An aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, a device (e.g., the illustrated embodiments of a multi-piece, flexible sill pan assembly for exterior door systems such as pocket doors including multi-panel pocket doors, stacking doors, French doors, and traditional sliding doors may be implemented, or a method may be practiced, using any number of the aspects set forth herein. In addition, such a device may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to, or other than one or more of the aspects set forth herein.
Certain embodiments of the disclosed sill pan assembly provide advantages over existing sill pan designs. For example, the flexibility of the material used for certain embodiments of the sill pan assembly allows the sill pan assembly to conform to size variations and tolerance ranges of the channel within the internal space. Certain embodiments of the sill pan assembly further do not sweat as caused by water condensation. Certain embodiments of the sill pan assembly are not hard plastic and thus are not susceptible to cracking or twisting due to heat. Certain embodiments of the sill pan assembly are not sticky and thus do not have compatibility issues with sealant. Certain embodiments of the sill pan assembly do not cause electrolysis with the concrete in contrast to metal sill pans.
The description of the disclosed implementations is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of the disclosure. Thus, the present disclosure is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The foregoing description details certain embodiments of the devices and methods disclosed herein. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the devices and methods can be practiced in many ways. It should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the technology with which that terminology is associated.
In some embodiments, the height of the first vertical seating flange 120 and the length of the base 140 may be the same or similar. In other embodiments, the height of the first vertical seating flange 120 may be greater than or less than the length of the base 140.
The end dam 100, 400 may be constructed of an asphalt-, butyl-, or petroleum-based material. Exemplary materials for the end dam 100, 400 are sold by Fortifiber Building Systems Group Inc., Henry Company, and MFM Building Products Corp. In some embodiments, the material may have an adhesive backing. In some embodiments, the material is a flexible flashing material. In other embodiments, the end dam 100, 400 may be constructed of other materials having water-resistant or water-impermeable properties, for example, but not limited to, butyl rubber, polyvinylidene fluoride, and acrylics. In some embodiments, the end dam 100, 400 is constructed of one type of material. In other embodiments, the end dam 100, 400 is constructed of two or more types of materials.
In some embodiments, the end dam 100, 400 is an integral component. In other embodiments, the end dam 100, 400 is constructed of two or more components. For example, the end dam 100, 400 may be constructed by connecting one component to at least one other component. In some embodiments, the end dam 100, 400 may be constructed by folding one component into the shape of the end dam 100, 400 shown in
In some embodiments, the end dam 100, 400 may be formed by applying a first piece of adhesive-backed material to an end dam such that the first piece partially overlaps a cut edge of the end dam and then applying a second piece of adhesive-backed material to laminate the end dam. In such an embodiment, the first and second pieces of adhesive-backed material may assist in making the corners of the end dam. In some embodiments, the first and second pieces may not have an adhesive backing, but rather, are applied using a separate adhesive.
Disclosure regarding exemplary embodiments of sill pan assemblies are disclosed in U.S. Pat. No. 10,273,741, granted Apr. 30, 2019 and entitled “Sill Pan Assembly for Pocket Door Systems and Method of Installation,” the entire disclosure of which is hereby incorporated by reference. Disclosure regarding exemplary embodiments of the corner member are disclosed in U.S. Pat. No. 9,032,688, granted May 19, 2015 and entitled “Corner Flashing System,” the entire disclosure of which is hereby incorporated by reference. Gene Summy is the inventor of said applications as well as of the subject application.
The insert 200 may be constructed of an asphalt-, butyl-, or petroleum-based material. Exemplary materials for the insert 200 are sold by Fortifiber Building Systems Group Inc., Henry Company, and MFM Building Products Corp. In some embodiments, the material may have an adhesive backing. In some embodiments, the material is a flexible flashing material. In other embodiments, the insert 200 may be constructed of other materials having water-resistant or water-impermeable properties, for example, but not limited to, butyl rubber, polyvinylidene fluoride, and acrylics. In some embodiments, the insert 200 is constructed of one type of material. In other embodiments, the insert 200 is constructed of two or more types of materials.
In some embodiments, the insert 200 is an integral component. In other embodiments, the insert 200 is constructed of two or more components. In some embodiments, the insert 200 may be constructed by connecting one component to at least one other component. For example, the insert 200 may be constructed by applying a first piece of adhesive-backed material to the base 230 of the insert 200 such that the first piece partially overlaps a back edge of the base 230 of the insert 200 and creates the first vertical seating flange 240. In some embodiments, the first piece may not have an adhesive backing, but rather, is applied using a separate adhesive.
The corner member 300, 500 may have a first vertical seating flange 310 (see generally
The second vertical seating flange 320 and the horizontal seating flange 350 may be swapped depending on the desired orientation of the corner member 300, 500. For example, the second vertical seating flange 320 and the horizontal seating flange 350 may be swapped depending on whether the corner member 300, 500 is being placed on an outer frame on the left side of the door frame or on the right side of the door frame. Similarly, the second vertical seating flange 320 and the horizontal seating flange 350 may be swapped depending on whether the corner member 300, 500 is being placed on a left door stud or a right door stud. Further, the relative sizes of the second vertical seating flange 320 and the horizontal seating flange 350 can be changed from what is illustrated depending on the desired orientation of the corner member 300, 500.
The first vertical seating flange 310 may be folded so that portions of it contact or overlap other vertical surfaces. In some embodiments, the first vertical seating flange 310 may be folded so that portions of the first vertical seating flange 310 becomes a third vertical seating flange 330, as shown in
The corner member 300, 500 may be constructed of an asphalt-, butyl-, or petroleum-based material. Exemplary materials for the corner member 300, 500 are sold by Fortifiber Building Systems Group Inc., Henry Company, and MFM Building Products Corp. In some embodiments, the material may have an adhesive backing. In some embodiments, the material is a flexible flashing material. In other embodiments, the corner member 300, 500 may be constructed of other materials having water-resistant or water-impermeable properties, for example, but not limited to, butyl rubber, polyvinylidene fluoride, and acrylics. In some embodiments, the corner member 300, 500 is constructed of one type of material. In other embodiments, the corner member 300, 500 is constructed of two or more types of materials.
In some embodiments, the corner member 300, 500 is an integral component. In other embodiments, each corner member 300, 500 is constructed of two or more components. For example, the corner member 300, 500 may be constructed by connecting one component to at least one other component. In some embodiments, the corner member 300, 500 may be constructed by cutting one component and connecting at least one other component, which assists in creating the shape of the corner member 300, 500. For example, the solid white area of the corner member 300, as shown in
In some embodiments, the corner member 300, 500 may be formed by applying a first piece of adhesive-backed material to a corner member 300, 500 such that the first piece partially overlaps a cut edge of the corner member and then applying a second piece of adhesive-backed material to the opposing side of the first piece, such that the first and second pieces connect to each other. In such an embodiment, the first and second pieces of adhesive-backed material may assist in making the corner member 300, 500. In some embodiments, the first and second pieces may not have an adhesive backing, but rather, are applied using a separate adhesive.
The malleability of the material used to construct the sill pan assembly pieces 100, 200, 300, 400, 500 is an aspect of the invention that allows the sill pan assembly to perform better than plastics. Plastics may be tough and semi-rigid so as to not bend. Plastics may become brittle and result in cracking or breakage in some environments, like wet or humid weather. The material used for embodiments of the sill pan assembly disclosed herein reduces the risk of cracking and breakage. Another aspect of the flexible material used to construct the end dams, inserts, and corner members, is that unlike metal, which can conduct heat, the material used here is not a good conductor of heat. Since the material used does not conduct heat well, this reduces the risk of condensation and damage to wood flooring, the subfloor, or inner/outer frames.
In some embodiments, the thickness of the material used to construct the end dams, insert, and/or corner members is about 25 mil. In some embodiments, the thickness of the material used is between 20 mil and 30 mil. In some embodiments, the thickness of the material used is between 23 mil and 27 mil. In some embodiments, the thickness of the material used is between 24.5 mil and 25.5 mil. In some embodiments, the thickness of the material used is 25 mil.
In some embodiments, one or more of the first and second end dams 100, 400 and the first and second corner members 300, 500 may be integral to the insert 200. Thus, embodiments of a sill pan assembly for an exterior door system such as pocket doors, stacking doors, French doors, and traditional sliding doors preferably includes from one to five pieces. Of course, the embodiments disclosed herein are not limited to the specified number of pieces. For example, certain pieces, such as the insert, can be made from more than one piece.
In the illustrated embodiment, the internal space 50 formed by the inner and outer frames 30, 40 is on the left side of the door as viewed in
An end 42 of the outer frame 40 has a generally vertical surface 44. The outer frame 40 further has a first vertical surface 46, which faces the internal space 50, and a second vertical surface 48, which faces towards the exterior of the building. The inner frame 30 has a first vertical surface 32, which faces the internal space 50. The first door stud 20 has a generally vertical surface 22.
The building wall 10 sits on the subfloor 60. The subfloor 60 has a channel 70, which runs from a first end 72 to a second end 74. The second end 74 may be near a right or second door stud 81, as shown in
The subfloor 60 has a horizontal surface 62 and a first vertical surface 64 as is illustrated in
In some embodiments, the corner member 300 does not have a crease indicating where to fold the first vertical seating flange 310. The horizontal seating flange 350 of the corner member 300 contacts the horizontal surface 76 of the channel 70 in the subfloor 60. As shown in
As shown in
As shown in
As shown in
In some embodiments, a portion of the second vertical seating flange 250 of the insert 200 contacts or overlaps the first vertical surface 46 of the outer frame 40. In some embodiments, the portion of the insert 200 that contacts or overlaps the first vertical surface 46 of the outer frame 40 is the portion that extends through the internal space 50. In some embodiments, a portion of the second vertical seating flange 250 of the insert 200 that does not extend through the internal space 50 is removed, as shown in
As is illustrated in
The corner member 500 may have a first vertical seating flange 310, a second vertical seating flange 320, and a horizontal seating flange 350. In certain embodiments, the first vertical seating flange 310 is configured to be secured to an end of the door stud 81, as shown in
The second vertical seating flange 320 and the horizontal seating flange 350 may be swapped depending on whether the corner member 500 is being placed on a left door stud or a right door stud. For example, the second corner member 500 can be rotated 180 degrees about an axis defined by an intersection of the second vertical seating flange 320 with the horizontal seating flange 350 to place the corner member 500 against a door stud on the opposite side of the door opening from the second door stud 81. For example, the second corner member 500 can be a mirror image about any of the surfaces or flanges of the corner member 500 depending on the desired installed orientation.
The corner member 500 may be constructed of an asphalt-, butyl-, or petroleum-based material. Exemplary materials for the corner member 500 are sold by Fortifiber Building Systems Group Inc., Henry Company, and MFM Building Products Corp. In some embodiments, the material may have an adhesive backing. In some embodiments, the material is a flexible flashing material. In other embodiments, the corner member 500 may be constructed of other materials having water-resistant or water-impermeable properties, for example, but not limited to, butyl rubber, polyvinylidene fluoride, and acrylics. In some embodiments, the corner member 500 is constructed of one type of material. In other embodiments, the corner member 500 is constructed of two or more types of materials.
In some embodiments, the corner member 500 is an integral component. In other embodiments, the corner member 500 is constructed of two or more components. For example, the corner member 500 may be constructed by connecting one component to at least one other component. In some embodiments, the corner member 500 may be constructed by cutting one component and connecting at least one other component, which assists in creating the shape of the corner member 500. For example, the solid white area of the corner member 500, as shown in
In some embodiments, the corner member 500 may be formed by applying a first piece of adhesive-backed material to a corner member 500 such that the first piece partially overlaps a cut edge of the corner member and then applying a second piece of adhesive-backed material to the opposing side of the first piece, such that the first and second pieces connect to each other. In such an embodiment, the first and second pieces of adhesive-backed material may assist in making the corner member 500. In some embodiments, the first and second pieces may not have an adhesive backing, but rather, are applied using a separate adhesive.
In certain embodiments, the first vertical seating flange 110 of the second end dam 400 contacts or overlaps at least a portion of the second vertical seating flange 320 of the second corner member 500. In certain embodiments, the first vertical seating flange 110 of the second end dam 400 contacts or overlaps at least a portion of the first vertical surface 82 of the second door stud 81. In certain embodiments, the first vertical seating flange 110 of the second end dam 400 contacts or overlaps at least a portion of the second vertical seating flange 320 of the second corner member 500 and at least a portion of the first vertical surface 82 of the second door stud 81.
In certain embodiments, at least a portion of the second vertical seating flange 120 of the second end dam member 400 contacts or overlaps the vertical surface 78 of the channel 70 in the subfloor 60. In some embodiments, the edge 150 between the base 140 and the third vertical seating flange 130 is trimmed to allow the third vertical seating flange 130 to contact or overlap at least a portion of the first vertical seating flange 310 of the corner member 500, as shown in
In some embodiments, the second end dam 400 may come pre-cut. In some embodiments, the end dam 400 is formed such that the base 140 and the third vertical seating flange 130 are not connected so as to not need to be cut. In such embodiments, the second end dam 400 may have a first vertical flange 110, a second vertical flange 120, and a base 140.
As shown in
In certain embodiments, sealant 80 is applied to the horizontal surface 76 and the second end dam 400 before placement of the insert 200. In some embodiments, the sealant 80 is applied in a discontinuous method, for example, separate beads or lines. In some embodiments, a sealant is not applied. In some embodiments, the sealant 80 is applied to the insert 200 before installing the insert 200.
The corner member 500 may have a first vertical seating flange 310, a second vertical seating flange 320, and a horizontal seating flange 350. In the illustrated embodiment, the first vertical seating flange 310 of the corner member 500 is configured to be secured to an end of the door stud 81. For example, the first vertical sealing flange 310 can be secured against the second vertical surface 84. The second vertical seating flange 320 can be secured against the first vertical surface 82. In certain embodiments, the horizontal seating flange 350 is secured against the horizontal surface 76 of the channel 70.
In certain embodiments, the second vertical seating flange 320 and the horizontal seating flange 350 may be swapped depending on whether the corner member 500 is being placed on the first door stud 20 or the second door stud 81. In certain embodiments, the corner member 500 illustrated in
In certain embodiments, each of the corner members 300, 500 is a separate piece from the sill pan assembly. In certain other embodiments, each of the corner members 300, 500 is integral to (e.g., monolithic construction) the sill pan assembly. For example, embodiments of the sill pan assembly installed with two corner members 300, 500 can include one monolithic piece. Of course, the embodiments disclosed herein are not limited to a specific number of pieces.
In certain embodiments, sealant 80 is applied before placing the corner member 500. In some embodiments, the sealant 80 is applied in a discontinuous method, for example, separate beads or lines. In some embodiments, a sealant 80 is not applied. In some embodiments, the sealant 80 may be applied to the corner member 500.
In certain embodiments, the first vertical seating flange 110 of the end dam 400 contacts or overlaps at least a portion of the second vertical seating flange 320 of the corner member 500. In certain embodiments, the first vertical seating flange 110 of the end dam 400 contacts or overlaps at least a portion of the first vertical surface 82 of the second door stud 81. In certain embodiments, the first vertical seating flange 110 of the end dam 400 contacts or overlaps at least a portion of the second vertical seating flange 320 of the corner member 500 and at least a portion of the first vertical surface 82 of the second door stud 81.
In certain embodiments, at least a portion of the second vertical seating flange 120 of the end dam member 400 contacts or overlaps the vertical surface 78 of the channel 70 in the subfloor 60. For example, as is illustrated in
In some embodiments, the edge 150 between the base 140 and the third vertical seating flange 130 is trimmed to allow the third vertical seating flange 130 to contact or overlap at least a portion of the first vertical seating flange 310 of the corner member 500, as shown in
In some embodiments, the end dam 400 may come pre-cut. In some embodiments, the end dam 400 is formed such that the base 140 and the third vertical seating flange 130 are not connected so as to not need to be cut. In such embodiments, the end dam 400 may have a first vertical flange 110, a second vertical flange 120, and a base 140.
As shown in
In certain embodiments, sealant 80 is applied to the horizontal surface 76 and the end dam 400 before placement of the insert 200. In some embodiments, the sealant 80 is applied in a discontinuous method, for example, separate beads or lines. In some embodiments, a sealant is not applied. In some embodiments, the sealant 80 is applied to the insert 200 before installing the insert 200.
The corner member 500 may have a first vertical seating flange 310, a second vertical seating flange 320, and a horizontal seating flange 350. In the illustrated embodiment, the first vertical seating flange 310 of the corner member 500 is configured to be secured to an end of the door stud 81. For example, the first vertical sealing flange 310 can be secured against the second vertical surface 84. The second vertical seating flange 320 can be secured against the first vertical surface 82. In certain embodiments, the horizontal seating flange 350 is secured against the horizontal surface 76 of the channel 70.
In certain embodiments, the second vertical seating flange 320 and the horizontal seating flange 350 may be swapped depending on whether the corner member 500 is being placed on the first door stud 20 or the second door stud 81. In certain embodiments, the corner member 500 illustrated in
In certain embodiments, each of the corner members 300, 500 is a separate piece from the sill pan assembly. In certain other embodiments, each of the corner members 300, 500 is integral to (e.g., monolithic construction) the sill pan assembly. For example, embodiments of the sill pan assembly installed with two corner members 300, 500 can include one monolithic piece. Of course, the embodiments disclosed herein are not limited to a specific number of pieces.
In certain embodiments, sealant 80 is applied before placing the corner member 500. In some embodiments, the sealant 80 is applied in a discontinuous method, for example, separate beads or lines. In some embodiments, a sealant 80 is not applied. In some embodiments, the sealant 80 may be applied to the corner member 500.
In certain embodiments, the first vertical seating flange 110 of the end dam 400 contacts or overlaps at least a portion of the second vertical seating flange 320 of the corner member 500. In certain embodiments, the first vertical seating flange 110 of the end dam 400 contacts or overlaps at least a portion of the first vertical surface 82 of the second door stud 81. In certain embodiments, the first vertical seating flange 110 of the end dam 400 contacts or overlaps at least a portion of the second vertical seating flange 320 of the corner member 500 and at least a portion of the first vertical surface 82 of the second door stud 81.
In some embodiments, the edge 150 between the base 140 and the third vertical seating flange 130 is trimmed to allow the third vertical seating flange 130 to contact or overlap at least a portion of the first vertical seating flange 310 of the corner member 500, as shown in
In some embodiments, the end dam 400 may come pre-cut. In some embodiments, the end dam 400 is formed such that the base 140 and the third vertical seating flange 130 are not connected so as to not need to be cut. In such embodiments, the end dam 400 may have a first vertical flange 110, a second vertical flange 120, and a base 140.
As shown in
In certain embodiments, sealant 80 is applied to the horizontal surface 76 and the end dam 400 before placement of the insert 200. In some embodiments, the sealant 80 is applied in a discontinuous method, for example, separate beads or lines. In some embodiments, a sealant is not applied. In some embodiments, the sealant 80 is applied to the insert 200 before installing the insert 200.
In certain embodiments, each of the two corner members 300, 500 is a separate piece from the sill pan assembly. In certain other embodiments, one or both of the two corner members 300, 500 is integral to (e.g., monolithic construction) the sill pan assembly. For example, embodiments of the sill pan assembly installed with two corner member 300, 500 can include one monolithic piece. In certain embodiments, each of the two end dams 100, 400 is a separate piece from the sill pan assembly. In certain other embodiments, one or both of the end dams 100, 400 is integral to (e.g., monolithic construction) the sill pan assembly. For example, embodiments of the sill pan assembly installed with two end dams 100, 400 can include one monolithic piece.
This type of kit may be used for flashing and sealing around exterior door systems such as pocket doors. In certain embodiments, the door system is a single-pocket door that retracts the door on the left side. In certain embodiments, the door system is a single-pocket door that retracts the door on the right side. In certain other embodiments, the exterior doors are stacking doors, French doors, or traditional sliding doors.
The pieces 100, 200, 300, 400, 500 may be placed in a container 5000. As shown in
The insert 200 may be rolled or folded since the insert 200 is constructed from a flexible material, making it more convenient and/or saving spacing when packing the insert 200 in the container 5000. The corner members 300, 500 may be folded since they are constructed from a flexible material, making it more convenient and/or saving spacing when packing the corner members 300, 500 in the container 5000.
In some embodiments, the kit 6000 may include an end dam that is shaped similar to end dam 400 as shown in
It will be appreciated by those skilled in the art that various modifications and changes may be made without departing from the scope of the described technology. Such modifications and changes are intended to fall within the scope of the embodiments. It will also be appreciated by those of skill in the art that parts included in one embodiment are interchangeable with other embodiments; one or more parts from a depicted embodiment can be included with other depicted embodiments in any combination. For example, any of the various components described herein and/or depicted in the Figures may be combined, interchanged or excluded from other embodiments.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
The above description discloses several methods and materials of the present invention. This invention is susceptible to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment and in the installation methods and equipment. Such modifications will become apparent to those skilled in the art from a consideration of this disclosure or practice of the invention disclosed herein. Consequently, it is not intended that this invention be limited to the specific embodiments disclosed herein, but that it cover all modifications and alternatives coming within the true scope and spirit of the invention as embodied in the attached claims.
This application claims benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent App. No. 62/819,359, filed Mar. 15, 2019, the entire disclosure of which is hereby incorporated by reference herein in its entirety. Any and all priority claims identified in the Application Data Sheet, or any corrections thereto, are hereby incorporated by reference under 37 CFR § 1.57.
Number | Name | Date | Kind |
---|---|---|---|
993861 | McRonald | May 1911 | A |
1677160 | Woolfenden | Jul 1928 | A |
1950519 | Ripley | Mar 1934 | A |
2043049 | Ludden | Jun 1936 | A |
2648107 | Bates, Jr. | Aug 1953 | A |
2962405 | Morthland | Nov 1960 | A |
3238679 | Capoccia | Mar 1966 | A |
3451178 | Beale | Jun 1969 | A |
3698142 | Theriault | Oct 1972 | A |
4126975 | Williams | Nov 1978 | A |
4248926 | Tajima et al. | Feb 1981 | A |
4555882 | Moffitt et al. | Dec 1985 | A |
4700512 | Laska | Oct 1987 | A |
4775567 | Harkness | Oct 1988 | A |
4872296 | Janni | Oct 1989 | A |
5077943 | McGady | Jan 1992 | A |
5109641 | Halan | May 1992 | A |
5218793 | Ball | Jun 1993 | A |
5255481 | Misera et al. | Oct 1993 | A |
5303522 | Vagedes | Apr 1994 | A |
5414964 | Bodycomb | May 1995 | A |
5586415 | Fisher et al. | Dec 1996 | A |
5706610 | Mayle | Jan 1998 | A |
5815986 | Laska | Oct 1998 | A |
5913779 | Edvardsen | Jun 1999 | A |
5927039 | De Boer | Jul 1999 | A |
6035582 | Pacific | Mar 2000 | A |
6070370 | Locke | Jun 2000 | A |
6098343 | Brown et al. | Aug 2000 | A |
6119416 | Larson | Sep 2000 | A |
6122874 | Smerilli | Sep 2000 | A |
6122887 | Massett et al. | Sep 2000 | A |
6256956 | Davis | Jul 2001 | B1 |
6327820 | Picco | Dec 2001 | B1 |
6401401 | Williams | Jun 2002 | B1 |
6401402 | Williams | Jun 2002 | B1 |
7222462 | Ellingson | May 2007 | B2 |
7451571 | Ross | Nov 2008 | B2 |
7673426 | Broad | Mar 2010 | B2 |
7676996 | Teodorovich | Mar 2010 | B2 |
7735291 | Summy | Jun 2010 | B2 |
7775004 | Allen | Aug 2010 | B2 |
7877940 | Meeks | Feb 2011 | B2 |
7877945 | Eggen | Feb 2011 | B2 |
8069622 | Mees | Dec 2011 | B2 |
8869462 | Baron | Oct 2014 | B2 |
9032688 | Summy | May 2015 | B2 |
9163450 | Messenger | Oct 2015 | B2 |
D748826 | Norwood | Feb 2016 | S |
9341018 | Helton | May 2016 | B2 |
9702468 | Newhouse | Jul 2017 | B2 |
9845624 | Heid | Dec 2017 | B2 |
9909353 | Hendricks | Mar 2018 | B2 |
9982477 | Glickman | May 2018 | B1 |
10024097 | Glickman | Jul 2018 | B1 |
10065580 | Newman | Sep 2018 | B1 |
10161179 | Norwood | Dec 2018 | B2 |
10273741 | Summy | Apr 2019 | B1 |
20010034984 | Murphy et al. | Nov 2001 | A1 |
20020050103 | Ackerman, Jr. | May 2002 | A1 |
20030056444 | Ackerman, Jr. | Mar 2003 | A1 |
20060260213 | Williams | Nov 2006 | A1 |
20070289226 | Lokkart | Dec 2007 | A1 |
20120032406 | Ksiezoposki | Feb 2012 | A1 |
20120144761 | Teodorovich | Jun 2012 | A1 |
Entry |
---|
Forti Flash; Fortifiber Building Products Systems; Websites at www.fortifiber.com. |
Future Flash, Window Waterproofing System; MFM Building Products Corp., 525 Orange Street, Coshocton, OH 43812; (740) 622-2645; (800) 882-7663. |
Number | Date | Country | |
---|---|---|---|
20200291715 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62819359 | Mar 2019 | US |