Siloxane star-graft polymers, ceramic powders coated therewith and method of preparing coated ceramic powders

Information

  • Patent Grant
  • 5993967
  • Patent Number
    5,993,967
  • Date Filed
    Friday, October 17, 1997
    26 years ago
  • Date Issued
    Tuesday, November 30, 1999
    24 years ago
Abstract
A coated ceramic powder comprises a plurality of ceramic particles and a siloxane star-graft coating polymer encapsulating at least a portion of the particles. The coating polymer comprises Si(w,x,y,z), where w, x, y and z are the mole percent tetrafunctional, trifunctional, difunctional and monofunctional monomeric units, respectively, and wherein w, x, y and z are about 45-75, 5-25, 5-45 and 5-10, respectively. A method of preparing a coated ceramic powder comprises the steps of (a) polymerizing each of a tetrafunctional siloxane monomer, a trifunctional siloxane monomer, a difunctional siloxane monomer, and a monofunctional siloxane monomer, (b) adding a quantity of ceramic powder to a reaction vessel, (c) shear mixing the ceramic powder for a time sufficient to wet substantially all of the powder surface, (d) adding the siloxane polymer prepared in step (a) to the reaction vessel containing the shear mixed ceramic powder, (e) shear mixing the shear mixed ceramic powder and the siloxane polymer for a time sufficient to form a siloxane polymer coated ceramic powder, and (f) separating the coated ceramic powder from the components remaining in the reaction vessel. The process may be rendered continuous by employing continuous high-shear mixing equipment and appropriate process modifications.
Description

FIELD OF THE INVENTION
This invention relates generally to ceramic powder coatings. More particularly, this invention relates to siloxane star-graft polymers for coating ceramic powders, thereby enabling the dispersion of such powders in oils, polymers and water.
BACKGROUND OF THE INVENTION
Ceramic powders are inorganic compositions that are naturally hydrophilic and require a coating to impart one or more of the following characteristics:
(1) A coating is required to enable the surface to be wetted by, or compatible with, organic materials such as solvents. Surface wetting is required to prepare an intimate ceramic powder/organic dispersion.
(2) A coating is required to passivate the surface of the ceramic powder.
(3) A coating is required to render anatase titania (TiO.sub.2) non-photoactive.
(4) A coating is required where specific functionalities are required on the ceramic powder surface, such as epoxy groups, carboxyl groups, and the like.
(5) A coating is required to form dispersed-phase, aqueous ionic-gels that do not phase separate.
As used herein, the term "ceramic" refers to metal oxides, including but not limited to titanium dioxide (TiO.sub.2 ; sometimes referred to as "titania") alumina (Al.sub.2 O.sub.3), zinc oxide (ZnO), and iron oxides including .gamma.-Fe.sub.2 O.sub.3 (brown in color), .alpha.-Fe.sub.2 O.sub.3 (red in color) and ferrous oxide (Fe.sub.3 O.sub.4 ; black in color; sometimes referred to as "magnetite"), and nonmetal oxides, including but not limited to silicon dioxide (SiO.sub.2 ; sometimes referred to as "silica").
Inorganic surfaces have been conventionally modified by absorption, ion exchange, and covalent bonding. Surface modification by absorption and ion exchange require the surface to have appropriate chemical characteristics. Reactions that enable covalent bonding to inorganic surfaces generally involve reactions on hydroxylic surfaces.
Inorganic surfaces may also be coated by graft polymerization and encapsulation. Inorganic powders may be coated by the precipitation of powders in the presence of suspended powders or by spray drying of polymer solutions containing the powder. However, these conventional methods yield uneven coatings and the formation of coated agglomerates. Graft polymerization initiated by adsorbed species, or involving their copolymerization, favors uniform polymeric coatings.
The present siloxane star-graft polymer coatings are derived from the acid-catalyzed silicate sols discussed in Sol-Gel Science, C. J. Brinker and G. W. Scherer, Academic Press, 1990, Chapters 3 and 4. Such acid-catalyzed silicate sols are fractal, silicon-based polymers, the structure of which is shown, in two-dimensions, in FIG. 1. The present siloxane star-graft polymers employ this polymer morphology, in three dimensions, as a starting point, bonding to the fractal backbone specific moieties, thereby forming a fractal, star-graft copolymer using molecularly engineered inorganic surface/diluent interactions. Inherent in the present method of preparing such siloxane star-graft polymers is the control of the fractal nature of the backbone by allowing only desired branching probabilities to occur. Such control is realized by selection of monomers with the desired functionality and reactivity.
Silicon-based polymers will be referred to herein using the following nomenclature:
Si(w,x,y,z),
where w, x, y and z refer to the mole percent tetrafunctional, trifunctional, difunctional and monofunctional monomers, respectively, that are employed in synthesizing the sol. The ratio of total moles water to total moles silicon (H.sub.2 O/Si) is termed R, where R is a measure of the degree of polymer branching.
SUMMARY OF THE INVENTION
The present siloxane star-graft polymer coatings are formed by reacting specific monomers in solution to form a siloxane-based polymer. The coating encapsulates the nanoparticle.
A coated ceramic powder comprises a plurality of ceramic particles and a siloxane star-graft coating polymer encapsulating at least a portion of the particles. The coating polymer comprises:
Si(w,x,y,z)
where w, x, y and z are the mole percent tetrafunctional, trifunctional, difunctional and monofunctional monomeric units, respectively, and wherein w, x, y and z are about 45-75, 5-25, 5-45 and 5-10, respectively.
All of the monomer types (tetrafunctional, trifunctional, difunctional and monofunctional) are controlled by the relative hydrolytic sensitivity of the respective leaving groups. A star-graft copolymer, capable of coating and encapsulating nanoparticles, requires a relatively large percentage of tetrafunctional monomers to yield a high degree of branching. Trifunctional monomers direct coating conformation. Difunctional monomers are the linear polymer segments. Monofunctional monomers control the overall size of the polymer.
In the preferred coated ceramic powder, the ceramic is TiO.sub.2, Al.sub.2 O.sub.3, ZnO, iron oxide or SiO.sub.2. The iron oxide is .gamma.-Fe.sub.2 O.sub.3, .alpha.-Fe.sub.2 O.sub.3 or Fe.sub.3 O.sub.4.
Where the ceramic is TiO.sub.2, the coated ceramic powder preferably further comprises Al.sup.+3 centers to introduce surface defects into the TiO.sub.2 powder, thereby rendering the coated TiO.sub.2 powder non-photoactive.
In the preferred coated powder:
w is tetraethylorthosilicate;
x is selected from the group consisting of .gamma.-glycidoxypropyltrimethoxysilane, n-hexyltrimethoxysilane, isobutyltrimethoxysilane, .gamma.-methacryloxypropyltrimethoxysilane, n-octadecyltrimethoxysilane, and n-propyltrimethoxysilane;
y is selected from the group consisting of dicyclohexyldimethoxysilane, diethyldiethoxysilane, dimethyldichlorosilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, di-n-hexyldichlorosilane, n-hexylmethyldichlorosilane, methyldodecyldiethoxysilane, neophylmethyldimethoxysilane, and n-octylmethyldimethoxysilane; and
z is selected from the group consisting of n-octadecyldimethylmethoxysilane, triethylsilanol, trimethylethoxysilane, and trimethylmethoxysilane.
A method of preparing the above coated ceramic powder comprises the steps of:
(a) polymerizing each of a tetrafunctional siloxane monomer, a trifunctional siloxane monomer, a difunctional siloxane monomer and a monofunctional siloxane monomer;
(b) adding a quantity of ceramic powder to a purged reaction vessel;
(c) shear mixing the ceramic powder for a time sufficient to wet substantially all of the powder surface;
(d) adding the siloxane polymer prepared in step (a) to the reaction vessel containing the shear mixed ceramic powder;
(e) shear mixing the shear mixed ceramic powder and the siloxane polymer for a time sufficient to form a siloxane polymer coated ceramic powder;
(f) separating the coated ceramic powder from the components remaining in the reaction vessel.
In the preferred method, the ceramic is TiO.sub.2, Al.sub.2 O.sub.3, ZnO, Fe.sub.2 O.sub.3 or SiO.sub.2.
Where the ceramic is TiO.sub.2, a further quantity of aluminum tri-sec-butoxide is optionally added to the reaction vessel in step (b) to introduce surface defects into the TiO.sub.2 powder, thereby rendering the coated TiO.sub.2 powder non-photoactive.
In the preferred method:
the tetrafunctional siloxane monomer is tetraethylorthosilicate;
the trifunctional siloxane monomer is selected from the group consisting of .gamma.-glycidoxypropyltrimethoxysilane, n-hexyltrimethoxysilane, isobutyltrimethoxysilane, .gamma.-methacryloxypropyltrimethoxysilane, n-octadecyltrimethoxysilane, and n-propyltrimethoxysilane;
the difunctional siloxane monomer is selected from the group consisting of dicyclohexyldimethoxysilane, diethyldiethoxysilane, dimethyldichlorosilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, di-n-hexyldichlorosilane, n-hexylmethyldichlorosilane, methyldodecyldiethoxysilane, neophylmethyldimethoxysilane, and n-octylmethyldimethoxysilane; and
the monofunctional siloxane monomer is selected from the group consisting of n-octadecyldimethylmethoxysilane, triethylsilanol, trimethylethoxysilane, and trimethylmethoxysilane.
A siloxane star-graft polymer for coating and encapsulating ceramic particles comprises:
Si(w,x,y,z)
where w, x, y and z are the mole percent tetrafunctional, trifunctional, difunctional and monofunctional monomeric units, respectively, and wherein w, x, y and z are about 45-75, 5-25, 5-45 and 5-10, respectively.
In the preferred star-graft coating polymer:
w is tetraethylorthosilicate;
x is selected from the group consisting of .gamma.-glycidoxypropyltrimethoxysilane, n-hexyltrimethoxysilane, isobutyltrimethoxysilane, .gamma.-methacryloxypropyltrimethoxysilane, n-octadecyltrimethoxysilane, and n-propyltrimethoxysilane;
y is selected from the group consisting of dicyclohexyldimethoxysilane, diethyldiethoxysilane, dimethyldichlorosilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, di-n-hexyldichlorosilane, n-hexylmethyldichlorosilane, methyldodecyldiethoxysilane, neophylmethyldimethoxysilane, and n-octylmethyldimethoxysilane; and
z is selected from the group consisting of n-octadecyldimethylmethoxysilane, triethylsilanol, trimethylethoxysilane, and trimethylmethoxysilane.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic diagram of a fractal, silicon-based polymer, the structure of which is shown in two-dimensions.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The values of w, x, y and z in the above silicon-based polymers have ranged from 45-75, 5-25, 5-45 and 5-10, respectively. Various combinations are employed to control the fractal nature of the siloxane backbone and its chemical nature, that is, the degree of thermodynamic compatibility with a specific diluent of the coating molecule. The chemical identity of the groups may also be varied extensively. Similarly, R has been varied from 1 to 6, and the acid character of the reaction medium has been varied widely. Examples of monomers that may be incorporated in the coating are included, but not limited to, those set forth in Table 1.
TABLE I______________________________________Coating MonomersMonomer Functionality Boiling Point______________________________________Dicyclohexyldimethyoxysilane 2 104.degree. C./0.7 mmDiethyldiethoxysilane 2 157.degree. C.Dimethyldichlorosilane 2 70.degree. C.Dimethyldiethoxysilane 2 114.degree. C.Dimethyldimethoxysilane 2 82.degree. C.Diphenyldiethoxysilane 2 167.degree./15 mmDiphenyldimethoxysilane 2 161.15.degree. C.Di-n-hexyldichlorosilane 2 111.degree. C..gamma.-Glycidoxypropyltrimethoxysilane 3n-Hexylmethyldichlorosilane 2 204.degree. C.n-Hexyltrimethoxysilane 3 202.degree. C.Isobutyltrimethoxysilane 3 154.degree.C..gamma.-Methacryloxypropyltrimethoxysilane 3Methyldodecyldiethoxysilane 2 140.degree. C.Neophylmethyldimethoxysilane 2 68.degree. C.n-Octadecyltrimethoxysilane 3 150.degree. C.n-Octadecyldimethylmethoxysilane 1 184.degree. C.n-Octylmethyldimethoxysilane 2 107.degree. C.n-Propyltrimethoxysilane 3 142.degree. C.Tetraethylorthosilicate 4 169.degree. C.Triethylsilanol 1 75.degree. C./24 mmTrimethylethoxysilane 1 75.degree. C.Trimethylmethoxysilane 1 57.degree. C.______________________________________
A. General Procedure For Preparing Coating Polymer
The following is a general procedure for preparing a coating polymer designated Si(71.29, 13.48, 10.16, 5.07) and R=1.16:
(1) Add the following chemicals to a reaction vessel that has been purged with dry nitrogen and stir:
(a) 61 ml of anhydrous ethanol (Aldrich # 27764.9 or equivalent);
(b) 43.04 ml of tetraethylorthosilicate (TEOS FW 208.33, Aldrich # 33385-9 or equivalent);
(c) 15.45 ml of n-octyldecyltrimethyloxysilane (n-ODTMS FW 374.68, Petrach # 09780 or equivalent
(d) 6.24 ml of diphenyldimethoxysilane (DPDMS FW 244.36, Petrach # D6010 or equivalent);
(e) 2.15 ml of trimethylethoxysilane (TMES FW 118.25, Petrach # T2970 or equivalent);
(f) 3.67 ml of deionized water;
(g) 2.0 ml of 0.1 N hydrochloric acid (VWR Catalog No. VW3200-1 or equivalent).
(2) Heat the mixture at 60.degree. C. for 1.5 hours.
(3) Store the prepared sol at 5.degree. C.
B. Batch Process For Coated Ceramic Polymers
The following is a process description for preparing coated ceramic powders in 10 gallon batches with Si(68.7, 13.5, 10.2, 7.6)/tetraethylorthosilicate, n-octadecyltrimethoxysilane, diphenylmethoxysilane, trimethylethoxysilane, optimized with high shear mixing:
(1) Preparation of the coating polymer:
(a) Purge a 10 liter reaction vessel with dry nitrogen and stir.
(b) Add:
1527 ml of anhydrous ethanol;
1039 ml of tetraethylorthosilicate;
387 ml of n-octyldecyltrimethoxy silane;
156 ml of diphenyldimethoxysilane;
81 ml of trimethylethoxysilane
93 ml of deionized water;
50 ml of 0.1 N hydrochloric acid.
(c) Heat at 60.degree. C. for 1.5 hours.
(d) Store at 5.degree. C.
The product prepared by the above batch process contains approximately 15 weight percent (wt %) coating polymer.
(2) Preparation of the coated TiO.sub.2 polymer:
(a) Wet powder; add Al-undercoat:
Purge a 50 liter passivated vessel with argon and stir.
Add 20 liters of suitable reaction solvent (such as, for example, anhydrous ethanol, ethanol and/or isopropanol)+5 kg TiO.sub.2 powder.
Mix 555 ml of suitable reaction solvent (such as, for example, anhydrous ethanol, ethanol and/or isopropanol), aluminum tri-sec-butoxide ("ASTB")+approximately 500 ml isopropanol.
Add ASTB solution in a small stream via cannula by argon pressure displacement. The addition of ASTB introduces Al.sup.+3 centered surface defects into the TiO.sub.2 powder, thereby rendering the powder non-photoactive.
(b) Dilute; coat powder:
Add 4 liters of reaction solvent.
High-shear mix at 7000 rpm for 30 minutes. Temperature increases as the coating reaction proceeds; large-scale reactions may need to be cooled if the temperature increase exceeds 50.degree. C.
Add 3333 ml of the 15 wt % coating polymer.
High-shear mix at 7000 rpm for 30 minutes.
(c) Separate and purify:
Add 6 liter of deionized water.
High-shear mix at 7000 rpm for 20 minutes.
Collect by centrifugation.
(d) Optionally, wash by repeating procedure (c).
(e) Optionally, dry the wet cake.
The above batch process may be rendered continuous, as will be recognized by persons skilled in the art, by employing continuous high-shear mixing equipment and appropriate process modifications.
(3) Preparation of the dispersion:
Add dry powder or wet cake to an organic carrier fluid such as, for example, Finsolv.
Remove reaction solvents if necessary.
Mix thoroughly.
C. Specific Coating Examples
(1) Sunscreens--Si(68.7, 13.5, 10.2, 7.6)/tetraethylorthosilicate, n-octadecyltrimethoxysilane, diphenyldimethoxysilane, trimethylethoxysilane; R=1.16, .DELTA.60.degree. C. 1.5 hr.
(2) Water soluble--Si(70.1, 20.1, 4.9, 4.9)/tetraethylorthosilicate, .gamma.-glycidoxypropyltrimethoxysilane, diphenyldimethoxysilane, trimethylethoxysilane; R=1.18, .DELTA.60.degree. C. 1.5 hr., react pendant epoxy functional group with one of the following: an amino acid such as, for example, .beta.-alanine; a diamine such as, for example, ethylene diamine; or other suitable functionality, such as, for example, sodium sulfite or an anionic-, cationic-, or zwitterionic-functional character.
(3) Acrylate polymers--Si(60.9, 18.8, 15.1, 5.2)/tetraethylorthosilicate, .gamma.-methacryloxypropyltrimethoxysilane, diphenyldimethoxysilane, trimethylethoxysilane; R=1.17, .DELTA.60.degree. C. 1.5 hr.
(4) Epoxy polymers--Si(60, 20, 15, 5)/tetraethylorthosilicate, .gamma.-glycidoxypropyltrimethoxysilane, diphenyldimethoxysilane, trimethylethoxysilane; R=1.12, .DELTA.60.degree. C. 1.5 hr.
(5) Hydrophobic oils--Si(45.1, 13.1, 34.3, 7.4)/tetraethylorthosilicate, n-octadecyltrimethoxysilane, diphenyldimethoxysilane, trimethylethoxysilane; R=1.15, .DELTA.60.degree. C. 1.5 hr.; or Si(45.1, 6.6, 40.8, 7.5)/tetraethylorthosilicate, n-octadecyltrimethoxysilane, diphenyldimethoxysilane, trimethylethoxysilane; R=1.14, .DELTA.60.degree. C. 1.5 hr.
While particular elements, embodiments and applications of the present invention have been shown and described, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings. It is therefore contemplated by the appended claims to cover such modifications as incorporate those features which come within the spirit and scope of the invention.
Claims
  • 1. A coated ceramic powder comprising a plurality of ceramic particles and a siloxane star-graft coating polymer encapsulating at least a portion of said particles, said coating polymer comprising:
  • Si (w,x,y,z)
  • where w, x, y and z are the mole percent tetrafunctional, trifunctional, difunctional and monofunctional monomeric units, respectively, and wherein w, x, y and z are about 45-75, 5-25, 5-45 and 5-10, respectively, wherein:
  • w is tetraethylorthosilicate;
  • x is selected from the group consisting of .gamma.-glycidoxypropyltrimethoxysilane, n-hexyltrimethoxysilane, isobutyltrimethoxysilane, .gamma.-methacryloxypropyltrimethoxysilane, n-octadecyltrimethoxysilane, and n-propyltrimethoxysilane;
  • y is selected from the group consisting of dicyclohexyldimethoxysilane, diethyldiethoxysilane, dimethyldichlorosilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, di-n-hexyldichlorosilane, n-hexylmethyldichlorosilane, methyldodecyldiethoxysilane, neophylmethyldimethoxysilane, and n-octylmethyldimethoxysilane; and
  • z is selected from the group consisting of n-octadecyldimethylmethoxysilane, triethylsilanol, trimethylethoxysilane, and trimethylmethoxysilane.
  • 2. A method of preparing a coated ceramic powder comprising a plurality of ceramic particles and a siloxane star-graft coating polymer encapsulating at least a portion of said particles, the method comprising the steps of:
  • (a) polymerizing each of a tetrafunctional siloxane monomer, a trifunctional siloxane monomer, a difunctional siloxane monomer and a monofunctional siloxane monomer;
  • (b) adding a quantity of ceramic powder to a reaction vessel;
  • (c) shear mixing said ceramic powder for a time sufficient to wet substantially all of said powder surface;
  • (d) adding the siloxane polymer prepared in step (a) to said reaction vessel containing said shear mixed ceramic powder;
  • (e) shear mixing said shear mixed ceramic powder and said siloxane polymer for a time sufficient to form a siloxane polymer coated ceramic powder;
  • (f) separating said coated ceramic powder from the components remaining in said reaction vessel, wherein:
  • said tetrafunctional siloxane monomer is tetraethylorthosilicate;
  • said trifunctional siloxane monomer is selected from the group consisting of .gamma.-glycidoxypropyltrimethoxysilane, n-hexyltrimethoxysilane, isobutyltrimethoxysilane, .gamma.-methacryloxypropyltrimethoxysilane, n-octa-decyltrimethoxysilane, and n-propyltrimethoxysilane;
  • said difunctional siloxane monomer is selected from the group consisting of dicyclohexyldimethoxysilane, diethyldiethoxysilane, dimethyldichlorosilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, di-n-hexyldichlorosilane, n-hexylmethyldichlorosilane, methyldodecyldiethoxysilane, neophylmethyldimethoxysilane, and n-octylmethyldimethoxysilane; and
  • said monofunctional siloxane monomer is selected from the group consisting of n-octadecyldimethylmethoxysilane, triethylsilanol, trimethylethoxysilane, and trimethylmethoxysilane.
  • 3. A siloxane star-graft polymer for coating and encapsulating ceramic particles, said coating polymer comprising:
  • Si(w,x,y,z)
  • where w, x, y and z are the mole percent tetrafunctional, trifunctional, difunctional and monofunctional monomeric units, respectively, and wherein w, x, y and z are about 45-75, 5-25 and 5-45 and 5-10, respectively, wherein:
  • w is tetraethylorthosilicate;
  • x is selected from the group consisting of .gamma.-glycidoxypropyltrimethoxysilane, n-hexyltrimethoxysilane, isobutyltrimethoxysilane, .gamma.-methacryloxypropyltrimethoxysilane, n-octadecyltrimethoxysilane, and n-propyltrimethoxysilane;
  • y is selected from the group consisting of dicyclohexyldimethoxysilane, diethyldiethoxysilane, dimethyldichlorosilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, di-n-hexyldichlorosilane, n-hexylmethyldichlorosilane, methyldodecyldiethoxysilane, neophylmethyldimethoxysilane, and n-octylmethyldimethoxysilane; and
  • z is selected from the group consisting of n-octadecyldimethylmethoxysilane, triethylsilanol, trimethylethoxysilane, and trimethylmethoxysilane.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. patent application Ser. No. 08/827,229 filed Mar. 29, 1997, entitled "Siloxane Star-Graft Polymers, Ceramic Powders Coated Therewith And Method Of Preparing Coated Ceramic Powders".

US Referenced Citations (29)
Number Name Date Kind
2885366 Iler May 1959
2938009 Lucas May 1960
3437502 Werner Apr 1969
3635743 Smith Jan 1972
3671484 Cooper et al. Jun 1972
3816152 Yates Jun 1974
3849152 Mimeault Nov 1974
3905936 Hawthorne Sep 1975
4151154 Berger Apr 1979
4243692 Scholze et al. Jan 1981
4271234 Schonafinger et al. Jun 1981
4574082 Tietjen et al. Mar 1986
4644077 Gupta Feb 1987
4818614 Fukui et al. Apr 1989
4877604 Schlossman Oct 1989
4882225 Fukui et al. Nov 1989
4927464 Cowie May 1990
5035803 Cohen Jul 1991
5063254 Nakos Nov 1991
5068056 Robb Nov 1991
5070175 Tsumura et al. Dec 1991
5143722 Hollenberg et al. Sep 1992
5274064 Sarkar Dec 1993
5310578 Thurn-Muller et al. May 1994
5328683 Harashima Jul 1994
5348760 Parker et al. Sep 1994
5411761 Inokuchi et al. May 1995
5440001 Griswold et al. Aug 1995
5674624 Miyazaki et al. Oct 1997
Foreign Referenced Citations (6)
Number Date Country
0389138 Sep 1990 EPX
0665004 Aug 1995 EPX
2217987 Nov 1989 GBX
WO 9006103 Jun 1990 WOX
WO 9009777 Sep 1990 WOX
WO 9738041 Oct 1997 WOX
Non-Patent Literature Citations (1)
Entry
Sol-Gel Science, Academic Press, Chapters 3 and 4, Brinker et al. 1990.
Continuation in Parts (1)
Number Date Country
Parent 827229 Mar 1997