The present invention generally relates to the production of petroleum and more particularly to compositions and processes for improving the recovery of petroleum from a subterranean geological formation.
For many years, petroleum has been recovered from subterranean reservoirs through the use of drilled wells and production equipment. During the production of desirable hydrocarbons, such as crude oil and natural gas, a number of other naturally occurring substances may also be encountered within the subterranean environment.
The removal of unwanted deposits from the wellbore and production equipment is generally referred to as “remediation.” In contrast, the term “stimulation” generally refers to the treatment of geological formations to improve the recovery of hydrocarbons. Common stimulation techniques include well fracturing and acidizing operations. Well remediation and stimulation are important services that are offered through a variety of techniques by a large number of companies.
Oil and natural gas are found in, and produced from, porous and permeable subterranean formations. The porosity and permeability of the formation determine its ability to store hydrocarbons, and the facility with which the hydrocarbons can be extracted from the formation.
The use of certain microemulsion additives during completion of both oil and gas wells leads to higher near wellbore permeability and long-term increased production of hydrocarbons from the well. The increased displacement of water from the formation and proppant by both oil and gas (flowback) and consequent increased production of hydrocarbons have been attributed to lowered capillary pressure. However, the solvent—hydrocarbon surfactant systems that have been used have limitations in their ability to lower capillary pressure. There is, therefore, a need for treatment compositions that are capable of lowering capillary pressure and increasing wettability while maintaining the desirable properties of conventional emulsified treatment formulations.
In preferred embodiments, the present invention includes a well treatment additive that includes a siloxane surfactant, a solvent and an aqueous phase. The solvent is preferably a terpene hydrocarbon. The well treatment additive preferably is a spontaneously formed nanofluid with a nano-sized self-assembled liquid phase.
In another aspect, the preferred embodiments include the use of siloxane surfactants (alone or in combination with conventional hydrocarbon surfactants) to form and enhance the properties of terpene solvent based nanofluid additives useful for the treatment of oil and gas wells.
In another aspect, the preferred embodiments include methods of using the novel well treatment additives in a variety of well treatment processes. Suitable well treatment processes include, but are not limited to, acidizing operations, hydraulic fracturing operations, well remediation operations and water removal operations.
Presently preferred embodiments generally contemplate the preparation of an additive for use in oil and gas wells. The additive preferably includes a solvent component, a surfactant component and an aqueous phase. In a particularly preferred embodiment, nano-sized particles of the solvent component are distributed within the aqueous phase. Other functional materials may also be included advantageously.
Generally, the additive is prepared using a siloxane surfactant, a solvent and an aqueous phase. In more particularly preferred embodiments, the solvent is a terpene and the surfactant includes a combination of a siloxane surfactant and a hydrocarbon surfactant of a kind, amount and proportion effective to form a stable distribution of the nano-sized particles of terpene solvent within the aqueous phase. Each of these components is discussed separately below.
As used herein, the term “siloxane surfactant” refers to permethylated siloxane materials functionalized with a sufficient number of polar groups so as to render them usefully surface active in aqueous mixtures. Thus, these siloxane surfactants qualify as amphiphiles in which a hydrophobic silicone group is coupled with one or more hydrophilic groups. They may be co-polymers, or molecules comparable in molecular weight to conventional organic surfactants such as heptaethylene glycol monododecyl ether.
To facilitate description of preferred siloxane surfactants, it is helpful to use the MDTQ notation for siloxane copolymers adopted in U.S. Pat. No. 3,299,112 issued Jan. 17, 1967 to Bailey, and summarize in Table 1 below:
It should be noted that while an organic radical, R, is implicit in the M′D′T′ notation, the R group is shown in the structures given below to permit a more detailed disclosure of the range of structures of R groups useful within the siloxane surfactant component.
In presently preferred embodiments, the siloxane surfactant component is an organosilicon compound having a formula selected from the group consisting of one of the formulas identified in Table 2 below:
For formula 1, a is 0-200, and b is 1-20. The case for which a=0 and b=1 represents the heptamethyltrisiloxane surfactants. Suitable examples are available from Dow Corning Corporation as Dow Corning® Q2-5211 Superwetting Agent, or from Momentive ™ as Silwet L-77. For formula 2, a is 4-50. A suitable example available from Dow Corning Corporation is Dow Corning® 2-8692 Fluid. For formula 3, a is 0-25, and R2 represents an alkane radical of 1-8 carbon atoms. For formula 4, a is 0-200, and b is 1-20. For formula 5, the ratio of c:z is 1:7 to 2:6, and the total molecular weight should be less than 7000 Daltons. For formula 6, the ratio of (t+u):v is from 0.4:1 to 2:1 and the ratio of t:u is from 1:4 to 1:1, and the total molecular weight should be less than 7000 Daltons. For formula 7, k is 4-5.
Suitable hydrocarbon surfactants include a multiplicity of surface active agents which are expediently classified into nonionic, anionic, cationic and amphoteric surface-active agents. An overview is cited in Ullmanns Encyklopadie der technischen Chemie [Ullmanns Encyclopedia of Industrial Chemistry], Verlag Chemie Weinheim, 4th Edition 1975, Volume 10, pp. 449-473.
In a presently preferred embodiment, the additive comprises one or more nonionic surfactants, cationic surfactants, anionic surfactants, zwitterionic surfactants, or combinations thereof. Surfactants in general are wetting agents that lower the surface tension of a liquid in which they are dissolved, allowing easier spreading and decreasing the interfacial tension between two liquids. Each surfactant has a hydrophilic head that is attracted to water molecules and a hydrophobic tail that repels water and attaches itself to hydrophobic materials such as oil and grease.
In a particularly preferred embodiment, the additive comprises a non-ionic surfactant. In this context, a nonionic surfactant has an uncharged hydrophilic head and a hydrophobic tail comprising a carbon chain. Examples of nonionic surfactants suitable for use in this disclosure include without limitation linear alcohol ethoxylates, polyoxyethylene alkylphenol ethoxylates, polyoxyethylene alcohol ethoxylates, polyoxyethylene esters of fatty acids, polyoxyethylene alkylamines, alkyl polyglucosides, ethylene oxide-propylene oxide copolymers or a combination thereof. Particularly useful nonionic surfactants may have a carbon chain length of 8-20 carbon atoms and 3-40 ethylene oxide units, up to 40 propylene oxide units, up to 2 glucose units or a combination thereof.
In a yet another preferred embodiment, the nonionic surfactant may be present in the additive in an amount of from about 5 wt. % to about 70 wt. % based on the total weight of the additive, and more preferably from about 10 wt. % to about 70 wt. %, and even more preferably from about 20 wt. % to about 40 wt. %.
In yet another preferred embodiment, the additive comprises an anionic surfactant. In this context, an anionic surfactant has a negatively charged head and a hydrophobic tail comprising a carbon chain. Examples of anionic surfactants suitable for use in this disclosure include without limitation sodium salts of fatty acids, alkyl sulphates, alkyl ethoxylate sulphates or sulfonates, or a combination thereof. Preferred anionic surfactants may have a carbon chain length of 8-20 carbon atoms.
In yet another preferred embodiment, the additive comprises a cationic surfactant. In this context, a cationic surfactant has a positively charged head and a hydrophobic tail comprising a carbon chain. Examples of cationic surfactants suitable for use in this disclosure include without limitation quaternary ammonium salts, ethoxylated quaternary ammonium salts, or a combination thereof. A preferred cationic surfactant may have a carbon chain length of 8-20 carbon atoms
In yet another preferred embodiment, the additive comprises a zwitterionic surfactant. Zwitterionic surfactants are electrically neutral surfactants that carry both a formal positive and a formal negative charge on different atoms in the same molecule. Examples of zwitterionic surfactants suitable for use in this disclosure include without limitation alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaine, alkyl sulfobetaines, alkyl sultaines, or combinations thereof. A particularly preferred zwitterionic surfactant may have a carbon chain length of 8-20 carbon atoms
Surfactants can be described in terms of their hydrophile-lipophile balance (HLB) numbers, or silicone HLB (SHLB) numbers for siloxane surfactants, but the formulation of a microemulsion requires that the surfactant system be matched to, and optimized for the particular oil or solvent in use. It has been determined that the best procedure for selecting and optimizing a surfactant system is to map the phase behavior and select the system that gives the desired stability over a wide range of temperatures.
The solvent component is preferably selected from the class of solvents referred to as terpenes, including those derived from citrus and from pine sources. Terpene solvents are natural products, whose structures are built up from isoprene units. A dimer consisting of two isoprene units is termed a monoterpene. They can be acyclic or cyclic. The broader term “terpenoids” also covers natural and synthetic derivatives such as alcohols, aldehydes, ketones, and ethers. Particularly preferred terpenes include cyclic and acyclic monoterpenoids, including but not limited to those that are good solvents for paraffins and asphaltenes.
The additive optionally includes a co-solvent or mixture of co-solvents. Co-solvents increase the usefulness of additives, especially freeze stability. Preferred co-solvents include short chain alkyl alcohols and glycols and combinations thereof. Particularly preferred co-solvents include methanol, ethanol, isopropanol, 1,2-pentanediol, propylene glycol, and triethylene glycol and combinations thereof.
In a preferred embodiment, the co-solvent may be present in the additive in an amount of from about 5 wt. % to about 70 wt. % based on the total weight of the additive, more preferably from about 10 wt. % to about 70 wt. %, and even more preferably from about 20 wt. % to about 40 wt. %. Alternatively, the co-solvents are incorporated into the additive to provide a formulation that is clear and stable over a temperature range from −25 degrees F. to 150 degrees F.
A series of laboratory tests confirms the superior effectiveness of the additives incorporating siloxane surfactants. It has been determined that mixtures of siloxane surfactants and hydrocarbon surfactants can markedly lower surface tension to values not achievable by the hydrocarbon surfactants alone. In addition, and unexpectedly since silicone materials are usually regarded as incompatible with hydrocarbon materials, the additives of the preferred embodiments have been found to exhibit improved aqueous phase (brine) displacement by crude oil or gas.
Within these laboratory tests, a first series of additives was prepared using a siloxane surfactant, a co-solvent, aqueous phase and a terpene solvent. A second series of additives was prepared using a siloxane surfactant, a hydrocarbon surfactant, a co-solvent, an aqueous phase and a terpene solvent. The following examples provide performance characteristics for the first and second series of additives.
A transparent low-viscosity mixture that exhibited the characteristic properties of a microemulsion was prepared using 60% by weight of a 1:1 blend of Dow Corning Xiameter® OFX-0190 Fluid (siloxane surfactant) and isopropyl alcohol (co-solvent), 30% by weight of water (aqueous phase), and 10% by weight of technical grade d-limonene (terpene solvent). This mixture was identified as a microemulsion based on the spontaneous formation with minimal mechanical energy input to form a transparent dispersion from an immiscible mixture of water and d-limonene upon addition of an appropriate amount of surfactant and co-solvent. These and other salient characteristics identifying a mixture as a spontaneously formed microemulsion are well-known to practitioners in the art.
The order of mixing of this and other compositions described in this disclosure is not critical, but for convenience during the laboratory tests, the additives were prepared using a procedure in which a mixture of the surfactant and the isopropyl alcohol was first prepared and then combined with a mixture of the technical grade d-limonene and water. With small samples in the laboratory, a few seconds of gentle mixing yielded a transparent dispersion. It will be understood by experts on liquid mixing that longer times are required in the large vessels used in full-scale commercial manufacturing.
A transparent low-viscosity additive was prepared using 30% by weight of a 1:1 blend of Dow Corning® 5211 Superwetting Agent (siloxane surfactant) and isopropyl alcohol (co-solvent), 60% by weight of water (aqueous phase), and 10% by weight of technical grade d-limonene (terpene solvent).
A transparent low-viscosity additive was prepared using about 61% by weight of a blend of a detergent range alcohol ethoxylate surfactant, an ethoxylated castor oil surfactant, isopropyl alcohol and glycol co-solvent, about 2% by weight of Momentive™ Silwet L-77 siloxane surfactant, 15% by weight of water, and 22% by weight of technical grade d-limonene. This is the formulation referenced as Formulation 3B below. Additional transparent low-viscosity additives were prepared increasing the siloxane surfactant up to 12% by weight of Momentive™ Silwet L-77 (and 51% by weight of the other surfactant/co-solvent components). This is the formulation designated as 4B below.
A transparent low-viscosity additive was prepared using about 41% by weight of a blend of a detergent range alcohol ethoxylate surfactant, an ethoxylated castor oil surfactant, isopropyl alcohol and glycol co-solvent, about 12% by weight of Momentive™ Silwet L-77 siloxane surfactant, 41% by weight of water, and 6% by weight of technical grade d-limonene. Several additional formulations similar to this were prepared with varying amounts of siloxane surfactant. These are the microemulsion formulations shown in
To characterize the interfacial and performance characteristics of these additives, 2 gallons per thousand (gpt) dilutions were prepared. The surface tension of the 2 gpt dilution was measured using a properly calibrated Kruss K100 tensiometer. The surface tension results for the formulations described under Example 3 are shown in
Contact angles of 2 gpt dilutions were measured on dry-polished shale core samples from the Niobrara formation. For commercially available microemulsion products, initial contact angle values for 2 gpt dilutions are around 30-40 degrees with rapid relaxation to stable values of 9-15 degrees within 30 seconds. For the formulations shown in
Surface tensions of the 2 gpt dispersions were measured before and after they passed through the sand pack to determine how much of the surfactant was lost to adsorption during the experiment. An increase of surface tension of 1-3 mN/m was typically observed. In the case of the formulation shown in
An additive was prepared using a combination of Dow Corning Xiameter® OFX-0190 Fluid (siloxane surfactant) with a detergent grade alcohol ethoxylate surfactant and d-limonene as the solvent, and its performance compared with that of the hydrocarbon surfactant. The ratio of the siloxane surfactant to the detergent grade alcohol ethoxylate (hydrocarbon) surfactant is 1:4 (by weight).
A further demonstration of the efficacy of a microemulsion prepared by combining a higher HLB highly efficient siloxane surfactant with a hydrocarbon surfactant and a terpene solvent. The siloxane surfactant had an HLB value of 13.2 and was combined with a detergent grade alcohol ethoxylate surfactant and d-limonene as the terpene solvent. Formulation 1 was prepared with a 1:1 ratio of water to terpene solvent, while Formulation 2 was prepared with a 6.5:1 ratio of water to terpene solvent. In both formulations, the surfactant mixture and concentration were identical. The surface tensions of both formulations before passing through the sand pack were about 21 mN/m. After contacting the sand pack the surface tensions increased 2-4 mN/m for the first pore volume, and negligible increase for the third pore volume. Both formulations reached excellent Eagle Ford condensate displacement values of about 90%—slightly better than the siloxane surfactant formulations shown in
It is clear that the present invention is well adapted to carry out its objectives and attain the ends and advantages mentioned above as well as those inherent therein. While presently preferred embodiments of the invention have been described in varying detail for purposes of disclosure, it will be understood that numerous changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed within the spirit of the invention disclosed and as defined in the written description and appended claims.
It should be understood, that in any or all of the embodiments described herein, the well treatment additive may form an emulsion or a microemulsion. The terms emulsion and microemulsion should be understood to include emulsions or microemulsions that have a water continuous phase, or that have an oil continuous phase, or microemulsions that are bicontinuous or multiple continuous phases of water and oil.
As used herein, the term emulsion is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets, with diameters approximately in the range of 100-1,000 nanometers. Emulsions may be thermodynamically unstable and/or require high shear forces to induce their formation.
As used herein, the term microemulsion is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets, with diameters approximately in the range of about between about 1 and about 1000 nm, or between 10 and about 1000 nanometers, or between about 10 and about 500 nm, or between about 10 and about 300 nm, or between about 10 and about 100 nm. Microemulsions are clear or transparent because they contain particles smaller than the wavelength of visible light. In addition, microemulsions are homogeneous thermodynamically stable single phases, and form spontaneously, and thus, differ markedly from thermodynamically unstable emulsions, which generally depend upon intense mixing energy for their formation. Microemulsions may be characterized by a variety of advantageous properties including, by not limited to, (i) clarity, (ii) very small particle size, (iii) ultra-low interfacial tensions, (iv) the ability to combine properties of water and oil in a single homogeneous fluid, (v) shelf life stability, and (vi) ease of preparation.
In some embodiments, a well treatment additive as described herein is a microemulsion, wherein the microemulsion is a stabilized microemulsion formed by the combination of a solvent-surfactant blend with an appropriate oil-based or water-based carrier fluid. Generally, a microemulsion forms upon simple mixing of the components without the need for high shearing generally required in the formation of ordinary emulsions. In some embodiments, the microemulsion is a thermodynamically stable system, and the droplets remain finely dispersed over time. In some cases, the average droplet size ranges from about 10 nm to about 300 nm.
In some embodiments, the emulsion or microemulsion is a single emulsion or microemulsion. For example, the emulsion or microemulsion comprises a single layer of a surfactant. In other embodiments, the emulsion or microemulsion may be a double or multilamellar emulsion or microemulsion. For example, the emulsion or microemulsion comprises two or more layers of a surfactant. In some embodiments, the emulsion or microemulsion comprises a single layer of surfactant surrounding a core (e.g., one or more of water, oil, solvent, and/or other additives) or a multiple layers of surfactant (e.g., two or more concentric layers surrounding the core). In certain embodiments, the emulsion or microemulsion comprises two or more immiscible cores (e.g., one or more of water, oil, solvent, and/or other additives which have equal or about equal affinities for the surfactant).
This application is a continuation-in-part of U.S. application Ser. No. 13/831,410, filed Mar. 14, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3060210 | De | Apr 1961 | A |
3047062 | Meadors | Jul 1962 | A |
3299112 | Bailey | Jan 1967 | A |
3347789 | Dickson et al. | Oct 1967 | A |
3368624 | Heuer et al. | Feb 1968 | A |
3483923 | Darley | Dec 1969 | A |
3710865 | Kiel | Jan 1973 | A |
3756319 | Holm et al. | Sep 1973 | A |
3760881 | Kiel | Sep 1973 | A |
3850248 | Carney | Nov 1974 | A |
3919411 | Glass et al. | Nov 1975 | A |
4005020 | McCormick | Jan 1977 | A |
4206809 | Jones | Jun 1980 | A |
4233165 | Salathiel et al. | Nov 1980 | A |
4276935 | Hessert et al. | Jul 1981 | A |
4360061 | Canter et al. | Nov 1982 | A |
4414128 | Goffinet | Nov 1983 | A |
4472291 | Rosano | Sep 1984 | A |
4511488 | Matta | Apr 1985 | A |
4650000 | Andreasson et al. | Mar 1987 | A |
4669544 | Nimerick | Jun 1987 | A |
4844756 | Forsberg | Jul 1989 | A |
5008026 | Gardner | Apr 1991 | A |
5034140 | Gardner et al. | Jul 1991 | A |
5076954 | Loth et al. | Dec 1991 | A |
5083613 | Gregoli et al. | Jan 1992 | A |
5095989 | Prukop | Mar 1992 | A |
5217531 | Cheung | Jun 1993 | A |
5247995 | Tjon-Joe-Pin et al. | Sep 1993 | A |
5310002 | Blauch et al. | May 1994 | A |
5356482 | Mehta et al. | Oct 1994 | A |
5567675 | Romocki | Oct 1996 | A |
5587354 | Duncan, Jr. | Dec 1996 | A |
5587357 | Rhinesmith | Dec 1996 | A |
5604195 | Misselyn et al. | Feb 1997 | A |
5652200 | Davies et al. | Jul 1997 | A |
5665689 | Durbut | Sep 1997 | A |
5676763 | Salisbury et al. | Oct 1997 | A |
5697458 | Carney | Dec 1997 | A |
5707940 | Bush et al. | Jan 1998 | A |
5762138 | Ford et al. | Jun 1998 | A |
5784386 | Norris | Jul 1998 | A |
5811383 | Klier et al. | Sep 1998 | A |
5830831 | Chan et al. | Nov 1998 | A |
5874386 | Chan et al. | Feb 1999 | A |
5925233 | Miller et al. | Jul 1999 | A |
5975206 | Woo et al. | Nov 1999 | A |
5977032 | Chan | Nov 1999 | A |
5990072 | Gross et al. | Nov 1999 | A |
5996692 | Chan et al. | Dec 1999 | A |
6046140 | Woo et al. | Apr 2000 | A |
6090754 | Chan et al. | Jul 2000 | A |
6110885 | Chan | Aug 2000 | A |
6112814 | Chan et al. | Sep 2000 | A |
6165946 | Mueller et al. | Dec 2000 | A |
6173776 | Furman et al. | Jan 2001 | B1 |
6191090 | Mondin et al. | Feb 2001 | B1 |
6228830 | Vlasblom | May 2001 | B1 |
6260621 | Furman et al. | Jul 2001 | B1 |
6291405 | Lee | Sep 2001 | B1 |
6302209 | Thompson, Sr. et al. | Oct 2001 | B1 |
6364020 | Crawshaw et al. | Apr 2002 | B1 |
6486115 | Weaver et al. | Nov 2002 | B1 |
6581687 | Collins et al. | Jun 2003 | B2 |
6583194 | Sendijarevic | Jun 2003 | B2 |
6593279 | Von Krosigk et al. | Jul 2003 | B2 |
6613720 | Feraud et al. | Sep 2003 | B1 |
6729402 | Chang et al. | May 2004 | B2 |
6770603 | Sawdon et al. | Aug 2004 | B1 |
6793025 | Patel et al. | Sep 2004 | B2 |
6800593 | Dobson, Jr. et al. | Oct 2004 | B2 |
6818595 | Benton et al. | Nov 2004 | B2 |
6911417 | Chan et al. | Jun 2005 | B2 |
6914040 | Deak et al. | Jul 2005 | B2 |
6939832 | Collins | Sep 2005 | B2 |
6984610 | VonKrosigk et al. | Jan 2006 | B2 |
7021378 | Prukop | Apr 2006 | B2 |
7134496 | Jones et al. | Nov 2006 | B2 |
7205262 | Schwartz et al. | Apr 2007 | B2 |
7205264 | Boles | Apr 2007 | B2 |
7231976 | Berry et al. | Jun 2007 | B2 |
7380606 | Pursley et al. | Jun 2008 | B2 |
7392844 | Berry et al. | Jul 2008 | B2 |
7407915 | Jones et al. | Aug 2008 | B2 |
7468402 | Yang et al. | Dec 2008 | B2 |
7481273 | Javora et al. | Jan 2009 | B2 |
7514390 | Chan | Apr 2009 | B2 |
7514391 | Chan | Apr 2009 | B2 |
7533723 | Hughes et al. | May 2009 | B2 |
7543644 | Huang et al. | Jun 2009 | B2 |
7543646 | Huang et al. | Jun 2009 | B2 |
7544639 | Pursley et al. | Jun 2009 | B2 |
7547665 | Welton et al. | Jun 2009 | B2 |
7552771 | Eoff et al. | Jun 2009 | B2 |
7559369 | Roddy et al. | Jul 2009 | B2 |
7581594 | Tang | Sep 2009 | B2 |
7615516 | Yang et al. | Nov 2009 | B2 |
7621334 | Welton et al. | Nov 2009 | B2 |
7622436 | Tuzi et al. | Nov 2009 | B2 |
7655603 | Crews | Feb 2010 | B2 |
7677311 | Abad et al. | Mar 2010 | B2 |
7687439 | Jones et al. | Mar 2010 | B2 |
7709421 | Jones et al. | May 2010 | B2 |
7712534 | Bryant et al. | May 2010 | B2 |
7727936 | Pauls et al. | Jun 2010 | B2 |
7727937 | Pauls et al. | Jun 2010 | B2 |
7730958 | Smith | Jun 2010 | B2 |
7823647 | Yang et al. | Nov 2010 | B2 |
7825073 | Welton et al. | Nov 2010 | B2 |
7833943 | Van Zanten et al. | Nov 2010 | B2 |
7838467 | Jones et al. | Nov 2010 | B2 |
7846877 | Robb | Dec 2010 | B1 |
7851414 | Yang et al. | Dec 2010 | B2 |
7855168 | Fuller et al. | Dec 2010 | B2 |
7857051 | Abad et al. | Dec 2010 | B2 |
7886824 | Kakadjian et al. | Feb 2011 | B2 |
7893010 | Ali et al. | Feb 2011 | B2 |
7902123 | Harrison et al. | Mar 2011 | B2 |
7906464 | Davidson | Mar 2011 | B2 |
7910524 | Welton et al. | Mar 2011 | B2 |
7931088 | Stegemoeller et al. | Apr 2011 | B2 |
7960314 | Van Zanten et al. | Jun 2011 | B2 |
7960315 | Welton et al. | Jun 2011 | B2 |
7963720 | Hoag et al. | Jun 2011 | B2 |
7971659 | Gatlin et al. | Jul 2011 | B2 |
7976241 | Hoag et al. | Jul 2011 | B2 |
7989404 | Kakadjian et al. | Aug 2011 | B2 |
7992656 | Dusterhoft et al. | Aug 2011 | B2 |
7998911 | Berger et al. | Aug 2011 | B1 |
8043996 | Harris | Oct 2011 | B2 |
8053396 | Huff et al. | Nov 2011 | B2 |
8053397 | Huang et al. | Nov 2011 | B2 |
8057682 | Hoag et al. | Nov 2011 | B2 |
8091644 | Clark et al. | Jan 2012 | B2 |
8091645 | Quintero et al. | Jan 2012 | B2 |
8091646 | Quintero et al. | Jan 2012 | B2 |
8100190 | Weaver et al. | Jan 2012 | B2 |
8148303 | Van Zanten et al. | Apr 2012 | B2 |
8183182 | Oliveira et al. | May 2012 | B2 |
8206062 | Hoag et al. | Jun 2012 | B2 |
8207096 | van Zanten et al. | Jun 2012 | B2 |
8210263 | Quintero et al. | Jul 2012 | B2 |
8220546 | Kakadjian et al. | Jul 2012 | B2 |
8227382 | Dakin et al. | Jul 2012 | B2 |
8231947 | Vaidya et al. | Jul 2012 | B2 |
8235120 | Quintero et al. | Aug 2012 | B2 |
8242059 | Sawdon | Aug 2012 | B2 |
8293687 | Giffin | Oct 2012 | B2 |
8342241 | Hartshorne et al. | Jan 2013 | B2 |
8349771 | Seth et al. | Jan 2013 | B2 |
8356667 | Quintero et al. | Jan 2013 | B2 |
8357639 | Quintero et al. | Jan 2013 | B2 |
8372789 | Harris et al. | Feb 2013 | B2 |
8383560 | Pich et al. | Feb 2013 | B2 |
8403051 | Huang et al. | Mar 2013 | B2 |
8404623 | Robb et al. | Mar 2013 | B2 |
8413721 | Welton et al. | Apr 2013 | B2 |
8415279 | Quintero et al. | Apr 2013 | B2 |
8431620 | Del Gaudio et al. | Apr 2013 | B2 |
8453741 | van Zanten | Jun 2013 | B2 |
8499832 | Crews et al. | Aug 2013 | B2 |
8517100 | Ali et al. | Aug 2013 | B2 |
8517104 | Kieffer | Aug 2013 | B2 |
8524643 | Huff et al. | Sep 2013 | B2 |
8551926 | Huang et al. | Oct 2013 | B2 |
8592350 | van Zanten et al. | Nov 2013 | B2 |
8684079 | Wattenbarger et al. | Apr 2014 | B2 |
8778850 | Andrecola | Jul 2014 | B2 |
8865632 | Parnell et al. | Oct 2014 | B1 |
10053619 | Saboowala et al. | Aug 2018 | B2 |
20010007663 | Von Corswant | Jul 2001 | A1 |
20030022944 | Gumkowski et al. | Jan 2003 | A1 |
20030069143 | Collins | Apr 2003 | A1 |
20030092581 | Crews | May 2003 | A1 |
20030166472 | Pursley | Sep 2003 | A1 |
20030232095 | Garti et al. | Dec 2003 | A1 |
20050209107 | Pursley et al. | Sep 2005 | A1 |
20060014648 | Milson et al. | Jan 2006 | A1 |
20060211593 | Smith et al. | Sep 2006 | A1 |
20060223715 | Svoboda | Oct 2006 | A1 |
20060258541 | Crews | Nov 2006 | A1 |
20070123445 | Tuzi et al. | May 2007 | A1 |
20070249502 | Procter | Oct 2007 | A1 |
20070293404 | Hutchins et al. | Dec 2007 | A1 |
20070295368 | Harrison et al. | Dec 2007 | A1 |
20080274918 | Quintero et al. | Nov 2008 | A1 |
20080287324 | Pursley et al. | Nov 2008 | A1 |
20090078415 | Fan et al. | Mar 2009 | A1 |
20090088488 | Bruckner et al. | Apr 2009 | A1 |
20090137432 | Sullivan et al. | May 2009 | A1 |
20090159288 | Horvath Szabo et al. | Jun 2009 | A1 |
20090200027 | Kakadjian | Aug 2009 | A1 |
20090221456 | Harrison et al. | Sep 2009 | A1 |
20090260819 | Kurian et al. | Oct 2009 | A1 |
20090275488 | Zamora et al. | Nov 2009 | A1 |
20090281004 | Ali et al. | Nov 2009 | A1 |
20100022421 | Gutierrez et al. | Jan 2010 | A1 |
20100173805 | Pomerleau | Jul 2010 | A1 |
20100216670 | Del Gaudio et al. | Aug 2010 | A1 |
20100243248 | Golomb et al. | Sep 2010 | A1 |
20100252267 | Harris et al. | Oct 2010 | A1 |
20100263863 | Quintero et al. | Oct 2010 | A1 |
20100272765 | Ho et al. | Oct 2010 | A1 |
20100307757 | Blow et al. | Dec 2010 | A1 |
20110021386 | Ali et al. | Jan 2011 | A1 |
20110136706 | Carroll et al. | Jun 2011 | A1 |
20110146983 | Sawdon | Jun 2011 | A1 |
20110190174 | Weerasooriya et al. | Aug 2011 | A1 |
20110220353 | Bittner et al. | Sep 2011 | A1 |
20110237467 | Cornette et al. | Sep 2011 | A1 |
20110253365 | Crews et al. | Oct 2011 | A1 |
20110290491 | Gupta et al. | Dec 2011 | A1 |
20120004146 | Van Zanten et al. | Jan 2012 | A1 |
20120015852 | Quintero et al. | Jan 2012 | A1 |
20120035085 | Parnell et al. | Feb 2012 | A1 |
20120071366 | Falana | Mar 2012 | A1 |
20120080232 | Muller et al. | Apr 2012 | A1 |
20120129738 | Gupta et al. | May 2012 | A1 |
20120149626 | Fluck et al. | Jun 2012 | A1 |
20120168165 | Holcomb et al. | Jul 2012 | A1 |
20120181019 | Saini et al. | Jul 2012 | A1 |
20120193095 | Varadaraj et al. | Aug 2012 | A1 |
20120208726 | Smith et al. | Aug 2012 | A1 |
20120234548 | Dyer | Sep 2012 | A1 |
20120241155 | Ali et al. | Sep 2012 | A1 |
20120241220 | Quintero et al. | Sep 2012 | A1 |
20120255887 | Holms et al. | Oct 2012 | A1 |
20120261120 | Del Gaudio et al. | Oct 2012 | A1 |
20120285690 | Weaver et al. | Nov 2012 | A1 |
20120285694 | Morvan et al. | Nov 2012 | A1 |
20120318504 | Fan et al. | Dec 2012 | A1 |
20120318515 | Cawiezel et al. | Dec 2012 | A1 |
20120322697 | Zhang | Dec 2012 | A1 |
20120325492 | Fefer et al. | Dec 2012 | A1 |
20130029883 | Dismuke et al. | Jan 2013 | A1 |
20130048281 | Van Zanten et al. | Feb 2013 | A1 |
20130079255 | Del Gaudio et al. | Mar 2013 | A1 |
20130109597 | Sarkar et al. | May 2013 | A1 |
20130126158 | Gupta et al. | May 2013 | A1 |
20130133886 | Quintero | May 2013 | A1 |
20130137611 | Pierce et al. | May 2013 | A1 |
20130146288 | Smith et al. | Jun 2013 | A1 |
20130146545 | Pabalan et al. | Jun 2013 | A1 |
20130153232 | Bobier et al. | Jun 2013 | A1 |
20130153234 | Bobier et al. | Jun 2013 | A1 |
20130192826 | Kurian et al. | Aug 2013 | A1 |
20130213659 | Luyster et al. | Aug 2013 | A1 |
20130233559 | van Zanten et al. | Sep 2013 | A1 |
20130244913 | Maberry et al. | Sep 2013 | A1 |
20130261033 | Nguyen | Oct 2013 | A1 |
20130292121 | Penny et al. | Nov 2013 | A1 |
20140005079 | Dahanayake et al. | Jan 2014 | A1 |
20140110344 | Hoag et al. | Apr 2014 | A1 |
20140202700 | Blair | Jul 2014 | A1 |
20140262261 | Hill et al. | Sep 2014 | A1 |
20140262274 | Dismuke et al. | Sep 2014 | A1 |
20140262288 | Penny et al. | Sep 2014 | A1 |
20140274817 | Hill et al. | Sep 2014 | A1 |
20140274822 | Dismuke et al. | Sep 2014 | A1 |
20140284053 | Germack et al. | Sep 2014 | A1 |
20140284057 | Champagne et al. | Sep 2014 | A1 |
20140299325 | Zelenev et al. | Oct 2014 | A1 |
20140332212 | Ayers et al. | Nov 2014 | A1 |
20140338911 | Dismuke et al. | Nov 2014 | A1 |
20140367107 | Hill et al. | Dec 2014 | A1 |
20140371115 | Hill et al. | Dec 2014 | A1 |
20150068751 | Saboowala et al. | Mar 2015 | A1 |
20160312106 | Penny et al. | Oct 2016 | A1 |
20190085236 | Saboowala et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2595025 | Sep 2006 | CA |
102127414 | Jul 2011 | CN |
102277143 | Dec 2011 | CN |
103614128 | Mar 2014 | CN |
103642477 | Mar 2014 | CN |
1 051 237 | Nov 2003 | EP |
1 378 554 | Jan 2004 | EP |
1 786 879 | Feb 2012 | EP |
2 195 400 | Aug 2012 | EP |
1 880 081 | Mar 2013 | EP |
WO 1999049182 | Sep 1999 | WO |
WO 2005048706 | Jun 2005 | WO |
WO 2007011475 | Jan 2007 | WO |
WO 2008141210 | Nov 2008 | WO |
WO2008141210 | Nov 2008 | WO |
WO2012003356 | Jan 2012 | WO |
WO 2012003356 | Jan 2012 | WO |
WO 2012158645 | Nov 2012 | WO |
Entry |
---|
Scifinder Structure of Silwet L-77 dated Apr. 6, 2015. |
Schlumberger Oilfield Glossary, http://www.glossary.oilfield.slb.com/Terms/m/microemulsion.aspx downloaded on Mar. 29, 2018. |
Christian Rome et al, Silicone in the oil and gas industry by, Dow Corning Sep. 2002. |
International Search Report and Written Opinion from PCT/US2014/014271, dated May 13, 2014. |
[No Author Listed], The HLB system: a time-saving guide to emulsifier selection. ICI Americas Inc. 1976. 22 pages. |
[No Author Listed], Silwet L-77 Surfactant information sheet. Helena Chemical Company. 1998. Retrieved from the internet Apr. 15, 2014. |
ADM, Evolution Chemicals E5789-117 Description. Jun. 2014. |
Brost et al., Surfactants assist water-in-oil monitoring by fluroescence. World Oil. Oct. 2008;229(10). |
Champagne et al., Critical assessment of microemulsion technology for enhancing fluid recovery from tight gas formations and propped fractures. SPE European Formation Damage Conference. Noordwijk, The Netherlands. Jun. 7-10, 2011. SPE-144095. 10 pages. |
Crafton et al., Micro-emulsion effectiveness for twenty four wells, eastern green river, wyoming. 2009 SPE Rocky Mountain Petroleum Technology Conference. Denver, Colorado, USA, Apr. 14-16, 2009. SPE-123280. 13 pages. |
Haw, The HLB system: a time saving guide to surfactant selection. Presentation to the Midwest chapter of the society of cosmetic chemists. Uniqema. Mar. 9, 2004. 39 slides. |
Howard et al., Comparison of flowback aids: understanding their capillary pressure and wetting properties. SPE Production & Operations. Aug. 2010;:376-87. |
Kunieda et al. Evaluation of hydrophile-lipophile balance (HLB) of nonionic surfactants. J Colloid and Interface Sci. Sep. 1985;107(1):107-21. |
Yang et al., Optimizing nanoemulsions as fluid flowback additives in enhancing tight gas production. J Petroleum Sci Eng. 2014;121:122-5. |
Zelenev et al., Microemulsion technology for improved fluid recovery and enhanced core permeability to gas. 2009 SPE European Formation Damage Conference. Scheveningen, The Netherlands. May 27-29, 2009. SPE 122109. 13 pages. |
Zelenev et al., Microemulsion-assisted fluid recovery and improved permeability to gas in shale formations. 2010 SPE International Symposium and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA. Feb. 10-12, 2010. SPE 127922. 7 pages. |
Zelenev, Surface energy of north American shales and its role in interaction of shale with surfactants and microemulsions. SPE International Symposium on Oilfield Chemistry. The Woodlands, Texas, USA. Apr. 11-13, 2011. SPE-141459. 7 pages. |
U.S. Appl. No. 13/831,410, filed Mar. 14, 2013, Penny et al. |
U.S. Appl. No. 14/489,423, filed Sep. 17, 2014, Saboowala et al. |
U.S. Appl. No. 15/146,278, filed May 4, 2016, Penny et al. |
Extended European Search Report for EP 14774954.3 dated Oct. 19, 2016. |
Kulkarni et al., Foams: Theory, Measurements, and Applications. Chapter 14: Science and Technology of Silicone Antifoams. Eds. Prud-homme, Khan. Marcel Dekker, Inc. New York, NY. 1996:555-85. |
Lai et al., Foams: Theory, Measurements, and Applications. Excerpt from Chapter 8: Additives for Foams. Eds. Prud-homme, Khan. Marcel Dekker, Inc. New York, NY 1996:316-7. |
Narsimhan et al., Foams: Theory, Measurements, and Applications. Excerpt from Chapter 2: Structure, Drainage, and Coalescence of Foams and Concentrated Emulsions. Eds. Prud-homme, Khan. Marcel Dekker, Inc. New York, NY 1996:100-101. |
Sawicki, George C., High-Performance Antifoams for the Textile Dyeing Industry; Defoaming Theory and Industrial Applications. Marcel Dekker, Inc. New York, NY. 1993:193-216. |
U.S. Appl. No. 15/999,693, filed Aug. 20, 2018, Saboowala et al. |
Number | Date | Country | |
---|---|---|---|
20150053404 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13831410 | Mar 2013 | US |
Child | 14445006 | US |