Simplification of inventory management

Abstract
A simplified inventory management method. The method employs a plurality of stock-keeping unit labels, with each of the plurality of stock-keeping unit labels having a same stock-keeping unit number. Individual ones of the plurality of stock-keeping unit labels are utilized to track individual items of a plurality of items. A sale price of individual ones a first set of the plurality of items is different from a sale price of individual ones of a second set of the plurality of items.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

Reference is made to co-pending and commonly assigned U.S. patent application Ser. No. 12/416,457, filed Apr. 1, 2009, entitled “SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION,” and to co-pending and commonly assigned U.S. patent application Ser. No. 12/416,453, filed Apr. 1, 2009, entitled “INTEGRATED TAG READER AND ENVIRONMENT SENSOR,” the contents of which are hereby incorporated by reference in their entirety.


BACKGROUND OF THE INVENTION

The present invention relates to storage batteries. More specifically, the present invention relates to a system for automatically gathering battery information for use during battery testing/charging.


Storage batteries, such as lead acid storage batteries, are used in a variety of applications such as automotive vehicles and stand by power sources. Typically, storage batteries consist of a plurality of individual storage cells which are electrically connected in series. Each cell can have a voltage potential of about 2.1 volts, for example. By connecting the cells in series, the voltages of individual cells are added in a cumulative manner. For example, in a typical automotive battery, six storage cells are used to provide a total voltage of 12.6 volts. The individual cells are held in a housing and the entire assembly is commonly referred to as the “battery.”


It is frequently desirable to ascertain the condition of a storage battery. Various testing techniques have been developed over the long history of storage batteries. For example, one technique involves the use of a hygrometer in which the specific gravity of the acid mixture in the battery is measured. Electrical testing has also been used to provide less invasive battery testing techniques. A very simple electrical test is to simply measure the voltage across the battery. If the voltage is below a certain threshold, the battery is determined to be bad. Another technique for testing a battery is referred to as a load test. In the load test, the battery is discharged using a known load. As the battery is discharged, the voltage across the battery is monitored and used to determine the condition of the battery. More recently, a technique has been pioneered by Dr. Keith S. Champlin and Midtronics, Inc. of Willowbrook, Ill. for testing storage batteries by measuring a dynamic parameter of the battery such as the dynamic conductance of the battery. This technique is described in a number of United States patents and United States patent applications, for example U.S. Pat. No. 3,873,911, issued Mar. 25, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH AUTOMATIC VOLTAGE SCALING TO DETERMINE DYNAMIC CONDUCTANCE; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH STATE-OF-CHARGE COMPENSATION; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champlin, entitled ELECTRONIC TESTER FOR ASSESSING BATTERY/CELL CAPACITY; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994, entitled METHOD AND APPARATUS FOR SUPPRESSING TIME-VARYING SIGNALS IN BATTERIES UNDERGOING CHARGING OR DISCHARGING; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996, entitled ELECTRONIC BATTERY TESTER DEVICE; U.S. Pat. No. 5,574,355, issued Nov. 12, 1996, entitled METHOD AND APPARATUS FOR DETECTION AND CONTROL OF THERMAL RUNAWAY IN A BATTERY UNDER CHARGE; U.S. Pat. No. 5,585,416, issued Dec. 10, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996, entitled ELECTRONIC BATTERY TESTER WITH AUTOMATIC COMPENSATION FOR LOW STATE-OF-CHARGE; U.S. Pat. No. 5,589,757, issued Dec. 31, 1996, entitled APPARATUS AND METHOD FOR STEP-CHARGING BATTERIES TO OPTIMIZE CHARGE ACCEPTANCE; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997, entitled ELECTRONIC BATTERY TESTING DEVICE LOOSE TERMINAL CONNECTION DETECTION VIA A COMPARISON CIRCUIT; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997, entitled ELECTRONIC BATTERY TESTER WITH VERY HIGH NOISE IMMUNITY; U.S. Pat. No. 5,656,920, issued Aug. 12, 1997, entitled METHOD FOR OPTIMIZING THE CHARGING LEAD-ACID BATTERIES AND AN INTERACTIVE CHARGER; U.S. Pat. No. 5,757,192, issued May 26, 1998, entitled METHOD AND APPARATUS FOR DETECTING A BAD CELL IN A STORAGE BATTERY; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998, entitled ELECTRONIC BATTERY TESTER WITH TAILORED COMPENSATION FOR LOW STATE-OF CHARGE; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998, entitled BATTERY TESTER FOR JIS STANDARD; U.S. Pat. No. 5,871,858, issued Feb. 16, 1999, entitled ANTI-THEFT BATTERY; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999, entitled MIDPOINT BATTERY MONITORING; U.S. Pat. No. 6,002,238, issued Dec. 14, 1999, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,037,751, issued Mar. 14, 2000, entitled APPARATUS FOR CHARGING BATTERIES; U.S. Pat. No. 6,037,777, issued Mar. 14, 2000, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Pat. No. 6,104,167, issued Aug. 15, 2000, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,137,269, issued Oct. 24, 2000, entitled METHOD AND APPARATUS FOR ELECTRONICALLY EVALUATING THE INTERNAL TEMPERATURE OF AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,163,156, issued Dec. 19, 2000, entitled ELECTRICAL CONNECTION FOR ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,172,483, issued Jan. 9, 2001, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX IMPEDANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,172,505, issued Jan. 9, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,222,369, issued Apr. 24, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Pat. No. 6,225,808, issued May 1, 2001, entitled TEST COUNTER FOR ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,249,124, issued Jun. 19, 2001, entitled ELECTRONIC BATTERY TESTER WITH INTERNAL BATTERY; U.S. Pat. No. 6,259,254, issued Jul. 10, 2001, entitled APPARATUS AND METHOD FOR CARRYING OUT DIAGNOSTIC TESTS ON BATTERIES AND FOR RAPIDLY CHARGING BATTERIES; U.S. Pat. No. 6,262,563, issued Jul. 17, 2001, entitled METHOD AND APPARATUS FOR MEASURING COMPLEX ADMITTANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,294,896, issued Sep. 25, 2001; entitled METHOD AND APPARATUS FOR MEASURING COMPLEX SELF-IMMITANCE OF A GENERAL ELECTRICAL ELEMENT; U.S. Pat. No. 6,294,897, issued Sep. 25, 2001, entitled METHOD AND APPARATUS FOR ELECTRONICALLY EVALUATING THE INTERNAL TEMPERATURE OF AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,304,087, issued Oct. 16, 2001, entitled APPARATUS FOR CALIBRATING ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,310,481, issued Oct. 30, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,313,607, issued Nov. 6, 2001, entitled METHOD AND APPARATUS FOR EVALUATING STORED CHARGE IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,313,608, issued Nov. 6, 2001, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,316,914, issued Nov. 13, 2001, entitled TESTING PARALLEL STRINGS OF STORAGE BATTERIES; U.S. Pat. No. 6,323,650, issued Nov. 27, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,329,793, issued Dec. 11, 2001, entitled METHOD AND APPARATUS FOR CHARGING A BATTERY; U.S. Pat. No. 6,331,762, issued Dec. 18, 2001, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMOTIVE VEHICLE; U.S. Pat. No. 6,332,113, issued Dec. 18, 2001, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,351,102, issued Feb. 26, 2002, entitled AUTOMOTIVE BATTERY CHARGING SYSTEM TESTER; U.S. Pat. No. 6,359,441, issued Mar. 19, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,363,303, issued Mar. 26, 2002, entitled ALTERNATOR DIAGNOSTIC SYSTEM; U.S. Pat. No. 6,377,031, issued Apr. 23, 2002, entitled INTELLIGENT SWITCH FOR POWER MANAGEMENT; U.S. Pat. No. 6,392,414, issued May 21, 2002, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,417,669, issued Jul. 9, 2002, entitled SUPPRESSING INTERFERENCE IN AC MEASUREMENTS OF CELLS, BATTERIES AND OTHER ELECTRICAL ELEMENTS; U.S. Pat. No. 6,424,158, issued Jul. 23, 2002, entitled APPARATUS AND METHOD FOR CARRYING OUT DIAGNOSTIC TESTS ON BATTERIES AND FOR RAPIDLY CHARGING BATTERIES; U.S. Pat. No. 6,441,585, issued Aug. 17, 2002, entitled APPARATUS AND METHOD FOR TESTING RECHARGEABLE ENERGY STORAGE BATTERIES; U.S. Pat. No. 6,437,957, issued Aug. 20, 2002, entitled SYSTEM AND METHOD FOR PROVIDING SURGE, SHORT, AND REVERSE POLARITY CONNECTION PROTECTION; U.S. Pat. No. 6,445,158, issued Sep. 3, 2002, entitled VEHICLE ELECTRICAL SYSTEM TESTER WITH ENCODED OUTPUT; U.S. Pat. No. 6,456,045, issued Sep. 24, 2002, entitled INTEGRATED CONDUCTANCE AND LOAD TEST BASED ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,466,025, issued Oct. 15, 2002, entitled ALTERNATOR TESTER; U.S. Pat. No. 6,465,908, issued Oct. 15, 2002, entitled INTELLIGENT POWER MANAGEMENT SYSTEM; U.S. Pat. No. 6,466,026, issued Oct. 15, 2002, entitled PROGRAMMABLE CURRENT EXCITER FOR MEASURING AC IMMITTANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,469,511, issued Nov. 22, 2002, entitled BATTERY CLAMP WITH EMBEDDED ENVIRONMENT SENSOR; U.S. Pat. No. 6,495,990, issued Dec. 17, 2002, entitled METHOD AND APPARATUS FOR EVALUATING STORED CHARGE IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Pat. No. 6,497,209, issued Dec. 24, 2002, entitled SYSTEM AND METHOD FOR PROTECTING A CRANKING SUBSYSTEM; U.S. Pat. No. 6,507,196, issued Jan. 14, 2003; entitled BATTERY HAVING DISCHARGE STATE INDICATION; U.S. Pat. No. 6,534,993, issued Mar. 18, 2003, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,544,078, issued Apr. 8, 2003, entitled BATTERY CLAMP WITH INTEGRATED CURRENT SENSOR; U.S. Pat. No. 6,556,019, issued Apr. 29, 2003, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,566,883, issued May 20, 2003, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,586,941, issued Jul. 1, 2003, entitled BATTERY TESTER WITH DATABUS; U.S. Pat. No. 6,597,150, issued Jul. 22, 2003, entitled METHOD OF DISTRIBUTING JUMP-START BOOSTER PACKS; U.S. Pat. No. 6,621,272, issued Sep. 16, 2003, entitled PROGRAMMABLE CURRENT EXCITER FOR MEASURING AC IMMITTANCE OF CELLS AND BATTERIES; U.S. Pat. No. 6,623,314, issued Sep. 23, 2003, entitled KELVIN CLAMP FOR ELECTRICALLY COUPLING TO A BATTERY CONTACT; U.S. Pat. No. 6,633,165, issued Oct. 14, 2003, entitled IN-VEHICLE BATTERY MONITOR; U.S. Pat. No. 6,635,974, issued Oct. 21, 2003, entitled SELF-LEARNING POWER MANAGEMENT SYSTEM AND METHOD; U.S. Pat. No. 6,707,303, issued Mar. 16, 2004, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,737,831, issued May 18, 2004, entitled METHOD AND APPARATUS USING A CIRCUIT MODEL TO EVALUATE CELL/BATTERY PARAMETERS; U.S. Pat. No. 6,744,149, issued Jun. 1, 2004, entitled SYSTEM AND METHOD FOR PROVIDING STEP-DOWN POWER CONVERSION USING AN INTELLIGENT SWITCH; U.S. Pat. No. 6,759,849, issued Jul. 6, 2004, entitled BATTERY TESTER CONFIGURED TO RECEIVE A REMOVABLE DIGITAL MODULE; U.S. Pat. No. 6,781,382, issued Aug. 24, 2004, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,788,025, filed Sep. 7, 2004, entitled BATTERY CHARGER WITH BOOSTER PACK; U.S. Pat. No. 6,795,782, issued Sep. 21, 2004, entitled BATTERY TEST MODULE; U.S. Pat. No. 6,805,090, filed Oct. 19, 2004, entitled CHARGE CONTROL SYSTEM FOR A VEHICLE BATTERY; U.S. Pat. No. 6,806,716, filed Oct. 19, 2004, entitled ELECTRONIC BATTERY TESTER; U.S. Pat. No. 6,850,037, filed Feb. 1, 2005, entitled IN-VEHICLE BATTERY MONITORING; U.S. Ser. No. 09/780,146, filed Feb. 9, 2001, entitled STORAGE BATTERY WITH INTEGRAL BATTERY TESTER; U.S. Ser. No. 09/756,638, filed Jan. 8, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Ser. No. 09/862,783, filed May 21, 2001, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 09/880,473, filed Jun. 13, 2001; entitled BATTERY TEST MODULE; U.S. Ser. No. 60/348,479, filed Oct. 29, 2001, entitled CONCEPT FOR TESTING HIGH POWER VRLA BATTERIES; U.S. Ser. No. 10/046,659, filed Oct. 29, 2001, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMOTIVE VEHICLE; U.S. Ser. No. 09/993,468, filed Nov. 14, 2001, entitled KELVIN CONNECTOR FOR A BATTERY POST; U.S. Ser. No. 10/042,451, filed Jan. 8, 2002, entitled BATTERY CHARGE CONTROL DEVICE; U.S. Ser. No. 10/093,853, filed Mar. 7, 2002, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 10/098,741, filed Mar. 14, 2002, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Ser. No. 10/112,114, filed Mar. 28, 2002, entitled BOOSTER PACK WITH STORAGE CAPACITOR; U.S. Ser. No. 10/109,734, filed Mar. 28, 2002, entitled APPARATUS AND METHOD FOR COUNTERACTING SELF DISCHARGE IN A STORAGE BATTERY; U.S. Ser. No. 10/112,998, filed Mar. 29, 2002, entitled BATTERY TESTER WITH BATTERY REPLACEMENT OUTPUT; U.S. Ser. No. 10/119,297, filed Apr. 9, 2002, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 60/387,046, filed Jun. 7, 2002, entitled METHOD AND APPARATUS FOR INCREASING THE LIFE OF A STORAGE BATTERY; U.S. Ser. No. 10/200,041, filed Jul. 19, 2002, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE; U.S. Ser. No. 10/217,913, filed Aug. 13, 2002, entitled, BATTERY TEST MODULE; U.S. Ser. No. 10/246,439, filed Sep. 18, 2002, entitled BATTERY TESTER UPGRADE USING SOFTWARE KEY; U.S. Ser. No. 10/263,473, filed Oct. 2, 2002, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 10/310,385, filed Dec. 5, 2002, entitled BATTERY TEST MODULE; U.S. Ser. No. 60/437,224, filed Dec. 31, 2002, entitled DISCHARGE VOLTAGE PREDICTIONS; U.S. Ser. No. 10/349,053, filed Jan. 22, 2003, entitled APPARATUS AND METHOD FOR PROTECTING A BATTERY FROM OVERDISCHARGE; U.S. Ser. No. 10/388,855, filed Mar. 14, 2003, entitled ELECTRONIC BATTERY TESTER WITH BATTERY FAILURE TEMPERATURE DETERMINATION; U.S. Ser. No. 10/396,550, filed Mar. 25, 2003, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 60/467,872, filed May 5, 2003, entitled METHOD FOR DETERMINING BATTERY STATE OF CHARGE; U.S. Ser. No. 60/477,082, filed Jun. 9, 2003, entitled ALTERNATOR TESTER; U.S. Ser. No. 10/460,749, filed Jun. 12, 2003, entitled MODULAR BATTERY TESTER FOR SCAN TOOL; U.S. Ser. No. 10/462,323, filed Jun. 16, 2003, entitled ELECTRONIC BATTERY TESTER HAVING A USER INTERFACE TO CONFIGURE A PRINTER; U.S. Ser. No. 10/601,608, filed Jun. 23, 2003, entitled CABLE FOR ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/601,432, filed Jun. 23, 2003, entitled BATTERY TESTER CABLE WITH MEMORY; U.S. Ser. No. 60/490,153, filed Jul. 25, 2003, entitled SHUNT CONNECTION TO A PCB FOR AN ENERGY MANAGEMENT SYSTEM EMPLOYED IN AN AUTOMOTIVE VEHICLE; U.S. Ser. No. 10/653,342, filed Sep. 2, 2003, entitled ELECTRONIC BATTERY TESTER CONFIGURED TO PREDICT A LOAD TEST RESULT; U.S. Ser. No. 10/654,098, filed Sep. 3, 2003, entitled BATTERY TEST OUTPUTS ADJUSTED BASED UPON BATTERY TEMPERATURE AND THE STATE OF DISCHARGE OF THE BATTERY; U.S. Ser. No. 10/656,526, filed Sep. 5, 2003, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRICAL SYSTEM; U.S. Ser. No. 10/656,538, filed Sep. 5, 2003, entitled ALTERNATOR TESTER WITH ENCODED OUTPUT; U.S. Ser. No. 10/675,933, filed Sep. 30, 2003, entitled QUERY BASED ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/678,629, filed Oct. 3, 2003, entitled ELECTRONIC BATTERY TESTER/CHARGER WITH INTEGRATED BATTERY CELL TEMPERATURE MEASUREMENT DEVICE; U.S. Ser. No. 10/441,271, filed May 19, 2003, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 09/653,963, filed Sep. 1, 2000, entitled SYSTEM AND METHOD FOR CONTROLLING POWER GENERATION AND STORAGE; U.S. Ser. No. 10/174,110, filed Jun. 18, 2002, entitled DAYTIME RUNNING LIGHT CONTROL USING AN INTELLIGENT POWER MANAGEMENT SYSTEM; U.S. Ser. No. 60/488,775, filed Jul. 21, 2003, entitled ULTRASONICALLY ASSISTED CHARGING; U.S. Ser. No. 10/258,441, filed Apr. 9, 2003, entitled CURRENT MEASURING CIRCUIT SUITED FOR BATTERIES; U.S. Ser. No. 10/705,020, filed Nov. 11, 2003, entitled APPARATUS AND METHOD FOR SIMULATING A BATTERY TESTER WITH A FIXED RESISTANCE LOAD; U.S. Ser. No. 10/681,666, filed Oct. 8, 2003, entitled ELECTRONIC BATTERY TESTER WITH PROBE LIGHT; U.S. Ser. No. 10/748,792, filed Dec. 30, 2003, entitled APPARATUS AND METHOD FOR PREDICTING THE REMAINING DISCHARGE TIME OF A BATTERY; U.S. Ser. No. 10/783,682, filed Feb. 20, 2004, entitled REPLACEABLE CLAMP FOR ELECTRONIC BATTERY TESTER; U.S. Ser. No. 60/548,513, filed Feb. 27, 2004, entitled WIRELESS BATTERY MONITOR; U.S. Ser. No. 10/791,141, filed Mar. 2, 2004, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Ser. No. 60/557,366, filed Mar. 29, 2004, entitled BATTERY MONITORING SYSTEM WITHOUT CURRENT MEASUREMENT; U.S. Ser. No. 10/823,140, filed Apr. 13, 2004, entitled THEFT PREVENTION DEVICE FOR AUTOMOTIVE VEHICLE SERVICE CENTERS; U.S. Ser. No. 60/575,945, filed Jun. 1, 2004, entitled BATTERY TESTER CAPABLE OF IDENTIFYING FAULTY BATTERY POST ADAPTERS; U.S. Ser. No. 60/577,345, filed Jun. 4, 2004, entitled NEW METHOD FOR AUTOMATICALLY TESTING A BATTERY AND TRANSMITTING DATA TO ANOTHER MODULE IN A VEHICLE; U.S. Ser. No. 10/864,904, filed Jun. 9, 2004, entitled ALTERNATOR TESTER; U.S. Ser. No. 10/867,385, filed Jun. 14, 2004, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMOTIVE VEHICLE; U.S. Ser. No. 10/870,680, filed Jun. 17, 2004, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 60/582,925, filed Jun. 25, 2004, entitled BATTERY TESTER WITH BATTERY POTENTIAL FOR RECOVERY OUTPUT; U.S. Ser. No. 10/883,019, filed Jul. 1, 2004, entitled MODULAR ELECTRONIC BATTERY TESTER; U.S. Ser. No. 60/585,700, filed Jul. 6, 2004, entitled TEST STATION; U.S. Ser. No. 60/587,232, filed Jul. 12, 2004, entitled WIRELESS BATTERY TESTER; U.S. Ser. No. 10/896,835, filed Jul. 22, 2004, entitled BROAD-BAND LOW-INDUCTANCE CABLES FOR MAKING KELVIN CONNECTIONS TO ELECTROCHEMICAL CELLS AND BATTERIES; U.S. Ser. No. 10/896,834, filed Jul. 22, 2004, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 10/897,801, filed Jul. 23, 2004, entitled SHUNT CONNECTION TO A PCB FOR AN ENERGY MANAGEMENT SYSTEM EMPLOYED IN AN AUTOMOTIVE VEHICLE; U.S. Ser. No. 10/914,304, filed Aug. 9, 2004, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 60/603,078, filed Aug. 20, 2004, entitled SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION FOR USE DURING BATTERY TESTING/CHARGING; U.S. Ser. No. 10/958,821, filed Oct. 5, 2004, entitled IN-VEHICLE BATTERY MONITOR; U.S. Ser. No. 10/958,812, filed Oct. 5, 2004, entitled SCAN TOOL FOR ELECTRONIC BATTERY TESTER; U.S. Ser. No. 11/008,456, filed Dec. 9, 2004, entitled APPARATUS AND METHOD FOR PREDICTING BATTERY CAPACITY AND FITNESS FOR SERVICE FROM A BATTERY DYNAMIC PARAMETER AND A RECOVERY VOLTAGE DIFFERENTIAL, U.S. Ser. No. 60/587,232, filed Dec. 14, 2004, entitled CELLTRON ULTRA, U.S. Ser. No. 11/018,785, filed Dec. 21, 2004, entitled WIRELESS BATTERY MONITOR; U.S. Ser. No. 60/653,537, filed Feb. 16, 2005, entitled CUSTOMER MANAGED WARRANTY CODE; which are incorporated herein in their entirety.


In general, most prior art battery testers/chargers require tester/charger users to enter information related to the battery (such as battery type, battery group size, battery Cold Cranking Amp (CCA) rating, etc.) via a user input such as a keypad. Reliance on user entry of battery information may result in incorrect information being entered, which in turn can result in inaccurate battery test results or improper charging of the battery.


SUMMARY OF THE INVENTION

In accordance with one aspect, an apparatus and method for testing and/or charging a storage battery that includes a radio frequency identification (RFID) tag that can be affixed to the storage battery is provided. The RFID tag is configured to store and transmit information related to the battery. The apparatus also includes a battery tester and/or charger. The tester and/or charger includes a radio frequency (RF) receiver configured to receive the transmitted information related to the battery, and testing and/or charging circuitry configured to utilize the received information related to the battery to test and/or charge the storage battery.


In accordance with another aspect, a simplified inventory management method is provided. The method employs a plurality of stock-keeping unit labels, with each of the plurality of stock-keeping unit labels having a same stock-keeping unit number. Individual ones of the plurality of stock-keeping unit labels are utilized to track individual items of a plurality of items. A sale price of individual ones a first set of the plurality of items is different from a sale price of individual ones of a second set of the plurality of items.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified block diagram showing components of a battery testing/charging system in accordance with an embodiment of the present invention.



FIG. 2 is a side plan view of a storage battery including a RFID tag in accordance with an embodiment of the present invention.



FIG. 3 is a simplified block diagram of an example battery charging system that is capable of receiving information from the RFID tag.



FIG. 4 is a simplified block diagram of an example battery tester that is capable of receiving information from the RFID tag.



FIG. 5 is a simplified block diagram of a battery maintenance system in accordance with an embodiment of the present invention.



FIG. 6A is a simplified block diagram showing two similar batteries with different stock keeping unit (SKU) labels.



FIG. 6B is a simplified block diagram showing two similar batteries with a same type of stock keeping unit (SKU) label.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 is a simplified block diagram of a battery testing/charging system 100 in accordance with an embodiment of the present invention. System 100 includes a radio frequency identification (RFID) tag 102, which can be affixed to a battery (such as 200 (FIG. 2)). RFID tag 102 is configured to transmit stored battery information in the form of RF signals 106. System 100 also includes a battery tester/charger 104 having an embedded/integrated radio frequency (RF) receiver 108, which is configured to receive the transmitted battery information form RF tag 102 when battery tester/charger 104 is proximate RF tag 102. The battery information, which is automatically received by RF receiver 108, is utilized by processor 107 and measurement and/or charge signal application circuitry 109 to test/charge the battery (such as 200 (FIG. 2)). Thus, system 100 overcomes problems with prior art testers/chargers that, in general, require a tester/charger user to enter battery information with the help of a keypad, for example, during a testing/charging process. Of course, for battery information transfer to occur from RFID tag 102 to tester/charger 104, tester/charger 104 should be within a perimeter defined by RF signal 106. The perimeter is selected based upon a type of application and environment for which system 100 is required. Also, a memory size and encoding scheme for RFID tag 102 can be different for different applications. In general, system 100 allows for battery charging/testing with minimal or no user intervention, thereby substantially eliminating any inaccuracies associated with manual entry of battery information.


As can be seen in FIG. 1, RFID tag 102 includes, as it primary components, a battery information storage circuit 110 and a RF transmitter 112. In embodiments of the present invention, battery information storage circuit 110 is configured to store certain basic information regarding the battery. This information includes battery type, battery group size, cold cranking amp (CCA) rating, battery manufacture date (which could later be used for warranty processing), battery cost, etc. In addition to utilizing RFID tag 102 to store the above-noted battery information, RFID tag 102 can also be used to store tracking information, such as a battery serial number, which is useful during the manufacture of the battery, for example. Further, RFID tag 102 could also store previous test results form factory or later tests that could aid in helping to determine battery condition. Previous test information can also be used to show a customer past and present test results. Battery information and other tracking information can be conveniently encoded and RFID tags 102 can be printed on demand using a suitable printer that includes RFID tag printer/encoder programs. In some embodiments, additional information, such as the date of sale of the battery, can be subsequently encoded into RFID tag 102. In embodiments of the present invention, tag or label 102 includes a coating to dissipate static electricity that may corrupt information stored in the tag. As a battery (such a 200) is often used in a harsh and constrained environment, suitable additional protective layers may be used for coating RFID tag 102.


In some embodiments of the present invention, tag 102 also includes bar-coded battery information 114 in addition to the RFID encoded battery information. In some embodiments, the bar-coded battery information may be a copy of the RFID encoded information. In other embodiments, the bar-coded information may be different from the RFID encoded information. Of course, in such embodiments, battery tester/charger 104 includes a barcode reader 116 in addition to RF receiver 108. Tags/labels with the barcode and RFID battery information can be printed from a single printer that includes the necessary label printer/encoder programs. It should be noted that it is possible to produce bar code tags that can contain previous test information that could be useful in providing previous test result information, which could be used in combination with RFID tags, or stand alone information. Production of bar code tags that contain battery test information is described in U.S. Pat. No. 6,051,976, entitled “METHOD AND APPARATUS FOR AUDITING A BATTERY TEST,” which is incorporated herein by reference.


In addition to helping automate the battery testing/charging process, battery information stored in RFID tag 102 has other uses such as to help determine whether or not a particular battery is too “old” to be sold. It should be noted that batteries may not be suitable for sale after the expiration of a certain period (16 months, for example). The age of the battery can easily be determined by reading the battery date of manufacture from RFID tag 102. An RFID reader that can automatically detect, identify and accept battery information form all RFID tags in its reading field is especially suitable for a retailer to rapidly identify “old” batteries. Information, such as the date of sale of the battery, included in RFID tag 102, can be used for automating warranty claims processing which is based on the battery age, date of sale, etc. Thus, RFID tag 102 is useful for battery production, storage, monitoring and tracking.


In some embodiments of the present invention, RFID tag 102 includes security circuitry 118, which may be coupled to RF transmitter 112 and may also include a receiver (not shown in FIG. 1) which is capable of receiving signals from an external transmitter (not shown in FIG. 1) that transmits security signals. Details regarding such a security system are included in U.S. Ser. No. 10/823,140, filed Apr. 13, 2004, entitled “THEFT PREVENTION DEVICE FOR AUTOMOTIVE VEHICLE SERVICE CENTERS,” which is incorporated herein by reference. Details regarding components of battery tester/charger 104 are provided below in connection with FIGS. 3 and 4.



FIG. 3 is a simplified block diagram of a battery charging system 300 in accordance with an embodiment of the present invention. System 300 is shown coupled to battery 200. System 300 includes battery charger circuitry 310 and test circuitry 312. Battery charger circuitry 310 generally includes an alternating current (AC) source 314, a transformer 316 and a rectifier 318. System 300 couples to battery 200 through electrical connection 320 which couples to the positive battery contact 304 and electrical connection 322 which couples to the negative battery contact 306. In one preferred embodiment, a four point (or Kelvin) connection technique is used in which battery charge circuitry 310 couples to battery 300 through electrical connections 320A and 322A while battery testing circuitry 312 couples to battery 200 through electrical connections 320B and 322B.


Battery testing circuitry 312 includes voltage measurement circuitry 324 and current measurement circuitry 326 which provide outputs to microprocessor 328. Microprocessor 328 also couples to a system clock 330 and memory 332 which is used to store information and programming instructions. In the embodiment of the invention shown in FIG. 3, microprocessor 328 also couples to RF receiver 108, user output circuitry 334, user input circuitry 336 and barcode scanner 116, which may be included in some embodiments.


Voltage measurement circuitry 324 includes capacitors 338 which couple analog to digital converter 340 to battery 200 thorough electrical connections 320B and 322B. Any type of coupling mechanism may be used for element 338 and capacitors are merely shown as one preferred embodiment. Further, the device may also couple to DC signals. Current measurement circuitry 326 includes a shunt resistor (R) 342 and coupling capacitors 344. Shunt resistor 342 is coupled in series with battery charging circuitry 310. Other current measurement techniques are within the scope of the invention including Hall-Effect sensors, magnetic or inductive coupling, etc. An analog to digital converter 346 is connected across shunt resistor 342 by capacitors 344 such that the voltage provided to analog to digital converter 346 is proportional to a current I flowing through battery 200 due to charging circuitry 310. Analog to digital converter 346 provides a digitized output representative of this current to microprocessor 328.


During operation, AC source 314 is coupled to battery 200 through transformer 316 and rectifier 318. Rectifier 318 provides half wave rectification such that current I has a non-zero DC value. Of course, full wave rectification or other AC sources may also be used. Analog to digital converter 346 provides a digitized output to microprocessor 328 which is representative of current I flowing through battery 200. Similarly, analog to digital converter 324 provides a digitized output representative of the voltage across the positive and negative terminals of battery 200. Analog to digital converters 324 and 346 are capacitively coupled to battery 200 such that they measure the AC components of the charging signal.


Microprocessor 328 determines the conductance of battery 200 based upon the digitized current and voltage information provided by analog to digital converters 346 and 324, respectively. Microprocessor 328 calculates the conductance of battery 200 as follows:









Conductance
=

G
=

I
V






Eq
.




1







where I is the AC charging current and V is the AC charging voltage across battery 200. Note that in one preferred embodiment the Kelvin connections allow more accurate voltage determination because these connections do not carry substantial current to cause a resultant drop in the voltage measured.


The battery conductance is used to monitor charging of battery 200. Specifically, it has been discovered that as a battery is charged the conductance of the battery rises which can be used as feedback to the charger. This rise in conductance can be monitored in microprocessor 328 to determine when the battery has been fully charged.


In accordance with the present invention, as described above, RF receiver 108 and/or barcode scanner 116 are included to substantially eliminate the need for user entry of the necessary battery information.



FIG. 4 is a simplified block diagram of a battery testing system 400 in accordance with an embodiment of the present invention. System 400 is shown coupled to battery 200. System 400 includes battery testing circuitry 404 and microprocessor 406. System 400 couples to battery contacts 408 and 410 through electrical connections 412 and 414, respectively. In one preferred embodiment, a four point (or Kelvin) connection technique is used. Here, electrical connection 412 includes a first connection 412A and second connection 412B and connection 414 includes a first connection 414A and a second connection 414B. As in the case of battery charging system 300 (FIG. 3), battery testing system 400 also includes RF receiver 108 and barcode scanner 116 to substantially eliminate the need for user entry of the necessary battery information. Battery tester 400 utilizes received battery information to determine a condition of storage battery 200. A description of example components which can be employed to form battery testing circuitry 404 is set forth in U.S. Pat. No. 6,323,650, issued Nov. 27, 2001, and entitled “ELECTRONIC BATTERY TESTER,” which is incorporated herein by reference.


The above-described invention can be employed in either portable or “bench” (non-portable) battery charging and testing systems, and other similar applications such as starter and alternator testing systems. Although the example embodiments described above relate to wireless communication (or transfer of battery information) using RF signals, other wireless communication techniques (for example, diffused infrared signals) that are known in the industry or are developed in the future may be employed without departing from the scope and spirit of the present invention. A general embodiment of a tag (which can be affixed to a storage battery) that can wirelessly transmit information to, or receive information from, a battery maintenance tool (tester, charger, etc.) is shown in FIG. 5. Tag 502 includes information circuitry 110 similar to that described in FIG. 1 and a transceiver 504 for communicating with maintenance tool 506, which also includes a transceiver 508. Different embodiments of tag 502 and maintenance tool 506 can use different wireless communication techniques.


Retail stores (for example, automotive parts dealers) frequently stock batteries marked with different quality levels. For simplification, “good,” “better” and “best” designators for battery quality are used herein. Sometimes a difference in quality designation reflects a “true” difference in quality, but often, the difference between the “better” and “best” batteries, for example, is simply different stock keeping unit (SKU) label and an extended warranty for the “best” battery. Here, a different SKU label for the “best” battery means that a higher price can be charged, and that funds the longer warranty. FIG. 6A shows a “better” battery 600 and a best battery 602 with different SKU labels 604 (SKU 0001) and 606 (SKU 0002), respectfully.


In accordance with some of the present embodiments, if there is no “true” difference between the differently priced batteries (in general, differently priced items), the multiple SKU labels are replaced with an SKU label for one type of battery (for example, SKU 0001 (designated by reference numeral 604 in FIG. 6B) used for both batteries 600 and 602) and an extended warranty is then offered to the customer. If the customer buys a battery, data related to warranty coverage is encrypted and stored in an RFID tag (606, 608), also included on the battery (600, 602), which would eliminate substantially similar label stock. Any dealer could then read the RFID tag (606, 608) and determine if the battery is within warranty. Thus, even though both batteries 600 and 602 use labels 604 with a same SKU (SKU 0001), battery 600 can be sold at a first price under a first warranty coverage and battery 602 can be sold at a second price under a second warranty coverage, for example.


In general, at a particular retailer location, for example, items identified as a single type of inventory (for example, with a same SKU) for tracking purposes, inventory replenishment, etc., can individually be sold at different prices at that retailer location. Information stored in the RFID tag (606, 608) at the time of sale (or, if necessary, even prior to sale) forms a basis for any price differences between items with a same SKU.


In a particular embodiment, when a battery is sold and installed in a vehicle at a dealership, the RFID tag is programmed with the date sold, dealer name or number, as-installed test results, warranty period, VIN of the vehicle (to tie the battery to the particular vehicle), vehicle owner's name (to tie to original purchaser), etc.


In some embodiments, at the time of manufacture, SKU labels 604 are affixed on batteries 600 and 602 and “blank” RFID tags 606 and 608 are also affixed on batteries 602 and 604, respectively. Such batteries with SKU labels and “blank” RFID tags are shipped to retail locations. As noted above, the SKU labels are used for inventory tracking and, at the time of sale to customers, the “blank” RFID tags are populated with warranty information, for example.


In a particular embodiment, each RFID tag affixed on a battery includes a “write once, read many” memory (for example, a fusible link memory) 610. This prevents data (warranty-related data, for example) entered by the dealer into the memory 610 at the time of sale of the battery, for example, from being altered by the customer, another dealer or any such other entities.


In one embodiment, a battery housing 612 includes a recessed portion 614 within which the RFID tag is affixed. This prevents damage of the RFID tag during transportation and storage of the battery, for example.


Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. A method comprising: providing a plurality of inventory tracking stock-keeping unit labels configured to be affixed to a plurality of batteries, each of the plurality of inventory tracking stock-keeping unit labels having a same stock-keeping unit number; andutilizing individual ones of the plurality of inventory tracking stock-keeping unit labels to track individual batteries of the plurality of batteries;wherein a sale price of individual ones of a first set of the plurality of batteries is different from a sale price of individual ones of a second set of the plurality of batteries, andwherein each of the plurality of inventory tracking stock-keeping unit labels is a physical structure.
  • 2. The method of claim 1 wherein each one of the first set of the plurality of batteries is under a first warranty coverage and each one of the second set of the plurality of batteries is under a second warranty coverage, and wherein the difference between the sale price of the individual ones of the first set of the plurality of batteries and the sale price of the individual ones of the second set of the plurality of batteries is based on a difference between the first warranty coverage and the second warranty coverage.
  • 3. The method of claim 2 wherein utilizing individual ones of the plurality of inventory tracking stock-keeping unit labels to track individual batteries of the plurality of batteries comprises affixing the individual ones of the plurality of inventory tracking stock-keeping unit labels on the individual batteries of the plurality of batteries and wherein warranty coverage information for each item of the plurality of batteries is stored separately from each inventory tracking stock-keeping unit label affixed to each respective item of the plurality of batteries.
  • 4. The method of claim 3 wherein the warranty coverage information for each item of the plurality of batteries is stored in a radio frequency identification (RFID) label affixed to each battery of the plurality of batteries.
  • 5. The method of claim 4 wherein each item of the plurality of batteries is a storage battery.
  • 6. The method of claim 5 wherein the storage battery comprises a housing having a recessed portion in which the RFID label is affixed.
  • 7. The method of claim 5 wherein the RFID label includes a write once read many memory.
  • 8. The method of claim 7 wherein the write once read many memory is a fusible link memory.
  • 9. The method of claim 5 wherein the storage battery is a vehicle battery.
  • 10. The method of claim 9 wherein the vehicle battery is sold and installed in the vehicle at a dealership, and wherein the RFID label includes a date sold, a dealer code, as-installed test results, a warranty period, a vehicle identification number (VIN) of the vehicle and a name of an owner of the vehicle.
  • 11. A method comprising: affixing a first inventory tracking stock-keeping unit label having a stock-keeping unit number to a first storage battery;affixing a first radio frequency identification (RFID) label to the first storage battery;storing warranty coverage information for the first storage battery in the first RFID label,wherein a price of the first storage battery is a function of the warranty coverage, andwherein a difference in price between the first storage battery and a second storage battery having a second inventory tracking stock-keeping unit label having a same stock keeping unit number as the first inventory tracking stock-keeping unit label is based on a difference in the warranty coverage of the first storage battery and a warranty coverage of the second storage battery, andwherein each of the plurality of inventory tracking stock-keeping unit labels is a physical structure.
  • 12. The method of claim 11 wherein the first storage battery comprises a housing having a recessed portion in which the first RFID label is affixed.
  • 13. The method of claim 11 wherein the first RFID label includes a write once read many memory.
  • 14. The method of claim 13 wherein the write once read many memory is a fusible link memory.
  • 15. The method of claim 14 wherein the storage battery is a vehicle battery.
  • 16. The method of claim 15 wherein the vehicle battery is sold and installed in the vehicle at a dealership, and wherein the RFID label includes a date sold, a dealer code, as-installed test results, a warranty period, a vehicle identification number (VIN) of the vehicle and a name of an owner of the vehicle.
  • 17. A vehicle battery comprising: a battery housing;a plurality of electrochemical cells in the battery housing electrically connected in series to a positive terminal of the battery and a negative terminal of the battery;an inventory tracking stock-keeping unit label having a stock-keeping unit number, the inventory tracking stock-keeping unit label affixed to the battery housing; anda radio frequency identification (RFID) label affixed to the battery housing, the RFID label comprising a memory comprising information related to the vehicle battery.
  • 18. The vehicle battery of claim 17 wherein the information related to the vehicle battery comprises a date the vehicle battery was sold, a dealer code of a dealer that sold and installed the battery in the vehicle, as-installed test results, a warranty period of the vehicle battery, a vehicle identification number (VIN) of the vehicle and a name of an owner of the vehicle.
  • 19. The vehicle battery of claim 17 wherein the memory is a write once read many memory.
  • 20. The vehicle battery of claim 17 wherein the battery housing has a recessed portion and wherein the RFID label is affixed in the recessed portion.
Parent Case Info

The present application is a Continuation-In-Part of and claims priority of U.S. patent application Ser. No. 11/207,419, filed Aug. 19, 2005, which is based on and claims the benefit of U.S. provisional patent application Ser. No. 60/603,078, filed Aug. 20, 2004, the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (672)
Number Name Date Kind
85553 Adams Jan 1869 A
2000665 Neal May 1935 A
2417940 Lehman Mar 1947 A
2514745 Dalzell Jul 1950 A
2727221 Springg Dec 1955 A
3178686 Mills Apr 1965 A
3223969 Alexander Dec 1965 A
3267452 Wolf Aug 1966 A
3356936 Smith Dec 1967 A
3562634 Latner Feb 1971 A
3593099 Scholl Jul 1971 A
3607673 Seyl Sep 1971 A
3652341 Halsall et al. Mar 1972 A
3676770 Sharaf et al. Jul 1972 A
3729989 Little May 1973 A
3750011 Kreps Jul 1973 A
3753094 Furuishi et al. Aug 1973 A
3776177 Bryant et al. Dec 1973 A
3796124 Crosa Mar 1974 A
3808522 Sharaf Apr 1974 A
3811089 Strezelewicz May 1974 A
3816805 Terry Jun 1974 A
3850490 Zehr Nov 1974 A
3873911 Champlin Mar 1975 A
3876931 Godshalk Apr 1975 A
3886426 Daggett May 1975 A
3886443 Miyakawa et al. May 1975 A
3889248 Ritter Jun 1975 A
3906329 Bader Sep 1975 A
3909708 Champlin Sep 1975 A
3936744 Perlmutter Feb 1976 A
3946299 Christianson et al. Mar 1976 A
3947757 Grube et al. Mar 1976 A
3969667 McWilliams Jul 1976 A
3979664 Harris Sep 1976 A
3984762 Dowgiallo, Jr. Oct 1976 A
3984768 Staples Oct 1976 A
3989544 Santo Nov 1976 A
3997830 Newell et al. Dec 1976 A
4008619 Alcaide et al. Feb 1977 A
4023882 Pettersson May 1977 A
4024953 Nailor, III May 1977 A
4047091 Hutchines et al. Sep 1977 A
4053824 Dupuis et al. Oct 1977 A
4056764 Endo et al. Nov 1977 A
4057313 Polizzano Nov 1977 A
4070624 Taylor Jan 1978 A
4086531 Bernier Apr 1978 A
4106025 Katz Aug 1978 A
4112351 Back et al. Sep 1978 A
4114083 Benham et al. Sep 1978 A
4126874 Suzuki et al. Nov 1978 A
4160916 Papasideris Jul 1979 A
4178546 Hulls et al. Dec 1979 A
4193025 Frailing et al. Mar 1980 A
4207611 Gordon Jun 1980 A
4217645 Barry et al. Aug 1980 A
4280457 Bloxham Jul 1981 A
4297639 Branham Oct 1981 A
4307342 Peterson Dec 1981 A
4315204 Sievers et al. Feb 1982 A
4316185 Watrous et al. Feb 1982 A
4322685 Frailing et al. Mar 1982 A
4351405 Fields et al. Sep 1982 A
4352067 Ottone Sep 1982 A
4360780 Skutch, Jr. Nov 1982 A
4361809 Bil et al. Nov 1982 A
4363407 Buckler et al. Dec 1982 A
4369407 Korbell Jan 1983 A
4379989 Kurz et al. Apr 1983 A
4379990 Sievers et al. Apr 1983 A
4385269 Aspinwall et al. May 1983 A
4390828 Converse et al. Jun 1983 A
4392101 Saar et al. Jul 1983 A
4396880 Windebank Aug 1983 A
4408157 Beaubien Oct 1983 A
4412169 Dell'Orto Oct 1983 A
4423378 Marino et al. Dec 1983 A
4423379 Jacobs et al. Dec 1983 A
4424491 Bobbett et al. Jan 1984 A
4441359 Ezoe Apr 1984 A
4459548 Lentz et al. Jul 1984 A
4514694 Finger Apr 1985 A
4520353 McAuliffe May 1985 A
4521498 Juergens Jun 1985 A
4564798 Young Jan 1986 A
4620767 Woolf Nov 1986 A
4633418 Bishop Dec 1986 A
4637359 Cook Jan 1987 A
4659977 Kissel et al. Apr 1987 A
4663580 Wortman May 1987 A
4665370 Holland May 1987 A
4667143 Cooper et al. May 1987 A
4667279 Maier May 1987 A
4678998 Muramatsu Jul 1987 A
4679000 Clark Jul 1987 A
4680528 Mikami et al. Jul 1987 A
4686442 Radomski Aug 1987 A
4697134 Burkum et al. Sep 1987 A
4707795 Alber et al. Nov 1987 A
4709202 Koenck et al. Nov 1987 A
4710861 Kanner Dec 1987 A
4719428 Liebermann Jan 1988 A
4723656 Kiernan et al. Feb 1988 A
4743855 Randin et al. May 1988 A
4745349 Palanisamy et al. May 1988 A
4773011 VanHoose Sep 1988 A
4781629 Mize Nov 1988 A
4816768 Champlin Mar 1989 A
4820966 Fridman Apr 1989 A
4825170 Champlin Apr 1989 A
4847547 Eng, Jr. et al. Jul 1989 A
4849700 Morioka et al. Jul 1989 A
4874679 Miyagawa Oct 1989 A
4876495 Palanisamy et al. Oct 1989 A
4881038 Champlin Nov 1989 A
4885523 Koench Dec 1989 A
4888716 Ueno Dec 1989 A
4901007 Sworm Feb 1990 A
4907176 Bahnick et al. Mar 1990 A
4912416 Champlin Mar 1990 A
4913116 Katogi et al. Apr 1990 A
4926330 Abe et al. May 1990 A
4929931 McCuen May 1990 A
4931738 MacIntyre et al. Jun 1990 A
4932905 Richards Jun 1990 A
4933845 Hayes Jun 1990 A
4934957 Bellusci Jun 1990 A
4937528 Palanisamy Jun 1990 A
4947124 Hauser Aug 1990 A
4949046 Seyfang Aug 1990 A
4956597 Heavey et al. Sep 1990 A
4965738 Bauer et al. Oct 1990 A
4968941 Rogers Nov 1990 A
4968942 Palanisamy Nov 1990 A
4969834 Johnson Nov 1990 A
4983086 Hatrock Jan 1991 A
5004979 Marino et al. Apr 1991 A
5030916 Bokitch Jul 1991 A
5032825 Kuznicki Jul 1991 A
5034893 Fisher Jul 1991 A
5037778 Stark et al. Aug 1991 A
5047722 Wurst et al. Sep 1991 A
5081565 Nabha et al. Jan 1992 A
5087881 Peacock Feb 1992 A
5095223 Thomas Mar 1992 A
5108320 Kimber Apr 1992 A
5109213 Williams Apr 1992 A
5126675 Yang Jun 1992 A
5130658 Bohmer Jul 1992 A
5140269 Champlin Aug 1992 A
5144218 Bosscha Sep 1992 A
5144248 Alexandres et al. Sep 1992 A
5159272 Rao et al. Oct 1992 A
5160881 Schramm et al. Nov 1992 A
5168208 Schultz et al. Dec 1992 A
5170124 Blair et al. Dec 1992 A
5179335 Nor Jan 1993 A
5194799 Tomantschger Mar 1993 A
5204611 Nor et al. Apr 1993 A
5214370 Harm et al. May 1993 A
5214385 Gabriel et al. May 1993 A
5241275 Fang Aug 1993 A
5254952 Salley et al. Oct 1993 A
5266880 Newland Nov 1993 A
5278759 Berra et al. Jan 1994 A
5281919 Palanisamy Jan 1994 A
5281920 Wurst Jan 1994 A
5295078 Stich et al. Mar 1994 A
5298797 Redl Mar 1994 A
5300874 Shimamoto et al. Apr 1994 A
5302902 Groehl Apr 1994 A
5313152 Wozniak et al. May 1994 A
5315287 Sol May 1994 A
5321626 Palladino Jun 1994 A
5321627 Reher Jun 1994 A
5323337 Wilson et al. Jun 1994 A
5325041 Briggs Jun 1994 A
5331268 Patino et al. Jul 1994 A
5332927 Paul et al. Jul 1994 A
5336993 Thomas et al. Aug 1994 A
5338515 Dalla Betta et al. Aug 1994 A
5339018 Brokaw Aug 1994 A
5343380 Champlin Aug 1994 A
5347163 Yoshimura Sep 1994 A
5352968 Reni et al. Oct 1994 A
5357519 Martin et al. Oct 1994 A
5365160 Leppo et al. Nov 1994 A
5365453 Startup et al. Nov 1994 A
5369364 Renirie et al. Nov 1994 A
5381096 Hirzel Jan 1995 A
5387871 Tsai Feb 1995 A
5402007 Center et al. Mar 1995 A
5410754 Klotzbach et al. Apr 1995 A
5412308 Brown May 1995 A
5412323 Kato et al. May 1995 A
5425041 Seko et al. Jun 1995 A
5426371 Salley et al. Jun 1995 A
5426416 Jefferies et al. Jun 1995 A
5430645 Keller Jul 1995 A
5432025 Cox Jul 1995 A
5432426 Yoshida Jul 1995 A
5434495 Toko Jul 1995 A
5435185 Eagan Jul 1995 A
5442274 Tamai Aug 1995 A
5445026 Eagan Aug 1995 A
5449996 Matsumoto et al. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5451881 Finger Sep 1995 A
5453027 Buell et al. Sep 1995 A
5457377 Jonsson Oct 1995 A
5459660 Berra Oct 1995 A
5469043 Cherng et al. Nov 1995 A
5485090 Stephens Jan 1996 A
5488300 Jamieson Jan 1996 A
5504674 Chen et al. Apr 1996 A
5508599 Koenck Apr 1996 A
5519383 De La Rosa May 1996 A
5528148 Rogers Jun 1996 A
5537967 Tashiro et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5546317 Andrieu Aug 1996 A
5548273 Nicol et al. Aug 1996 A
5550485 Falk Aug 1996 A
5561380 Sway-Tin et al. Oct 1996 A
5562501 Kinoshita et al. Oct 1996 A
5563496 McClure Oct 1996 A
5572136 Champlin Nov 1996 A
5573611 Koch et al. Nov 1996 A
5574355 McShane et al. Nov 1996 A
5578915 Crouch, Jr. et al. Nov 1996 A
5583416 Klang Dec 1996 A
5585416 Audett et al. Dec 1996 A
5585728 Champlin Dec 1996 A
5589757 Klang Dec 1996 A
5592093 Klingbiel Jan 1997 A
5592094 Ichikawa Jan 1997 A
5596260 Moravec et al. Jan 1997 A
5596261 Suyama Jan 1997 A
5598098 Champlin Jan 1997 A
5602462 Stich et al. Feb 1997 A
5606242 Hull et al. Feb 1997 A
5614788 Mullins et al. Mar 1997 A
5621298 Harvey Apr 1997 A
5633985 Severson et al. May 1997 A
5637978 Kellett et al. Jun 1997 A
5642031 Brotto Jun 1997 A
5650937 Bounaga Jul 1997 A
5652501 McClure et al. Jul 1997 A
5653659 Kunibe et al. Aug 1997 A
5654623 Shiga et al. Aug 1997 A
5656920 Cherng et al. Aug 1997 A
5661368 Deol et al. Aug 1997 A
5666040 Bourbeau Sep 1997 A
5675234 Greene Oct 1997 A
5677077 Faulk Oct 1997 A
5684678 Barrett Nov 1997 A
5691621 Phuoc et al. Nov 1997 A
5699050 Kanazawa Dec 1997 A
5701089 Perkins Dec 1997 A
5705929 Caravello et al. Jan 1998 A
5707015 Guthrie Jan 1998 A
5710503 Sideris et al. Jan 1998 A
5711648 Hammerslag Jan 1998 A
5712795 Layman et al. Jan 1998 A
5717336 Basell et al. Feb 1998 A
5717937 Fritz Feb 1998 A
5721688 Bramwell Feb 1998 A
5732074 Spaur et al. Mar 1998 A
5739667 Matsuda et al. Apr 1998 A
5744962 Alber et al. Apr 1998 A
5745044 Hyatt, Jr. et al. Apr 1998 A
5747189 Perkins May 1998 A
5747909 Syverson et al. May 1998 A
5747967 Muljadi et al. May 1998 A
5754417 Nicollini May 1998 A
5757192 McShane et al. May 1998 A
5760587 Harvey Jun 1998 A
5772468 Kowalski et al. Jun 1998 A
5773962 Nor Jun 1998 A
5773978 Becker Jun 1998 A
5778326 Moroto et al. Jul 1998 A
5780974 Pabla et al. Jul 1998 A
5780980 Naito Jul 1998 A
5789899 van Phuoc et al. Aug 1998 A
5793359 Ushikubo Aug 1998 A
5796239 van Phuoc et al. Aug 1998 A
5808469 Kopera Sep 1998 A
5811979 Rhein Sep 1998 A
5818201 Stockstad et al. Oct 1998 A
5818234 McKinnon Oct 1998 A
5820407 Morse et al. Oct 1998 A
5821756 McShane et al. Oct 1998 A
5821757 Alvarez et al. Oct 1998 A
5825174 Parker Oct 1998 A
5831435 Troy Nov 1998 A
5832396 Moroto et al. Nov 1998 A
5850113 Weimer et al. Dec 1998 A
5862515 Kobayashi et al. Jan 1999 A
5865638 Trafton Feb 1999 A
5871858 Thomsen et al. Feb 1999 A
5872443 Williamson Feb 1999 A
5872453 Shimoyama et al. Feb 1999 A
5883306 Hwang Mar 1999 A
5895440 Proctor et al. Apr 1999 A
5903154 Zhang et al. May 1999 A
5903716 Kimber et al. May 1999 A
5912534 Benedict Jun 1999 A
5914605 Bertness Jun 1999 A
5927938 Hammerslag Jul 1999 A
5929609 Joy et al. Jul 1999 A
5939855 Proctor et al. Aug 1999 A
5939861 Joko et al. Aug 1999 A
5945829 Bertness Aug 1999 A
5946605 Takahisa et al. Aug 1999 A
5950144 Hall et al. Sep 1999 A
5951229 Hammerslag Sep 1999 A
5955951 Wischerop et al. Sep 1999 A
5961561 Wakefield, II Oct 1999 A
5961604 Anderson et al. Oct 1999 A
5969625 Russo Oct 1999 A
5973598 Beigel Oct 1999 A
5978805 Carson Nov 1999 A
5982138 Krieger Nov 1999 A
5990664 Rahman Nov 1999 A
6002238 Champlin Dec 1999 A
6005489 Siegle et al. Dec 1999 A
6005759 Hart et al. Dec 1999 A
6008652 Theofanopoulos et al. Dec 1999 A
6009369 Boisvert et al. Dec 1999 A
6016047 Notten et al. Jan 2000 A
6031354 Wiley et al. Feb 2000 A
6031368 Klippel et al. Feb 2000 A
6037745 Koike et al. Mar 2000 A
6037749 Parsonage Mar 2000 A
6037751 Klang Mar 2000 A
6037777 Champlin Mar 2000 A
6037778 Makhija Mar 2000 A
6046514 Rouillard et al. Apr 2000 A
6051976 Bertness Apr 2000 A
6055468 Kaman et al. Apr 2000 A
6061638 Joyce May 2000 A
6064372 Kahkoska May 2000 A
6072299 Kurle et al. Jun 2000 A
6072300 Tsuji Jun 2000 A
6075339 Reipur et al. Jun 2000 A
6081098 Bertness et al. Jun 2000 A
6081109 Seymour et al. Jun 2000 A
6087815 Pfeifer et al. Jul 2000 A
6091238 McDermott Jul 2000 A
6091245 Bertness Jul 2000 A
6094033 Ding et al. Jul 2000 A
6097193 Bramwell Aug 2000 A
6100670 Levesque Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104167 Bertness et al. Aug 2000 A
6113262 Purola et al. Sep 2000 A
6114834 Parise Sep 2000 A
6136914 Hergenrother et al. Oct 2000 A
6137269 Champlin Oct 2000 A
6140797 Dunn Oct 2000 A
6144185 Dougherty et al. Nov 2000 A
6147598 Murphy et al. Nov 2000 A
6150793 Lesesky et al. Nov 2000 A
6158000 Collins Dec 2000 A
6161640 Yamaguchi Dec 2000 A
6163156 Bertness Dec 2000 A
6164063 Mendler Dec 2000 A
6167349 Alvarez Dec 2000 A
6172483 Champlin Jan 2001 B1
6172505 Bertness Jan 2001 B1
6177737 Palfey et al. Jan 2001 B1
6181545 Amatucci et al. Jan 2001 B1
6184656 Karunasiri et al. Feb 2001 B1
6191557 Gray et al. Feb 2001 B1
6211651 Nemoto Apr 2001 B1
6215275 Bean Apr 2001 B1
6218805 Melcher Apr 2001 B1
6218936 Imao Apr 2001 B1
6222342 Eggert et al. Apr 2001 B1
6222369 Champlin Apr 2001 B1
D442503 Lundbeck et al. May 2001 S
6225808 Varghese et al. May 2001 B1
6236186 Helton et al. May 2001 B1
6236332 Conkright et al. May 2001 B1
6236949 Hart May 2001 B1
6238253 Qualls May 2001 B1
6242887 Burke Jun 2001 B1
6249124 Bertness Jun 2001 B1
6250973 Lowery et al. Jun 2001 B1
6254438 Gaunt Jul 2001 B1
6259170 Limoge et al. Jul 2001 B1
6259254 Klang Jul 2001 B1
6262563 Champlin Jul 2001 B1
6263268 Nathanson Jul 2001 B1
6271643 Becker et al. Aug 2001 B1
6271748 Derbyshire et al. Aug 2001 B1
6275008 Arai et al. Aug 2001 B1
6285191 Gollomp et al. Sep 2001 B1
6294896 Champlin Sep 2001 B1
6294897 Champlin Sep 2001 B1
6304087 Bertness Oct 2001 B1
6307349 Koenck et al. Oct 2001 B1
6310481 Bertness Oct 2001 B2
6313607 Champlin Nov 2001 B1
6313608 Varghese et al. Nov 2001 B1
6316914 Bertness Nov 2001 B1
6320351 Ng et al. Nov 2001 B1
6323650 Bertness et al. Nov 2001 B1
6324042 Andrews Nov 2001 B1
6329793 Bertness et al. Dec 2001 B1
6331762 Bertness Dec 2001 B1
6332113 Bertness Dec 2001 B1
6346795 Haraguchi et al. Feb 2002 B2
6347958 Tsai Feb 2002 B1
6351102 Troy Feb 2002 B1
6356042 Kahlon et al. Mar 2002 B1
6356083 Ying Mar 2002 B1
6359441 Bertness Mar 2002 B1
6359442 Henningson et al. Mar 2002 B1
6363303 Bertness Mar 2002 B1
RE37677 Irie Apr 2002 E
6377031 Karuppana et al. Apr 2002 B1
6384608 Namaky May 2002 B1
6388448 Cervas May 2002 B1
6392414 Bertness May 2002 B2
6396278 Makhija May 2002 B1
6407554 Godau et al. Jun 2002 B1
6411098 Laletin Jun 2002 B1
6417669 Champlin Jul 2002 B1
6420852 Sato Jul 2002 B1
6424157 Gollomp et al. Jul 2002 B1
6424158 Klang Jul 2002 B2
6437957 Karuppana et al. Aug 2002 B1
6441585 Bertness Aug 2002 B1
6445158 Bertness et al. Sep 2002 B1
6449726 Smith Sep 2002 B1
6456036 Thandiwe Sep 2002 B1
6456045 Troy et al. Sep 2002 B1
6465908 Karuppana et al. Oct 2002 B1
6466025 Klang Oct 2002 B1
6466026 Champlin Oct 2002 B1
6469511 Vonderhaar et al. Oct 2002 B1
6477478 Jones et al. Nov 2002 B1
6495990 Champlin Dec 2002 B2
6497209 Karuppana et al. Dec 2002 B1
6500025 Moenkhaus et al. Dec 2002 B1
6505507 Imao Jan 2003 B1
6507196 Thomsen et al. Jan 2003 B2
6526361 Jones et al. Feb 2003 B1
6529723 Bentley Mar 2003 B1
6531848 Chitsazan et al. Mar 2003 B1
6532425 Boost et al. Mar 2003 B1
6534992 Meissner et al. Mar 2003 B2
6534993 Bertness Mar 2003 B2
6536536 Gass et al. Mar 2003 B1
6544078 Palmisano et al. Apr 2003 B2
6545599 Derbyshire et al. Apr 2003 B2
6556019 Bertness Apr 2003 B2
6566883 Vonderhaar et al. May 2003 B1
6570385 Roberts et al. May 2003 B1
6577107 Kechmire Jun 2003 B2
6586941 Bertness et al. Jul 2003 B2
6597150 Bertness et al. Jul 2003 B1
6599243 Woltermann et al. Jul 2003 B2
6600815 Walding Jul 2003 B1
6611740 Lowrey et al. Aug 2003 B2
6614349 Proctor et al. Sep 2003 B1
6618644 Bean Sep 2003 B2
6621272 Champlin Sep 2003 B2
6623314 Cox et al. Sep 2003 B1
6624635 Lui Sep 2003 B1
6628011 Droppo et al. Sep 2003 B2
6629054 Makhija et al. Sep 2003 B2
6633165 Bertness Oct 2003 B2
6635974 Karuppana et al. Oct 2003 B1
6667624 Raichle et al. Dec 2003 B1
6679212 Kelling Jan 2004 B2
6686542 Zhang Feb 2004 B2
6696819 Bertness Feb 2004 B2
6707303 Bertness et al. Mar 2004 B2
6736941 Oku et al. May 2004 B2
6737831 Champlin May 2004 B2
6738697 Breed May 2004 B2
6740990 Tozuka et al. May 2004 B2
6744149 Karuppana et al. Jun 2004 B1
6745153 White et al. Jun 2004 B2
6759849 Bertness Jul 2004 B2
6771073 Henningson et al. Aug 2004 B2
6777945 Roberts et al. Aug 2004 B2
6781382 Johnson Aug 2004 B2
6784635 Larson Aug 2004 B2
6784637 Raichle et al. Aug 2004 B2
6788025 Bertness et al. Sep 2004 B2
6795782 Bertness et al. Sep 2004 B2
6796841 Cheng et al. Sep 2004 B1
6805090 Bertness et al. Oct 2004 B2
6806716 Bertness et al. Oct 2004 B2
6825669 Raichle et al. Nov 2004 B2
6842707 Raichle et al. Jan 2005 B2
6845279 Gilmore et al. Jan 2005 B1
6850037 Bertness Feb 2005 B2
6856972 Yun et al. Feb 2005 B1
6871151 Bertness Mar 2005 B2
6885195 Bertness Apr 2005 B2
6888468 Bertness May 2005 B2
6891378 Bertness et al. May 2005 B2
6904796 Pacsai et al. Jun 2005 B2
6906522 Bertness et al. Jun 2005 B2
6906523 Bertness et al. Jun 2005 B2
6906624 McClelland et al. Jun 2005 B2
6909287 Bertness Jun 2005 B2
6909356 Brown et al. Jun 2005 B2
6913483 Restaino et al. Jul 2005 B2
6914413 Bertness et al. Jul 2005 B2
6919725 Bertness et al. Jul 2005 B2
6930485 Bertness et al. Aug 2005 B2
6933727 Bertness et al. Aug 2005 B2
6941234 Bertness et al. Sep 2005 B2
6967484 Bertness Nov 2005 B2
6972662 Ohkawa et al. Dec 2005 B1
6998847 Bertness et al. Feb 2006 B2
7003410 Bertness et al. Feb 2006 B2
7003411 Bertness Feb 2006 B2
7012433 Smith et al. Mar 2006 B2
7015674 VonderHaar Mar 2006 B2
7029338 Orange et al. Apr 2006 B1
7034541 Bertness et al. Apr 2006 B2
7039533 Bertness et al. May 2006 B2
7058525 Bertness et al. Jun 2006 B2
7081755 Klang et al. Jul 2006 B2
7089127 Thibedeau et al. Aug 2006 B2
7098666 Patino Aug 2006 B2
7102556 White Sep 2006 B2
7106070 Bertness et al. Sep 2006 B2
7116109 Klang Oct 2006 B2
7119686 Bertness et al. Oct 2006 B2
7120488 Nova et al. Oct 2006 B2
7126341 Bertness et al. Oct 2006 B2
7129706 Kalley Oct 2006 B2
7154276 Bertness Dec 2006 B2
7177925 Carcido et al. Feb 2007 B2
7182147 Cutler et al. Feb 2007 B2
7184905 Stefan Feb 2007 B2
7198510 Bertness Apr 2007 B2
7200424 Tischer et al. Apr 2007 B2
7208914 Klang Apr 2007 B2
7209850 Brott et al. Apr 2007 B2
7209860 Trsar et al. Apr 2007 B2
7212887 Shah et al May 2007 B2
7219023 Banke et al. May 2007 B2
7233128 Brost et al. Jun 2007 B2
7235977 Koran et al. Jun 2007 B2
7246015 Bertness et al. Jul 2007 B2
7272519 Lesesky et al. Sep 2007 B2
7287001 Falls et al. Oct 2007 B1
7295936 Bertness et al. Nov 2007 B2
7319304 Veloo et al. Jan 2008 B2
7339477 Puzio et al. Mar 2008 B2
7363175 Bertness et al. Apr 2008 B2
7398176 Bertness Jul 2008 B2
7408358 Knopf Aug 2008 B2
7425833 Bertness et al. Sep 2008 B2
7446536 Bertness Nov 2008 B2
7453238 Melichar Nov 2008 B2
7479763 Bertness Jan 2009 B2
7498767 Brown et al. Mar 2009 B2
7505856 Restaino et al. Mar 2009 B2
7545146 Klang et al. Jun 2009 B2
7557586 Vonderhaar et al. Jul 2009 B1
7595643 Klang Sep 2009 B2
7598699 Restaino et al. Oct 2009 B2
7598743 Bertness Oct 2009 B2
7598744 Bertness et al. Oct 2009 B2
7619417 Klang Nov 2009 B2
7642786 Philbrook Jan 2010 B2
7642787 Bertness et al. Jan 2010 B2
7656162 Vonderhaar et al. Feb 2010 B2
7657386 Thibedeau et al. Feb 2010 B2
7679325 Seo Mar 2010 B2
7688074 Cox et al. Mar 2010 B2
7698179 Leung et al. Apr 2010 B2
7705602 Bertness Apr 2010 B2
7706991 Bertness et al. Apr 2010 B2
7710119 Bertness May 2010 B2
7723993 Klang May 2010 B2
7728597 Bertness Jun 2010 B2
7772850 Bertness Aug 2010 B2
7774151 Bertness Aug 2010 B2
7777612 Sampson et al. Aug 2010 B2
7791348 Brown et al. Sep 2010 B2
7808375 Bertness et al. Oct 2010 B2
7883002 Jin et al. Feb 2011 B2
7924015 Bertness Apr 2011 B2
20010035737 Nakanishi et al. Nov 2001 A1
20020004694 McLeod Jan 2002 A1
20020010558 Bertness et al. Jan 2002 A1
20020021135 Li et al. Feb 2002 A1
20020041175 Lauper et al. Apr 2002 A1
20020044050 Derbyshire et al. Apr 2002 A1
20020074398 Lancos et al. Jun 2002 A1
20020118111 Brown et al. Aug 2002 A1
20020171428 Bertness Nov 2002 A1
20020176010 Wallach et al. Nov 2002 A1
20030009270 Breed Jan 2003 A1
20030025481 Bertness Feb 2003 A1
20030036909 Kato Feb 2003 A1
20030040873 Lesesky et al. Feb 2003 A1
20030078743 Bertness et al. Apr 2003 A1
20030088375 Bertness et al. May 2003 A1
20030128036 Henningson et al. Jul 2003 A1
20030137277 Mori et al. Jul 2003 A1
20030169018 Berels et al. Sep 2003 A1
20030169019 Oosaki Sep 2003 A1
20030184262 Makhija Oct 2003 A1
20030184306 Bertness et al. Oct 2003 A1
20030187556 Suzuki Oct 2003 A1
20030194672 Roberts et al. Oct 2003 A1
20030197512 Miller et al. Oct 2003 A1
20030212311 Nova et al. Nov 2003 A1
20030214395 Flowerday et al. Nov 2003 A1
20040000590 Raichle et al. Jan 2004 A1
20040000891 Raichle et al. Jan 2004 A1
20040000893 Raichle et al. Jan 2004 A1
20040002824 Raichle et al. Jan 2004 A1
20040002825 Raichle et al. Jan 2004 A1
20040002836 Raichle et al. Jan 2004 A1
20040032264 Schoch Feb 2004 A1
20040044452 Bauer et al. Mar 2004 A1
20040049361 Hamdan et al. Mar 2004 A1
20040051533 Namaky Mar 2004 A1
20040054503 Namaky Mar 2004 A1
20040113588 Mikuriya et al. Jun 2004 A1
20040145342 Lyon Jul 2004 A1
20040164706 Osborne Aug 2004 A1
20040178185 Yoshikawa et al. Sep 2004 A1
20040199343 Cardinal et al. Oct 2004 A1
20040227523 Namaky Nov 2004 A1
20040239332 Mackel et al. Dec 2004 A1
20040251876 Bertness et al. Dec 2004 A1
20050007068 Johnson et al. Jan 2005 A1
20050017726 Koran et al. Jan 2005 A1
20050021294 Trsar et al. Jan 2005 A1
20050025299 Tischer et al. Feb 2005 A1
20050043868 Mitcham Feb 2005 A1
20050057256 Bertness Mar 2005 A1
20050073314 Bertness et al. Apr 2005 A1
20050102073 Ingram May 2005 A1
20050128083 Puzio et al. Jun 2005 A1
20050159847 Shah et al. Jul 2005 A1
20050168226 Quint et al. Aug 2005 A1
20050173142 Cutler et al. Aug 2005 A1
20050182536 Doyle et al. Aug 2005 A1
20050218902 Restaino et al. Oct 2005 A1
20050254106 Silverbrook et al. Nov 2005 A9
20050256617 Cawthorne et al. Nov 2005 A1
20050258241 McNutt et al. Nov 2005 A1
20060012330 Okumura et al. Jan 2006 A1
20060030980 St. Denis Feb 2006 A1
20060089767 Sowa Apr 2006 A1
20060217914 Bertness Sep 2006 A1
20060282323 Walker et al. Dec 2006 A1
20070024460 Clark Feb 2007 A1
20070026916 Juds et al. Feb 2007 A1
20070194791 Huang Aug 2007 A1
20080303528 Kim Dec 2008 A1
20080303529 Nakamura et al. Dec 2008 A1
20090146800 Grimlund et al. Jun 2009 A1
20090247020 Gathman et al. Oct 2009 A1
20100145780 Nishikawa et al. Jun 2010 A1
20100314950 Rutkowski et al. Dec 2010 A1
20110004427 Gorbold et al. Jan 2011 A1
Foreign Referenced Citations (55)
Number Date Country
29 26 716 Jan 1981 DE
19638324 Sep 1996 DE
0 022 450 Jan 1981 EP
0 637 754 Feb 1995 EP
0 772 056 May 1997 EP
0902521 Mar 1999 EP
0 982 159 Mar 2000 EP
2 749 397 Dec 1997 FR
2 029 586 Mar 1980 GB
2 088 159 Jun 1982 GB
2 246 916 Oct 1990 GB
2 275 783 Jul 1994 GB
2 387 235 Oct 2003 GB
59-17892 Jan 1984 JP
59-17893 Jan 1984 JP
59017894 Jan 1984 JP
59215674 Dec 1984 JP
60225078 Nov 1985 JP
62-180284 Aug 1987 JP
63027776 Feb 1988 JP
03274479 Dec 1991 JP
03282276 Dec 1991 JP
4-8636 Jan 1992 JP
04095788 Mar 1992 JP
04131779 May 1992 JP
04372536 Dec 1992 JP
05211724 Aug 1993 JP
5216550 Aug 1993 JP
7-128414 May 1995 JP
09061505 Mar 1997 JP
10056744 Feb 1998 JP
10232273 Sep 1998 JP
11103503 Apr 1999 JP
11-150809 Jun 1999 JP
2089015 Aug 1997 RU
WO 9322666 Nov 1993 WO
WO 9405069 Mar 1994 WO
WO 9601456 Jan 1996 WO
WO 9606747 Mar 1996 WO
WO 9701103 Jan 1997 WO
WO 9744652 Nov 1997 WO
WO 9804910 Feb 1998 WO
WO 9858270 Dec 1998 WO
WO 9923738 May 1999 WO
WO 9956121 Nov 1999 WO
WO 0016083 Mar 2000 WO
WO 0062049 Oct 2000 WO
WO 0067359 Nov 2000 WO
WO 0159443 Feb 2001 WO
WO 0116614 Mar 2001 WO
WO 0116615 Mar 2001 WO
WO 0151947 Jul 2001 WO
WO 03047064 Jun 2003 WO
WO 03076960 Sep 2003 WO
WO 2004047215 Jun 2004 WO
Non-Patent Literature Citations (74)
Entry
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US02/29461.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/07546.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/06577.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/07837.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/41561.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/27696.
Notification of Transmittal of the International Search Report for PCT/US03/30707.
“A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, Journal of Power Sources, pp. 59-69, (1998).
“Search Report Under Section 17” for Great Britain Application No. GB0421447.4.
“Results of Discrete Frequency Immittance Spectroscopy (DFIS) Measurements of Lead Acid Batteries”, by K.S. Champlin et al., Proceedings of 23rd International Teleco Conference (INTELEC), published Oct. 2001, IEE, pp. 433-440.
“Examination Report” from the UK Patent Office for App. No. 0417678.0; Jan. 24, 2005.
“Electrochemical Impedance Spectroscopy in Battery Development and Testing”, Batteries International, Apr. 1997, pp. 59 and 62-63.
“Battery Impedance”, by E. Willihnganz et al., Electrical Engineering, Sep. 1959, pp. 922-925.
“Determining the End of Battery Life”, by S. DeBardelaben, IEEE, 1986, pp. 365-368.
“A Look at the Impedance of a Cell” by S. Debardelaben, IEEE, 1988, pp. 394-397.
“The Impedance of Electrical Storage Cells”, by N.A. Hampson et al., Journal of Applied Electrochemistry, 1980, pp. 3-11.
“A Package for Impedance/Admittance Data Analysis”, by B. Boukamp, Solid State Ionics, 1986, pp. 136-140.
“Precision of Impedance Spectroscopy Estimates of Bulk, Reaction Rate, and Diffusion Parameters”, by J. Macdonald et al., J. Electroanal, Chem., 1991, pp. 1-11.
Internal Resistance: Harbinger of Capacity Loss in Starved Electrolyte Sealed Lead Acid Batteries, by Vaccaro, F.J. et al., AT&T Bell Laboratories, 1987 IEEE, Ch. 2477, pp. 128,131.
IEEE Recommended Practice for Maintenance, Testings, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations, The Institute of Electrical and Electronics Engineers, Inc., ANSI/IEEE Std. 450-1987, Mar. 9, 1987, pp. 7-15.
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I Conductance/Capacity Correlation Studies”, by D. Feder et al., IEEE, Aug. 1992, pp. 218-233.
“JIS Japanese Industrial Standard-Lead Acid Batteries for Automobiles”, Japanese Standards Association UDC, 621.355.2:629.113.006, Nov. 1995.
Office Action dated Jun. 21, 2006 for U.S. Appl. No. 11/207,419, filed Aug. 19, 2005.
Office Action dated Dec. 19, 2006 for U.S. Appl. No. 11/207,419, filed Aug. 19, 2005.
Office Action dated Jul. 10, 2007 for U.S. Appl. No. 11/207,419, filed Aug. 19, 2005.
“Performance of Dry Cells”, by C. Hambuechen, Preprint of Am. Electrochem. Soc., Apr. 18-20, 1912, paper No. 19, pp. 1-5.
“A Bridge for Measuring Storage Battery Resistance”, by E. Willihncanz, The Electrochemical Society, preprint 79-20, Apr. 1941, pp. 253-258.
Office Action dated Dec. 28, 2009 for U.S. Appl. No. 11/207,419, filed Aug. 19, 2005.
National Semiconductor Corporation, “High Q Notch Filter”, Mar. 1969, Linear Brief 5.
Burr-Brown Corporation, “Design a 60 Hz Notch Filter with the UAF42”, Jan. 1994, AB-071.
National Semiconductor Corporation, “LMF90-4th-Order Elliptic Notch Filter”, Dec. 1994, RRD-B30M115.
“Alligator Clips with Wire Penetrators” J.S. Popper, Inc. product information, downloaded from http://www.jspopper.com/, prior to Oct. 1, 2002.
“#12: LM78S40 Simple Switcher DC to DC Converter”, ITM e-Catalog, downloaded from http://www.pcbcafe.com, prior to Oct. 1, 2002.
“Simple DC-DC Converts Allows Use of Single Battery”, Electronix Express, downloaded from http://www.elexpxon/t—dc-dc.htm, prior to Oct. 1, 2002.
“DC-DC Converter Basics”, Power Designers, downloaded from http://www.powederdesigners.com/InforWeb.design—center/articles/DC-DC/converter.shtm, prior to Oct. 1, 2002.
“Improved Impedance Spectroscopy Technique for Status Determination of Production Li/SO2 Batteries” Terrill Atwater et al., pp. 10-113, (1992).
“Programming Training Course, 62-000 Series Smart Engine Analyzer”, Testproducts Division, Kalamazoo, Michigan, pp. 1-207, (1984).
“Operators Manual, Modular Computer Analyzer Model MCA 3000”, Sun Electric Corporation, Crystal Lake, Illinois pp. 1-1-14-13, (1991).
Supplementary European Search Report Communication for Appl. No. 99917402.2; Sep. 7, 2004.
“Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification”, Journal of Power Sources, pp. 69-84, (1997).
Wikipedia Online Encyclopedia, Inductance, 2005, http://en.wikipedia.org/wiki/inductance, pp. 1-5, mutual Inductance, pp. 3,4.
“Professional BCS System Analyzer Battery-Charger-Starting”, pp. 2-8, (2001).
Young Illustrated Encyclopedia Dictionary of Electronics, 1981, Parker Publishing Company, Inc., pp. 318-319.
“DSP Applications in Hybrid Electric Vehicle Powertrain”, Miller et al., Proceedings of the American Control Conference, Sand Diego, CA, Jun. 1999; 2 ppg.
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration” for PCT/US2008/008702 filed Jul. 2008; 15 pages.
“Notification Concerning Availability of the Publication of the International Application” for PCT/US2008/008702, filed Jul. 17, 2008; 24 pages.
“A Microprocessor-Based Control System for a Near-Term Electric Vehicle”, Bimal K. Bose; IEEE Transactions on Industry Applications, vol. IA-17, No. 6, Nov./Dec. 198?,; 0093-9994/81/1100-0626$00.75 © 1981 IEEE, 6 pages.
“First Notice Informing the Applicant of the Communication of the International Application (To Designated Offices which do not apply the 30 Month Time Limit Under Article 22(1))” for PCT/US2008/008702 filed Jul. 17, 2008; one page.
“Notification of the Recording of a Change” for PCT/US2008/008702 filed Jul. 17, 2008; one page.
Office Action from U.S. Appl. No. 11/146,608 dated May 13, 2008.
Office Action from U.S. Appl. No. 11/063,247 dated Apr. 11, 2008.
“Search Report Under Section 17” for Great Britain Application No. GB0421447.4, date of search Jan. 27, 2005, date of document Jan. 28, 2005.
Search Report and Written Opinion from PCT Application No. PCT/US2011/026608, dated Aug. 29, 2011, 9 pages.
Appeal Brief as filed by Appellant with the USPTO on Jun. 27, 2008 for corresponding U.S. Appl. No. 11/207,419, 14 pages.
Examiner's Answer for corresponding U.S. Appl. No. 11/207,419, dated Sep. 17, 2008, 16 pages.
Reply Brief as filed by Appellant with the USPTO on Nov. 17, 2008 for corresponding U.S. Appl. No. 11/207,419, 4 pages.
Appeal Decision for corresponding U.S. Appl. No. 11/207,419, dated May 31, 2011, 8 pages.
U.S. Appl. No. 60/387,912, filed Jun. 13, 2002 which is related to U.S.Patent No. 7,089,127.
“Conductance Testing Compared to Traditional Methods of Evaluating the Capacity of Valve-Regulated Lead-Acid Batteries and Predicting State-of-Health”, by D. Feder et al., May 1992, pp. 1-8; (13 total pgs.).
“Field Application of Conductance Measurements Use to Ascertain Cell/Battery and Inter-Cell Connection State-ofHealth in Electric Power Utility Applications”, by M. Hlavac et al., Apr. 1993, pp. 1-14; (19 total pgs.).
“Conductance Testing of Standby Batteries in Signaling and Communications Applications for the Purpose of Evaluating Battery State-of-Health”, by S. McShane, Apr. 1993, pp. 19; (14 total pgs.).
“Conductance Monitoring of Recombination Lead Acid Batteries”, by B. Jones, May 1993, pp. 1-6; (11 total pgs.).
“Evaluating the State-of-Health of Lead Acid Flooded and Valve-Regulated Batteries: A Comparison of Conductance Testing vs. Traditional Methods”, by M. Hlavac et al., Jun. 1993, pp. 1-15; (20 total pgs.).
“Updated State of Conductance/Capacity Correlation Studies to Determine the State-of-Health of Automotive SLI and Standby Lead Acid Batteries”, by D. Feder et al., Sep. 1993, pp. 1-17; (22 total pgs.).
“Field Experience of Testing Vrla Batteries by Measuring Conductance”, by M.W. Kniveton, May 1994, pp. 1-4; (9 total pgs.).
“Reducing the Cost of Maintaining VRLA Batteries in Telecom Applications”, by M.W. Kniveton, Sep. 1994, pp. 1-5; (10 total pgs.).
“Analysis and Interpretation of Conductance Measurements used to Access the State-of-Health of Valve Regulated Lead Acid Batteries Part III: Analytical Techniques”, by M. Hlavac, Nov. 1994, 9 pgs; (13 total pgs.).
“Testing 24 Volt Aircraft Batteries Using Midtronics Conductance Technology”, by M. Hlavac et al., Jan. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Monitoring Using Conductance Technology Part IV: On-Line State-of-Health Monitoring and Thermal Runaway Detection/Prevention”, by M. Hlavac et al., Oct. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Conductance Monitoring Part V: Strategies for VRLA Battery Testing and Monitoring in Telecom Operating Environments”, by M. Hlavac et al., Oct. 1996, 9 pgs; (13 total pgs.).
“Midpoint Conductance Technology Used in Telecommunication Stationary Standby Battery Applications Part VI: Considerations for Deployment of Midpoint Conductance in Telecommunications Power Applications”, by M. Troy et al., Oct. 1997, 9 pgs; (13 total pgs.).
“Impedance/Conductance Measurements as an Aid to Determining Replacement Strategies”, M. Kniveton, Sep. 1998, pp. 297-301; (9 total pgs.).
“A Fundamentally New Approach to Battery Performance Analysis Using DFRA™/DTIS™ Technology”, by K. Champlin et al., Sep. 2000, 8 pgs; (12 total pgs.).
“Battery State of Health Monitoring, Combining Conductance Technology With Other Measurement Parameters for Real-Time Battery Performance Analysis”, by D. Cox et la., Mar. 2000, 6 pgs; (10 total pgs.).
Related Publications (1)
Number Date Country
20090187495 A1 Jul 2009 US
Provisional Applications (1)
Number Date Country
60603078 Aug 2004 US
Continuation in Parts (1)
Number Date Country
Parent 11207419 Aug 2005 US
Child 12416445 US