SIMULATED EYE ASSEMBLY FOR USE IN TOY

Information

  • Patent Application
  • 20110034104
  • Publication Number
    20110034104
  • Date Filed
    April 01, 2010
    14 years ago
  • Date Published
    February 10, 2011
    13 years ago
Abstract
A simulated eye assembly is provided. The simulated eye includes a motor, a first ball, and a first slider-crank transmission mechanism. The transmission mechanism comprises a slider connected to the motor, and a first crankshaft connected to the first ball. The slider is driven by the motor to cause the first crankshaft to rotate, which further causes the first ball to rotate.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to simulated eyes and, more particularly, to a simulated eye assembly for use in combination with a toy.


2. Description of Related Art


Dolls and plush toys have for many years been a popular toy category. Because the eye construction represents an important factor in the success of dolls and plush toys, practitioners in the art have endeavored to provide a variety of simulated eyes. While a great variety of simulated eye structures are provided, there remains, nonetheless, a continuing need in the art for evermore interesting and improved simulated eyes for use in dolls and plush toys.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of a simulated eye assembly for use in combination with a toy, in accordance with an exemplary embodiment.



FIG. 2 is an exploded view of the simulated eye assembly of FIG. 1.



FIG. 3 is a cross-sectional view of the simulated eye assembly of FIG. 1, which is taken along line of FIG. 1.



FIG. 4 is an isometric view of a simulated eye assembly for use in combination with a toy, in accordance with another exemplary embodiment.





DETAILED DESCRIPTION

Referring to FIGS. 1 and 2, a simulated eye assembly 10 for use with a toy includes a first ball 102 and a second ball 104 to simulate the human eyes. The eye assembly 10 also incudes a first transimission mechanism 200 and a second transmission mechanism 300, which are used to transmit motion from a linear motor 110 to the balls 102 and 104. The balls 102 and 104 can thus rotate to simulate movement of real eyes.


The transimission mechanisms 200 and 300 have the same construction and are slider-crank mechanisms that transmit linear motion to circular motion. The mechanisms 200 and 300 both include connecting rods 210, 310, crankshafts 220, 320, frames 230, 330, and one common slider 240. The frames 230, 330 have the same structure and can be fixed to a proper position of the toy. The frame 230 includes a base bar 231 and two side bars 232 spaced from each other that protruds from the base bar 231.


Two guiding members 400 arranged between the frames 240, 340 each define a sliding groove 410. The guding members 400 may be fixed to a component of the toy or fixed to the slide bars of the frames 230, 330. The sliding grooves 410 face each other and are used to receive one end of the slider 240, such that the slider 240 can slide along the sliding grooves 410.


The shape and structure of the crankshafts 220, 320 are identical. The crankshaft 220 includes a main shaft 221 and two crankpins 222, 223 connected to two ends of the main shaft 221. The crankpins 222, 223 extend through through holes 233 and 234 formed in the side bars 242, respectively, which rotatably connects the crankshaft 220 to the frame 230. The first ball 102 is fixed to a distal end 224 of the crankpin 223 to rotate together with the crankpin 223. The crankshaft 320 is rotatably connected to the frame 340 in the same manner as the crankshaft 220. Similarly, the first ball 104 is connected to a distal end of of a crankpin 323 of the crankshaft 320.


Referring to FIG. 3, the rotating axes of the crankpins 223 and 323 are spaced a distance d from ball centers 01 and 02 of the balls 102 and 104. In this way, the balls 102 and 104 will rotate leftward or rightward about their rotating axis, rather than the ball centers 01 and 02, which more realistically simulates real eye movement.


The shape and structure of the connectings rod 210, 310 are identical. The rod 210 defines two through holes 211 and 211 at two ends, such that the rod 210 can be pivotably connected to the main shaft 221 and the slider 240. Similarly, the rod 310 is pivotably connected to the main shaft of the crankshaft 320 and the slider 240.


The slider 240 is a rod that includes two ends 241. The ends 241 each include an upper planar surface 242 and a lower planar surface 243 that are parallel to each other. The distance between the surfaces 242 and 243 is slightly less than the height of the groove 410 of the guiding member 400, such that the slider 240 can be slidable along the groove 410. The slider 240 is also connected to the linear motor 100 to be driven to slide with respect to the guiding members 400.


In the exemplary embodiment, the guiding members 400 are arraged to guide the slider 240 to move horizontally, which causes the crankshafts 220, 320 to rotate in the same direction. The balls 102 and 104 thus rotate in the same direction. In another embodiment as shown in FIG. 4, the guiding members 400 may be arranged to guide the slider 240 to move vertically, which causes the crankshafts 220, 320 to rotate in opposite directions. The balls 102 and 104 thus rotate in opposite directions.


While various embodiments have been described and illustrated, the disclosure is not to be constructed as being limited thereto. Various modifications can be made to the embodiments by those skilled in the art without departing from the true spirit and scope of the disclosure as defined by the appended claims.

Claims
  • 1. A simulated eye assembly for use in combination with a toy, comprising: a motor;a first ball;a first slider-crank transmission mechanism comprising a slider connected to the motor, and a first crankshaft connected to the first ball, wherein the slider is driven by the motor to cause the first crankshaft to rotate, which further causes the first ball to rotate.
  • 2. The simulated eye assembly according to claim 1, further comprising a second ball and a second slider-crank transmission mechanism, the second slider-crank transmission mechanism is configured for transmitting motion from the motor to the second ball to cause the second ball to rotate.
  • 3. The simulated eye assembly according to claim 1, wherein motor is a linear motor to drive the slider to slide.
  • 4. The simulated eye assembly according to claim 2, wherein the first slider-crank transmission mechanism and the second slider-crank transmission mechanism shares the slider.
  • 5. The simulated eye assembly according to claim 4, wherein the first slider-crank transmission mechanism also includes a first frame and a first connecting rod, two ends of the first connecting rod are pivotably connected to the slider and the first crankshaft, first crankshaft comprises a crankpin, the first ball is fixed to the crankpin.
  • 6. The simulated eye assembly according to claim 5, wherein the second slider-crank transmission mechanism includes a second frame, a second connecting rod, and a second crankshaft rotatably connected to the second frame, two ends of the second connecting rod are pivotably connected to the second crankshaft and the slider.
  • 7. The simulated eye assembly according to claim 6, further comprising two guiding members, wherein, each of the two guiding member defines a groove to receive one end of the slider to allow that the slider is slidable with respect to the two guiding members.
  • 8. The simulated eye assembly according to claim 7, wherein the two guiding members are arranged to guide the slider to slide horizontally to cause the first crankshaft and the second crankshaft to rotate in the same direction.
  • 9. The simulated eye assembly according to claim 7, wherein the two guiding members are arranged to guide the slider to slide vertically to cause the first crankshaft and the second crankshaft to rotate in opposite directions.
  • 10. The simulated eye assembly according to claim 5, wherein a ball center of the first ball is spaced from a rotating axis of the first crankpin.
  • 11. The simulated eye assembly according to claim 6, wherein a ball center of the second ball is spaced from a rotating axis of the second crankpin.
  • 12. The simulated eye assembly according to claim 5, the first frame includes a base bar and two side bars protruding therefrom, the first crankshaft is rotatably connected to the two side bars.
Priority Claims (1)
Number Date Country Kind
200910305435.6 Aug 2009 CN national