This non-provisional application claims priority under 35 U.S.C. §119(a) on Patent Application No(s). 100116316 filed in Taiwan, R.O.C. on May 10, 2011, the entire contents of which are hereby incorporated by reference.
The present invention relates to simulated sunlight generating devices, and more particularly, to a simulated sunlight generating device for generating a simulated sunlight by adding up and combining light rays emitted from a plurality of light-emitting units.
To conduct indoors a test on a solar cell composed of a plurality of cells according to the prior art, it is necessary to simulate sunlight required for the evaluation of the performance of the solar cell in utilizing sunlight.
Referring to
Accordingly, it is imperative to provide a simulated sunlight specific to one and only one cell or even specific to a solar cell in its entirety. To this end, the present invention provides a simulated sunlight generating device that is easy to install and maintain, incurs low costs, and is highly flexible and efficient.
It is an objective of the present invention to provide a simulated sunlight generating device for generating a simulated sunlight by adding up and combining light rays emitted from a plurality of light-emitting units.
Another objective of the present invention is to provide a simulated sunlight generating device for generating a simulated sunlight required for the evaluation of the performance of a solar cell in utilizing sunlight.
In order to achieve the above and other objectives, the present invention provides a simulated sunlight generating device for generating a simulated sunlight, comprising: a plurality of driving units for generating a plurality of driving currents; a plurality of light-emitting units connected to the driving units for emitting light of corresponding wavelength and illumination intensity based on the driving currents, respectively; and a plurality of adjusting units disposed at a light-emitting route of the light-emitting units for changing light-emitting directions of the light-emitting units, respectively, and enabling the light of the light-emitting units to not only propagate along a same light route but also be added up and combined to form the simulated sunlight.
Unlike the prior art, the present invention provides a simulated sunlight generating device for generating simulated sunlight of the same wavelength and illumination intensity per unit area to optimize simulation of sunlight. In addition to optimization, the simulation of sunlight, as effected by the simulated sunlight generating device of the present invention, features variability and flexibility, because the light-emitting units are separately driven and thereby can be different from each other in terms of the wavelength of the light rays emitted, such that the emitted light rays of different wavelengths can be added up or combined to generate the simulated sunlight of one, some, or all of the wavelengths. Furthermore, the simulated sunlight is generated in a light-emitting direction after light rays emitted from the light-emitting units have been added up or combined by the adjusting units; hence, the simulation of sunlight demonstrates high efficiency and high directivity. By contrast, as disclosed in the prior art, conventional light-emitting units generate the simulated sunlight in a light-emitting direction directly, and thus the simulation of sunlight is inefficient due to variation in the characteristics of the light-emitting units. Accordingly, the present invention provides a simulated sunlight generating device that is easy to install and maintain, incurs low costs, and is highly flexible and efficient.
Objectives, features, and advantages of the present invention are hereunder illustrated with specific embodiments in conjunction with the accompanying drawings, in which:
Referring to
The driving units 122-128 generate a plurality of driving currents I1-I4. The illumination intensity and wavelength of light emitted from the light-emitting units 142-148 being driven depend on the strength of the driving currents I1-I4. With the light-emitting units 142-148 being driven by the driving units 122-128 separately, the strength of the driving currents I1-I4 is adjusted to equalize the illumination intensity of the light emitted. It is because the service life or modulation of the light-emitting units 142-148 depends on their driving characteristics and constituent materials.
The light-emitting units 142-148 are connected to the driving units 122-128, respectively. The light-emitting units 142-148 emit light L1-L4 of wavelength λ1-λ4 according to the driving currents I1-I4. For example, the light-emitting units 142-148 are light-emitting diodes, organic light-emitting diodes, or a combination thereof. In an embodiment, the light-emitting units emit light of wavelengths corresponding to that of the three primary colors (RGB). For example, in an embodiment, the simulated sunlight generating device 10 comprises driving units, light-emitting units, and adjusting units, wherein the RGB wavelengths of the simulated sunlight generated by the simulated sunlight generating device 10 are namely the red light wavelength 600 nm˜700 nm, the green light wavelength 500˜600 nm, and the blue light wavelength 400 nm˜500 nm. Hence, given the RGB wavelengths of the simulated sunlight thus generated, the simulated sunlight SSL thus generated is white visible light. After the light L1-L4 generated by the light-emitting units 142-148 have been added up, the wavelength of the simulated sunlight SSL includes the wavelength of visible light and the wavelength of invisible light, wherein the wavelength of the simulated sunlight SSL ranges between 240 nm and 2400 nm.
The adjusting units 162-168 are disposed at a light-emitting route of the light-emitting units 142-148. The adjusting units 162-168 change the light-emitting directions of the light-emitting units 142-148, respectively. The adjusting units 162-168 enable the light L1-L4 of the light-emitting units 142-148 to not only propagate along the same light route but also be added up and combined to form the simulated sunlight SSL. For example, the adjusting units 162-168 veer the light L1-L4 to a vertical direction simultaneously and confine the light L1-L4 to the light route. Furthermore, the adjusting units 162-168 are beam splitters and/or reflectors. For example, in this embodiment, the reflectors change the light-emitting directions of the light L1-L4 from the light-emitting units 142-148, such that the light-emitting directions end up in the light route due to reflection.
Referring to
The adjusting units 162-168 are beam splitters and/or reflectors. The beam splitters facilitate the detection of at least one of the light L1-L4 or illumination intensity of the simulated sunlight SSL by the detection unit 20, such that the status of the light L1-L4 can be dynamically analyzed. This embodiment is exemplified by the detection of the illumination intensity of the simulated sunlight SSL.
Unlike the prior art, the present invention provides a simulated sunlight generating device for generating simulated sunlight of the same wavelength and illumination intensity per unit area to optimize simulation of sunlight. In addition to optimization, the simulation of sunlight, as effected by the simulated sunlight generating device of the present invention, features variability and flexibility, because the light-emitting units are separately driven and thereby can be different from each other in terms of the wavelength of the light rays emitted, such that the emitted light rays of different wavelengths can be added up or combined to generate the simulated sunlight of one, some, or all of the wavelengths. Furthermore, the simulated sunlight is generated in a light-emitting direction after light rays emitted from the light-emitting units have been added up or combined by the adjusting units; hence, the simulation of sunlight demonstrates high efficiency and high directivity. By contrast, as disclosed in the prior art, conventional light-emitting units generate the simulated sunlight in a light-emitting direction directly, and thus the simulation of sunlight is inefficient due to variation in the characteristics of the light-emitting units. Accordingly, the present invention provides a simulated sunlight generating device that is easy to install and maintain, incurs low costs, and is highly flexible and efficient.
The present invention is disclosed above by preferred embodiments. However, persons skilled in the art should understand that the preferred embodiments are illustrative of the present invention only, but should not be interpreted as restrictive of the scope of the present invention. Hence, all equivalent modifications and replacements made to the aforesaid embodiments should fall within the scope of the present invention. Accordingly, the legal protection for the present invention should be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
100116316 A | May 2011 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5961201 | Gismondi | Oct 1999 | A |
20070030662 | Hsu | Feb 2007 | A1 |
20080223441 | Jungwirth | Sep 2008 | A1 |
20100287830 | Chen et al. | Nov 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120287597 A1 | Nov 2012 | US |