This application is generally related to surgical training tools, and in particular, to anatomical models simulating organs or tissue for teaching and practicing various surgical techniques and procedures.
Medical students as well as experienced doctors learning new surgical techniques must undergo extensive training before they are qualified to perform surgery on human patients. The training must teach proper techniques employing various medical devices for cutting, penetrating, clamping, grasping, stapling and suturing a variety of tissue types. The range of possibilities that a trainee may encounter is great. For example, different organs and patient anatomies and diseases are presented. The thickness and consistency of the various tissue layers will also vary from one part of the body to the next and from one patient to another. Accordingly, the skills required of the techniques and instruments will also vary. Furthermore, the trainee must practice techniques in readily accessible open surgical locations and in locations accessed laparoscopically.
Numerous teaching aids, trainers, simulators and model organs are available for one or more aspects of surgical training. However, there is a need for model organs or simulated tissue elements that are likely to be encountered in endoscopic, laparoscopic, transanal, minimally invasive or other surgical procedures that include the removal of tumors or other tissue structures. In particular, there is a need for realistic model organs for the repeatable practice of removing a tumor or other undesired tissue followed by the closure of the target area by suturing or stapling as part of the same surgical procedure. In view of the above, it is an object of this invention to provide a surgical training device that realistically simulates such particular circumstances encountered during surgery.
According to one aspect of the invention, a simulated tissue structure for surgical training is provided. The structure includes a defect layer located above the base layer. The defect layer includes at least one defect having two opposed surfaces that define at least one gap between the surfaces. A simulated tumor is located above the defect layer in such a way to overlay at least a portion of the defect. A cover layer is located above the base layer and overlays the tumor.
According to another aspect of the invention, a simulated tissue structure for surgical training is provided. The simulated tissue structure includes at least one simulated tissue module comprising a simulated tissue portion. The structure includes a module support having a first surface opposite from a second surface and defining a thickness therebetween. The module support includes at least one module receiving portion sized and configured to receive and connect with the at least one simulated tissue module. The simulated tissue module is insertable into and removable from the at least one module receiving portion and interchangeable with another simulated tissue module.
According to another aspect of the invention a method for surgical training is provided. The method includes the step of providing a simulated tissue structure comprising an artificial tumor located between a base layer and a cover layer. The base layer and the cover layer are made of elastomeric polymer that may include mesh reinforcement. The simulated tissue structure is placed inside a simulated body cavity of a surgical training device such that the simulated tissue structure is at least partially obscured from view by a user. The user removes the artificial tumor from the simulated tissue structure with instruments passed into the simulated body cavity with the simulated tissue structure obscured from the user and visualized on a video monitor providing a live feed of the simulated tissue structure inside the cavity via a laparoscope or endoscope. At least one defect is created substantially in the location of the tumor. The defect comprises two adjacent surfaces defining a gap. The gap is closed by bringing the two adjacent surfaces together with instruments such as sutures, staples, adhesive or other surgical means. Suturing the gap to bring the two adjacent surfaces together. In one variation, creating a defect includes providing a defect layer in the simulated tissue structure. Providing a defect layer includes providing a defect layer with a pre-formed defect or gap and placing the defect layer such that the defect layer is between the base layer and the cover layer and at least a portion of the defect is located underneath the artificial tumor. In another variation, creating a defect includes cutting at least one of the base layer and cover layer. Removing the artificial tumor from the simulated tissue structure includes removing the artificial tumor through the defect created by cutting.
A surgical training device 10 that is configured to mimic the torso of a patient such as the abdominal region is shown in
The surgical training device 10 includes a base 12 and a top cover 14 connected to and spaced apart from the base 12 to define an internal body cavity 18 between the top cover 14 and the base 12. At least one leg 16 interconnects and spaces apart the top cover 14 and base 12. A model organ or simulated tissue 20 is disposed within the body cavity 18. The model organ 20 shown in
Turning now to
Turning now to
Referring back to
Still referencing
In
Turning now to
Turning now to
With particular reference to
For example,
In one variation, the module support 52 in any of the variations is not planar but is provided with a landscape that includes curves and other structures, mountains and valleys and various textures. The varying landscape provides the user with various levels of difficulty in approaching each tumor location requiring the user to navigate around artifacts and features that may obscure the tumor location. These structural artifacts in the tumor support 52 may be integrally formed with the tumor support 52 or also be modular in structure similar to the tumor modules 50 making the anatomy landscape modules removable and interchangeable. Tumor modules 50 are interchangeable with non-tumor modules that include, for example, features and artifacts or textures made of silicone or other material extending outwardly or inwardly from the one or more of the upper and lower surfaces 51, 53 of the module support 52. The features in such non-tumor modules can have various shapes to mimic anatomy that includes adjacent organ structures or tissues. For example, a non-tumor module can include a tubular form of silicone to mimic an intestine. The non-tumor and tumor modules 50 are removably connected to the module support 52 by any means known to one skilled in the art enabling the user to discard a module after use and then to continue practicing by replacing the discarded module or moving to an adjacent module 50 in the module support 52 or changing out a tumor module 50 for another tumor module 50 having a different feature or level of difficulty.
A variation of the tumor module 50 is shown in
Still referencing
The simulated tissue portion 60 in
Turning now to
While certain embodiments have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope thereof as defined by the following claims.
This application is a continuation of U.S. patent application Ser. No. 13/656,467 entitled “Simulated tissue structure for surgical training” filed on Oct. 19, 2012 which claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 61/549,838 entitled “Simulated tissue structure for surgical training” filed on Oct. 21, 2011 all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
184573 | Becker | Nov 1876 | A |
2127774 | Jacobson | Aug 1938 | A |
2284888 | Arneil, Jr. | Jun 1942 | A |
2495568 | Coel | Jan 1950 | A |
3789518 | Chase | Feb 1974 | A |
3921311 | Beasley et al. | Nov 1975 | A |
3991490 | Markman | Nov 1976 | A |
4001951 | Fasse | Jan 1977 | A |
4332569 | Burbank | Jun 1982 | A |
4371345 | Palmer et al. | Feb 1983 | A |
4459113 | Boscaro Gatti et al. | Jul 1984 | A |
4481001 | Graham et al. | Nov 1984 | A |
4596528 | Lewis et al. | Jun 1986 | A |
4726772 | Amplatz | Feb 1988 | A |
4737109 | Abramson | Apr 1988 | A |
4789340 | Zikria | Dec 1988 | A |
4907973 | Hon | Mar 1990 | A |
4938696 | Foster et al. | Jul 1990 | A |
5061187 | Jerath | Oct 1991 | A |
5083962 | Pracas | Jan 1992 | A |
5104328 | Lounsbury | Apr 1992 | A |
5149270 | McKeown | Sep 1992 | A |
5180308 | Garito et al. | Jan 1993 | A |
5230630 | Burgett | Jul 1993 | A |
5273435 | Jacobson | Dec 1993 | A |
5295694 | Levin | Mar 1994 | A |
5318448 | Garito et al. | Jun 1994 | A |
5320537 | Watson | Jun 1994 | A |
5358408 | Medina | Oct 1994 | A |
5368487 | Medina | Nov 1994 | A |
5403191 | Tuason | Apr 1995 | A |
5416129 | Chaudhary | May 1995 | A |
5425644 | Szinicz | Jun 1995 | A |
5425731 | Daniel et al. | Jun 1995 | A |
5472345 | Eggert | Dec 1995 | A |
5518406 | Waters | May 1996 | A |
5518407 | Greenfield et al. | May 1996 | A |
5520633 | Costin | May 1996 | A |
5620326 | Younker | Apr 1997 | A |
5720742 | Zacharias | Feb 1998 | A |
5722836 | Younker | Mar 1998 | A |
5727948 | Jordan | Mar 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5769640 | Jacobus et al. | Jun 1998 | A |
5775916 | Cooper et al. | Jul 1998 | A |
5785531 | Leung | Jul 1998 | A |
5800178 | Gillio | Sep 1998 | A |
5803746 | Barrie et al. | Sep 1998 | A |
5807378 | Jensen et al. | Sep 1998 | A |
5810880 | Jensen et al. | Sep 1998 | A |
5814038 | Jensen et al. | Sep 1998 | A |
5850033 | Mirzeabasov et al. | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5873732 | Hasson | Feb 1999 | A |
5873863 | Komlosi | Feb 1999 | A |
5908302 | Goldfarb | Jun 1999 | A |
5947743 | Hasson | Sep 1999 | A |
5951301 | Younker | Sep 1999 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6083008 | Yamada et al. | Jul 2000 | A |
6113395 | Hon | Sep 2000 | A |
6234804 | Yong | May 2001 | B1 |
6271278 | Park et al. | Aug 2001 | B1 |
6336812 | Cooper et al. | Jan 2002 | B1 |
6398557 | Hoballah | Jun 2002 | B1 |
6413264 | Jensen et al. | Jul 2002 | B1 |
6474993 | Grund et al. | Nov 2002 | B1 |
6485308 | Goldstein | Nov 2002 | B1 |
6488507 | Stoloff et al. | Dec 2002 | B1 |
6511325 | Lalka et al. | Jan 2003 | B1 |
6517354 | Levy | Feb 2003 | B1 |
6568941 | Goldstein | May 2003 | B1 |
6589057 | Keenan et al. | Jul 2003 | B1 |
6620174 | Jensen et al. | Sep 2003 | B2 |
6654000 | Rosenberg | Nov 2003 | B2 |
6659776 | Aumann et al. | Dec 2003 | B1 |
6773263 | Nicholls et al. | Aug 2004 | B2 |
6780016 | Toly | Aug 2004 | B1 |
6817973 | Merril et al. | Nov 2004 | B2 |
6820025 | Bachmann et al. | Nov 2004 | B2 |
6857878 | Chosack et al. | Feb 2005 | B1 |
6863536 | Fisher et al. | Mar 2005 | B1 |
6866514 | Von Roeschlaub et al. | Mar 2005 | B2 |
6887082 | Shun | May 2005 | B2 |
6929481 | Alexander et al. | Aug 2005 | B1 |
6939138 | Chosack et al. | Sep 2005 | B2 |
6950025 | Nguyen | Sep 2005 | B1 |
6997719 | Wellman et al. | Feb 2006 | B2 |
7008232 | Brassel | Mar 2006 | B2 |
7025064 | Wang et al. | Apr 2006 | B2 |
7056123 | Gregorio et al. | Jun 2006 | B2 |
7080984 | Cohen | Jul 2006 | B1 |
7118582 | Wang et al. | Oct 2006 | B1 |
7255565 | Keegan | Aug 2007 | B2 |
7269532 | David et al. | Sep 2007 | B2 |
7272766 | Sakezles | Sep 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7364582 | Lee | Apr 2008 | B2 |
7404716 | Gregorio et al. | Jul 2008 | B2 |
7419376 | Sarvazyan et al. | Sep 2008 | B2 |
7427199 | Sakezles | Sep 2008 | B2 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7465168 | Allen et al. | Dec 2008 | B2 |
7467075 | Humphries et al. | Dec 2008 | B2 |
7544062 | Hauschild et al. | Jun 2009 | B1 |
7549866 | Cohen et al. | Jun 2009 | B2 |
7553159 | Arnal et al. | Jun 2009 | B1 |
7575434 | Palakodeti | Aug 2009 | B2 |
7594815 | Toly | Sep 2009 | B2 |
7648367 | Makower et al. | Jan 2010 | B1 |
7648513 | Green et al. | Jan 2010 | B2 |
7651332 | Dupuis et al. | Jan 2010 | B2 |
7677897 | Sakezles | Mar 2010 | B2 |
7775916 | Mahoney | Aug 2010 | B1 |
7780451 | Willobee et al. | Aug 2010 | B2 |
7802990 | Korndorffer et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7806696 | Alexander et al. | Oct 2010 | B2 |
7819799 | Merril et al. | Oct 2010 | B2 |
7833018 | Alexander et al. | Nov 2010 | B2 |
7837473 | Koh | Nov 2010 | B2 |
7850454 | Toly | Dec 2010 | B2 |
7850456 | Chosack et al. | Dec 2010 | B2 |
7854612 | Frassica et al. | Dec 2010 | B2 |
7857626 | Toly | Dec 2010 | B2 |
7866983 | Hemphill et al. | Jan 2011 | B2 |
7931470 | Alexander et al. | Apr 2011 | B2 |
7931471 | Senagore et al. | Apr 2011 | B2 |
7993140 | Sakezles | Aug 2011 | B2 |
8007281 | Toly | Aug 2011 | B2 |
8007282 | Gregorio et al. | Aug 2011 | B2 |
8016818 | Ellis et al. | Sep 2011 | B2 |
8017107 | Thomas et al. | Sep 2011 | B2 |
8048088 | Green et al. | Nov 2011 | B2 |
8083691 | Goldenberg et al. | Dec 2011 | B2 |
8116847 | Gattani et al. | Feb 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8197464 | Krever et al. | Jun 2012 | B2 |
8205779 | Ma et al. | Jun 2012 | B2 |
8221129 | Parry et al. | Jul 2012 | B2 |
8297982 | Park et al. | Oct 2012 | B2 |
8308817 | Egilsson et al. | Nov 2012 | B2 |
8323028 | Matanhelia | Dec 2012 | B2 |
8323029 | Toly | Dec 2012 | B2 |
8328560 | Niblock et al. | Dec 2012 | B2 |
8342851 | Speeg et al. | Jan 2013 | B1 |
8403674 | Feygin et al. | Mar 2013 | B2 |
8403675 | Stoianovici et al. | Mar 2013 | B2 |
8403676 | Frassica et al. | Mar 2013 | B2 |
8439687 | Morriss et al. | May 2013 | B1 |
8442621 | Gorek et al. | May 2013 | B2 |
8454368 | Ault et al. | Jun 2013 | B2 |
8459094 | Yanni | Jun 2013 | B2 |
8459520 | Giordano et al. | Jun 2013 | B2 |
8460002 | Wang et al. | Jun 2013 | B2 |
8465771 | Wan et al. | Jun 2013 | B2 |
8469716 | Fedotov et al. | Jun 2013 | B2 |
8480407 | Campbell et al. | Jul 2013 | B2 |
8480408 | Ishii et al. | Jul 2013 | B2 |
8491309 | Parry et al. | Jul 2013 | B2 |
8500753 | Green et al. | Aug 2013 | B2 |
8517243 | Giordano et al. | Aug 2013 | B2 |
8521252 | Diez | Aug 2013 | B2 |
8544711 | Ma et al. | Oct 2013 | B2 |
8556635 | Toly | Oct 2013 | B2 |
8613621 | Henderickson et al. | Dec 2013 | B2 |
D699297 | Bahsooun et al. | Feb 2014 | S |
8641423 | Gumkowski | Feb 2014 | B2 |
8647125 | Johns et al. | Feb 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8708707 | Hendrickson et al. | Apr 2014 | B2 |
8764452 | Pravong et al. | Jul 2014 | B2 |
8800839 | Beetel | Aug 2014 | B2 |
8801438 | Sakezles | Aug 2014 | B2 |
8807414 | Ross et al. | Aug 2014 | B2 |
8808311 | Heinrich et al. | Aug 2014 | B2 |
8827988 | Belson et al. | Sep 2014 | B2 |
8840628 | Green et al. | Sep 2014 | B2 |
8870576 | Millon et al. | Oct 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8911238 | Forsythe | Dec 2014 | B2 |
8915742 | Hendrickson et al. | Dec 2014 | B2 |
8945095 | Blumenkranz et al. | Feb 2015 | B2 |
8961190 | Hart et al. | Feb 2015 | B2 |
8966954 | Ni et al. | Mar 2015 | B2 |
8968003 | Hendrickson et al. | Mar 2015 | B2 |
9008989 | Wilson et al. | Apr 2015 | B2 |
9026247 | White | May 2015 | B2 |
9050201 | Egilsson et al. | Jun 2015 | B2 |
9096744 | Wan et al. | Aug 2015 | B2 |
9117377 | Shim et al. | Aug 2015 | B2 |
9119572 | Gorek et al. | Sep 2015 | B2 |
9123261 | Lowe | Sep 2015 | B2 |
9129054 | Nawana et al. | Sep 2015 | B2 |
9196176 | Hager et al. | Nov 2015 | B2 |
9226799 | Lightcap et al. | Jan 2016 | B2 |
9257055 | Endo et al. | Feb 2016 | B2 |
9265587 | Vancamberg et al. | Feb 2016 | B2 |
9295468 | Heinrich et al. | Mar 2016 | B2 |
9351714 | Ross et al. | May 2016 | B2 |
9336694 | Shim et al. | Jun 2016 | B2 |
9358682 | Ruiz Morales | Jun 2016 | B2 |
9364224 | Nicholas et al. | Jun 2016 | B2 |
9364279 | Houser et al. | Jun 2016 | B2 |
9370361 | Viola et al. | Jun 2016 | B2 |
9373270 | Miyazaki | Jun 2016 | B2 |
9387276 | Sun et al. | Jul 2016 | B2 |
9427496 | Sun et al. | Aug 2016 | B2 |
9439649 | Shelton, IV et al. | Sep 2016 | B2 |
9439733 | Ha et al. | Sep 2016 | B2 |
9449532 | Black et al. | Sep 2016 | B2 |
9468438 | Baber et al. | Oct 2016 | B2 |
20010019818 | Yong | Sep 2001 | A1 |
20030031993 | Pugh | Feb 2003 | A1 |
20030091967 | Chosack et al. | May 2003 | A1 |
20030176770 | Merril et al. | Sep 2003 | A1 |
20040005423 | Dalton et al. | Jan 2004 | A1 |
20040126746 | Toly | Jul 2004 | A1 |
20040248072 | Gray et al. | Dec 2004 | A1 |
20050008997 | Herman | Jan 2005 | A1 |
20050026125 | Toly | Feb 2005 | A1 |
20050064378 | Toly | Mar 2005 | A1 |
20050084833 | Lacey et al. | Apr 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050142525 | Cotin et al. | Jun 2005 | A1 |
20050192595 | Green et al. | Sep 2005 | A1 |
20050196739 | Moriyama | Sep 2005 | A1 |
20050196740 | Moriyana | Sep 2005 | A1 |
20050214727 | Stoianovici et al. | Sep 2005 | A1 |
20060046235 | Alexander et al. | Feb 2006 | A1 |
20060252019 | Burkitt et al. | Nov 2006 | A1 |
20060275741 | Chewning et al. | Dec 2006 | A1 |
20070074584 | Talarico et al. | Apr 2007 | A1 |
20070078484 | Talarico et al. | Apr 2007 | A1 |
20070148626 | Ikeda | Jun 2007 | A1 |
20070166682 | Yarin et al. | Jul 2007 | A1 |
20070197895 | Nycz et al. | Aug 2007 | A1 |
20070225734 | Bell et al. | Sep 2007 | A1 |
20070275359 | Rotnes et al. | Nov 2007 | A1 |
20080032272 | Palakodeti | Feb 2008 | A1 |
20080032273 | Macnamara et al. | Feb 2008 | A1 |
20080052034 | David et al. | Feb 2008 | A1 |
20080064017 | Grundmeyer, III | Mar 2008 | A1 |
20080097501 | Blier | Apr 2008 | A1 |
20080108869 | Sanders et al. | May 2008 | A1 |
20080187895 | Sakezles | Aug 2008 | A1 |
20080188948 | Flatt | Aug 2008 | A1 |
20080299529 | Schaller | Dec 2008 | A1 |
20080317818 | Griffith et al. | Dec 2008 | A1 |
20090246747 | Buckman, Jr. | Jan 2009 | A1 |
20090068627 | Toly | Mar 2009 | A1 |
20090142739 | Wang et al. | Jun 2009 | A1 |
20090142741 | Ault et al. | Jun 2009 | A1 |
20090143642 | Takahashi et al. | Jun 2009 | A1 |
20090176196 | Niblock et al. | Jul 2009 | A1 |
20090187079 | Albrecht et al. | Jul 2009 | A1 |
20090298034 | Parry et al. | Dec 2009 | A1 |
20090314550 | Layton | Dec 2009 | A1 |
20100094312 | Ruiz Morales et al. | Apr 2010 | A1 |
20100099067 | Agro | Apr 2010 | A1 |
20100167248 | Ryan | Jul 2010 | A1 |
20100167249 | Ryan | Jul 2010 | A1 |
20100167250 | Ryan et al. | Jul 2010 | A1 |
20100167253 | Ryan et al. | Jul 2010 | A1 |
20100167254 | Nguyen | Jul 2010 | A1 |
20100204713 | Ruiz Morales | Aug 2010 | A1 |
20100209899 | Park | Aug 2010 | A1 |
20100248200 | Ladak | Sep 2010 | A1 |
20100258611 | Smith et al. | Oct 2010 | A1 |
20100273136 | Kandasami et al. | Oct 2010 | A1 |
20100279263 | Duryea | Nov 2010 | A1 |
20100285094 | Gupta | Nov 2010 | A1 |
20100324541 | Whitman | Dec 2010 | A1 |
20110020779 | Hannaford et al. | Jan 2011 | A1 |
20110046637 | Patel et al. | Feb 2011 | A1 |
20110046659 | Ramstein et al. | Feb 2011 | A1 |
20110087238 | Wang et al. | Apr 2011 | A1 |
20110091855 | Miyazaki | Apr 2011 | A1 |
20110137337 | van den Dool et al. | Jun 2011 | A1 |
20110200976 | Hou et al. | Aug 2011 | A1 |
20110207104 | Trotta | Aug 2011 | A1 |
20110218550 | Ma | Sep 2011 | A1 |
20110269109 | Miyazaki | Nov 2011 | A2 |
20110281251 | Mousques | Nov 2011 | A1 |
20110301620 | Di Betta et al. | Dec 2011 | A1 |
20120015337 | Hendrickson et al. | Jan 2012 | A1 |
20120015339 | Hendrickson et al. | Jan 2012 | A1 |
20120016362 | Heinrich et al. | Jan 2012 | A1 |
20120028231 | Misawa et al. | Feb 2012 | A1 |
20120045743 | Misawa et al. | Feb 2012 | A1 |
20120065632 | Shadduck | Mar 2012 | A1 |
20120082970 | Pravong | Apr 2012 | A1 |
20120115117 | Marshall | May 2012 | A1 |
20120115118 | Marshall | May 2012 | A1 |
20120116391 | Houser et al. | May 2012 | A1 |
20120148994 | Hori et al. | Jun 2012 | A1 |
20120164616 | Endo et al. | Jun 2012 | A1 |
20120165866 | Kaiser et al. | Jun 2012 | A1 |
20120172873 | Artale et al. | Jul 2012 | A1 |
20120179072 | Kegreiss | Jul 2012 | A1 |
20120202180 | Stock et al. | Aug 2012 | A1 |
20120264096 | Taylor et al. | Oct 2012 | A1 |
20120264097 | Newcott et al. | Oct 2012 | A1 |
20120282583 | Thaler et al. | Nov 2012 | A1 |
20120282584 | Millon et al. | Nov 2012 | A1 |
20120283707 | Giordano et al. | Nov 2012 | A1 |
20120308977 | Tortola | Dec 2012 | A1 |
20130087597 | Shelton, IV et al. | Apr 2013 | A1 |
20130101973 | Hoke et al. | Apr 2013 | A1 |
20130105552 | Weir et al. | May 2013 | A1 |
20130116668 | Shelton, IV et al. | May 2013 | A1 |
20130157240 | Hart et al. | Jun 2013 | A1 |
20130171288 | Harders | Jul 2013 | A1 |
20130177890 | Sakezles | Jul 2013 | A1 |
20130218166 | Elmore | Aug 2013 | A1 |
20130224709 | Riojas et al. | Aug 2013 | A1 |
20130245681 | Straehnz et al. | Sep 2013 | A1 |
20130253480 | Kimball et al. | Sep 2013 | A1 |
20130267876 | Leckenby et al. | Oct 2013 | A1 |
20130282038 | Dannaher et al. | Oct 2013 | A1 |
20130302771 | Alderete | Nov 2013 | A1 |
20130324991 | Clem et al. | Dec 2013 | A1 |
20130324999 | Price et al. | Dec 2013 | A1 |
20140011172 | Lowe | Jan 2014 | A1 |
20140017651 | Sugimoto et al. | Jan 2014 | A1 |
20140030682 | Thilenius | Jan 2014 | A1 |
20140038151 | Hart | Feb 2014 | A1 |
20140051049 | Jarc et al. | Feb 2014 | A1 |
20140072941 | Hendrickson et al. | Mar 2014 | A1 |
20140087345 | Breslin et al. | Mar 2014 | A1 |
20140087346 | Breslin et al. | Mar 2014 | A1 |
20140087347 | Tracy et al. | Mar 2014 | A1 |
20140087348 | Tracy et al. | Mar 2014 | A1 |
20140088413 | Von Bucsh et al. | Mar 2014 | A1 |
20140093852 | Poulsen et al. | Apr 2014 | A1 |
20140093854 | Poulsen et al. | Apr 2014 | A1 |
20140106328 | Loor | Apr 2014 | A1 |
20140107471 | Haider et al. | Apr 2014 | A1 |
20140170623 | Jarstad et al. | Jun 2014 | A1 |
20140186809 | Hendrickson et al. | Jul 2014 | A1 |
20140187855 | Nagale et al. | Jul 2014 | A1 |
20140200561 | Ingmanson et al. | Jul 2014 | A1 |
20140220530 | Merkle et al. | Aug 2014 | A1 |
20140242564 | Pravong et al. | Aug 2014 | A1 |
20140246479 | Baber et al. | Sep 2014 | A1 |
20140248596 | Hart et al. | Sep 2014 | A1 |
20140263538 | Leimbach et al. | Sep 2014 | A1 |
20140272878 | Shim et al. | Sep 2014 | A1 |
20140272879 | Shim et al. | Sep 2014 | A1 |
20140275795 | Little et al. | Sep 2014 | A1 |
20140275981 | Selover et al. | Sep 2014 | A1 |
20140277017 | Leimbach et al. | Sep 2014 | A1 |
20140303643 | Ha et al. | Oct 2014 | A1 |
20140303646 | Morgan et al. | Oct 2014 | A1 |
20140303660 | Boyden et al. | Oct 2014 | A1 |
20140342334 | Black et al. | Nov 2014 | A1 |
20140349266 | Choi | Nov 2014 | A1 |
20140350530 | Ross et al. | Nov 2014 | A1 |
20140357977 | Zhou | Dec 2014 | A1 |
20140370477 | Black et al. | Dec 2014 | A1 |
20140371761 | Juanpera | Dec 2014 | A1 |
20140378995 | Kumar et al. | Dec 2014 | A1 |
20150076207 | Boudreaux et al. | Mar 2015 | A1 |
20150132732 | Hart et al. | May 2015 | A1 |
20150135832 | Blumenkranz et al. | May 2015 | A1 |
20150148660 | Weiss et al. | May 2015 | A1 |
20150164598 | Blumenkranz et al. | Jun 2015 | A1 |
20150209035 | Zemlock | Jul 2015 | A1 |
20150209059 | Trees et al. | Jul 2015 | A1 |
20150209573 | Hibner et al. | Jul 2015 | A1 |
20150228206 | Shim et al. | Aug 2015 | A1 |
20150262511 | Lin et al. | Sep 2015 | A1 |
20150265431 | Egilsson et al. | Sep 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272574 | Leimbach et al. | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272581 | Leimbach et al. | Oct 2015 | A1 |
20150272583 | Leimbach et al. | Oct 2015 | A1 |
20150272604 | Chowaniec et al. | Oct 2015 | A1 |
20150332609 | Alexander | Nov 2015 | A1 |
20150358426 | Kimball et al. | Dec 2015 | A1 |
20150371560 | Lowe | Dec 2015 | A1 |
20150374378 | Giordano et al. | Dec 2015 | A1 |
20150374449 | Chowaniec et al. | Dec 2015 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160022374 | Haider et al. | Jan 2016 | A1 |
20160030240 | Gonenc et al. | Feb 2016 | A1 |
20160031091 | Popovic et al. | Feb 2016 | A1 |
20160058534 | Derwin et al. | Mar 2016 | A1 |
20160066909 | Baber et al. | Mar 2016 | A1 |
20160070436 | Thomas et al. | Mar 2016 | A1 |
20160073928 | Soper et al. | Mar 2016 | A1 |
20160074103 | Sartor | Mar 2016 | A1 |
20160098933 | Reiley et al. | Apr 2016 | A1 |
20160104394 | Miyazaki | Apr 2016 | A1 |
20160117956 | Larsson et al. | Apr 2016 | A1 |
20160125762 | Becker et al. | May 2016 | A1 |
20160133158 | Sui et al. | May 2016 | A1 |
20160140876 | Jabbour et al. | May 2016 | A1 |
20160194378 | Cass et al. | Jul 2016 | A1 |
20160199059 | Shelton, IV et al. | Jul 2016 | A1 |
20160220150 | Sharonov | Aug 2016 | A1 |
20160220314 | Huelman et al. | Aug 2016 | A1 |
20160225288 | East et al. | Aug 2016 | A1 |
20160232819 | Hofstetter et al. | Aug 2016 | A1 |
20160235494 | Shelton, IV et al. | Sep 2016 | A1 |
20160256187 | Shelton, IV et al. | Sep 2016 | A1 |
20160256229 | Morgan et al. | Sep 2016 | A1 |
20160262736 | Ross et al. | Sep 2016 | A1 |
20160262745 | Morgan et al. | Sep 2016 | A1 |
20160293055 | Hofstetter | Oct 2016 | A1 |
20160296144 | Gaddam et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2 293 585 | Dec 1998 | CA |
2421706 | Feb 2001 | CN |
2751372 | Jan 2006 | CN |
2909427 | Jun 2007 | CN |
101313842 | Dec 2008 | CN |
101528780 | Sep 2009 | CN |
201364679 | Dec 2009 | CN |
201955979 | Aug 2011 | CN |
102458496 | May 2012 | CN |
202443680 | Sep 2012 | CN |
202563792 | Nov 2012 | CN |
202601055 | Dec 2012 | CN |
202694651 | Jan 2013 | CN |
103050040 | Apr 2013 | CN |
203013103 | Jun 2013 | CN |
203038549 | Jul 2013 | CN |
203338651 | Dec 2013 | CN |
203397593 | Jan 2014 | CN |
203562128 | Apr 2014 | CN |
102596275 | Jun 2014 | CN |
103845757 | Jun 2014 | CN |
103886797 | Jun 2014 | CN |
103396562 | Jul 2015 | CN |
105194740 | Dec 2015 | CN |
105504166 | Apr 2016 | CN |
9102218 | May 1991 | DE |
41 05 892 | Aug 1992 | DE |
44 14 832 | Nov 1995 | DE |
19716341 | Sep 2000 | DE |
1 024 173 | Aug 2000 | EP |
1 609 431 | Dec 2005 | EP |
2 068 295 | Jun 2009 | EP |
2 218 570 | Aug 2010 | EP |
2 691 826 | Dec 1993 | FR |
2 917 876 | Dec 2008 | FR |
2 917 876 | Dec 2008 | FR |
2488994 | Sep 2012 | GB |
10 211160 | Aug 1998 | JP |
2001005378 | Jan 2001 | JP |
2006187566 | Jul 2006 | JP |
2009063787 | Mar 2009 | JP |
2009236963 | Oct 2009 | JP |
3162161 | Aug 2010 | JP |
2011113056 | Jun 2011 | JP |
2013127496 | Jun 2013 | JP |
101231565 | Feb 2013 | KR |
106230 | Sep 2013 | PT |
WO 199406109 | Mar 1994 | WO |
WO 1996042076 | Dec 1996 | WO |
WO 199858358 | Dec 1998 | WO |
WO 199901074 | Jan 1999 | WO |
WO 200036577 | Jun 2000 | WO |
WO200238039 | May 2002 | WO |
WO 200238039 | Jun 2002 | WO |
WO 2004032095 | Apr 2004 | WO |
WO 2004082486 | Sep 2004 | WO |
WO 2005071639 | Aug 2005 | WO |
WO 2005083653 | Sep 2005 | WO |
WO 2006083963 | Aug 2006 | WO |
WO 2007068360 | Jun 2007 | WO |
WO 2008021720 | Feb 2008 | WO |
WO 2008103383 | Aug 2008 | WO |
WO 2009000939 | Dec 2008 | WO |
WO 2009089614 | Jul 2009 | WO |
WO 2010094730 | Aug 2010 | WO |
WO 2011035410 | Mar 2011 | WO |
WO 2011046606 | Apr 2011 | WO |
WO 2011127379 | Oct 2011 | WO |
WO 2011151304 | Dec 2011 | WO |
WO 2012149606 | Nov 2012 | WO |
WO 2012168287 | Dec 2012 | WO |
WO 2012175993 | Dec 2012 | WO |
WO 2013048978 | Apr 2013 | WO |
WO 2013103956 | Jul 2013 | WO |
WO 2014022815 | Feb 2014 | WO |
WO 2014093669 | Jun 2014 | WO |
WO 2014197793 | Dec 2014 | WO |
WO 2015148817 | Oct 2015 | WO |
WO 2016138528 | Sep 2016 | WO |
WO 2016183412 | Nov 2016 | WO |
WO 2016198238 | Dec 2016 | WO |
WO 2016201085 | Dec 2016 | WO |
WO 2017031214 | Feb 2017 | WO |
WO 2017042301 | Mar 2017 | WO |
Entry |
---|
Society of Laparoendoscopic Surgeons, “Future Technology Innovation in Surgery, Space, and Business” http://www.laparoscopytoday.com/endourology/page/2/ , Figure 1B: http://laparoscopy.blogs.com/laparoscopy_today/images/6-1/6-1VlaovicPicB.jpg , Sep. 5-8, 2007, 10 pgs. |
Miyazaki Enterprises, “Miya Model Pelvic Surgery Training Model and Video,” www.miyazakienterprises, printed Jul. 1, 2016, 1 pg. |
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/059668 titled “Simulated Tissue Models and Methods” dated Apr. 26, 2016, 20 pgs. |
Australian Patent Office, Patent Examination Report No. 1 for Australian Application No. 2012358851 titled “Advanced Surgical Simulation” dated May 26, 2016, 3 pgs. |
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/032292 titled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Jul. 14, 2016, 11 pgs. |
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/018697 titled “Simulated Tissue Structures and Methods,” dated Jul. 14, 2016, 21 pgs. |
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/034591 titled “Surgical Training Model for Laparoscopic Procedures,” dated Aug. 8, 2016, 18 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/036664 titled “Hysterectomy Model”, dated Aug. 19, 2016, 15 pgs. |
3D-MED Corporation, “Validated Training Course for Laparoscopic Skills”, https://www.3-dmed.com/sites/default/files/product-additional/product-spec/Validated%20Training%20Course%20for%for%20Laparoscopic%20Skills.docx_3.pdf , printed Aug. 23, 2016, pp. 1-6. |
3D-MED Corporation, “Loops and Wire #1” https://www.3-dmed.com/product/loops-and-wire-1 , printed Aug. 23, 2016, 4 pgs. |
Barrier, et al., “A Novel and Inexpensive Vaginal Hysterectomy Simulatory,” Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, vol. 7, No. 6, Dec. 1, 2012, pp. 374-379. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/018697, entitled “Simulated Tissue Structures and Methods,” dated Aug. 31, 2017, 14 pgs. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062363, dated Jan. 22, 2014, entitled “Surgical Training Model for Laparoscopic Procedures.” |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061949, dated Feb. 17, 2014, entitled “Surgical Training Model for Laparoscopic Procedures.” |
Anonymous: Realsim Systems—LTS2000, Sep. 4, 2005, pp. 1-2, XP055096193, Retrieved from the Internet: URL:https://web.archive.org/web/2005090403; 3030/http://www.realsimsystems.com/exersizes.htm (retrieved on Jan. 14, 2014). |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062269, dated Feb. 17, 2014, entitled “Surgical Training Model for Transluminal Procedures.” |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061728 dated Oct. 18, 2013, entitled “Surgical Training Model for Laparoscopic Procedures.” |
Limps and Things, EP Guildford MATTU Hernia Trainer, http://limbsandthings.com/us/products/tep-guildford-mattu-hernia-trainer/. |
Simulab, Hernia Model, http://www.simulab.com/product/surgery/open/hernia model. |
McGill Laparoscopic Inguinal Hernia Simulator, Novel Low-Cost Simulator for Laparoscopic Inguinal Hernia Repair. |
University of Wisconsin-Madison Biomedical Engineering, Inguinal Hernia Model, http://bmedesign.engr.wisc.edu/projects/s10/hernia_model/. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/038195 titled “Hernia Model”, dated Oct. 15, 2014. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/048027 titled “First Entry Model”, dated Oct. 17, 2014. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2014/019840 dated Jul. 4, 2014 entitled “Advanced Surgical Simulation Constructions and Methods.” |
Kurashima Y et al, “A tool for training and evaluation of Laparoscopic inguinal hernia repair; the Global Operative Assessment of Laparoscopic Skills-Groin Hernia” American Journal of Surgery, Paul Hoeber, New York, NY, US vol. 201, No. 1, Jan. 1, 2011, pp. 54-61 XP027558745. |
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2013/053497 titled “Simulated Stapling and Energy Based Ligation for Surgical Training” dated Nov. 5, 2013. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2014/042998, title; Gallbladder Model, dated Jan. 7, 2015. |
The International Bureau of WIPO, International Preliminary Report on Patentability, for PCT application No. PCT/US2013/053497, titled, Simulated Stapling and Energy Based Ligation for Surgical Training, dated Feb. 12, 2015. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062363, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062269, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061557, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061728, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061949, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/020574, titled “Advanced First Entry Model for Surgical Simulation,” dated Jun. 1, 2015. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/022774, dated Jun. 11, 2015 entitled “Simulated Dissectible Tissue.” |
Anonymous: Silicone rubber—from Wikipedia, the free encyclopedia, pp. 1-6, XP055192375, Retrieved from the Internet: URL:http://en.wikipedia.org/w.index.php?title=Silicone_rubber&oldid=596456058 (retrieved on May 29, 2015). |
Lamouche, et al., “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomedical Optics Express, Jun. 1, 2012, 18 pgs., vol. 3, No. 6. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/038195, titled Hernia Model, dated Nov. 26, 2015. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/042998, titled “Gallbladder Model” dated Dec. 30, 2015. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/048027, titled “First Entry Model” dated Feb. 4, 2016. |
European Patent Office, International Search Report for International Application No. PCT/US2011/053859, dated May 4, 2012, entitled “Portable Laparoscopic Trainer”. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/60997, dated Mar. 7, 2013, entitled “Simulated Tissue Structure for Surgical Training”. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/070971, dated Mar. 18, 2013, entitled “Advanced Surgical Simulation”. |
Human Patient Simulator, Medical Education Technologies, Inc., http://www.meti.com (1999) all. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2011/053859, titled “Portable Laparoscopic Trainer” dated Apr. 2, 2013. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/070971, dated Jul. 4, 2014, entitled “Advanced Surgical Simulation Constructions and Methods”. |
International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/070971, titled “Advanced Surgical Simulation” dated Jul. 3 , 2014. |
International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/060997, titled “Simulated Tissue Structure for Surgical Training” dated Apr. 22, 2014. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/020574, entitled “Advanced First Entry Model for Surgical Simulation,” dated Sep. 22, 2016, 9 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/0043277 titled “Appendectomy Model”, dated Oct. 4, 2016, 12 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/022774, titled “Simulated Dissectible Tissue,” dated Oct. 6, 2016, 9 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/041852 titled “Simulated Dissectible Tissue”, dated Oct. 13, 2016, 12 pgs. |
European Patent Office, Examination Report for European Application No. 14733949.3 titled “Gallbladder Model,” dated Dec. 21, 2016, 6 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/062669 titled “Simulated Dissectible Tissue,” dated Apr. 5, 2017, 19 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2017/020389 titled “Simulated Tissue Cartridge”, dated May 24, 2017, 13 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2015/059668, entitled “Simulated Tissue Models and Methods,” dated May 26, 2017, 16 pgs. |
European Patent Office, Invitation to Pay Additional Fees for International Application No. PCT/US2016/062669, titled “Simulated Dissectible Tissue”, dated Feb. 10, 2017, 8 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/055148 titled “Hysterectomy Model”, dated Feb. 28, 2017, 12 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/036664, entitled “Hysterectomy Model,” dated Dec. 21, 2017, 10 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/041852, entitled “Simulated Dissectible Tissue,” dated Jan. 25, 2018, 12 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 17202365.7, titled “Gallbladder Model”, dated Jan. 31, 2018, 8 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/043277, entitled “Appendectomy Model,” dated Feb. 1, 2018, 9 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/0032292, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Nov. 23, 2017, 2017, 8 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/034591, entitled “Surgical Training Model for Laparoscopic Procedures,” dated Dec. 7, 2017, 2017, 14 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 18177751.7, titled “Portable Laparoscopic Trainer,” dated Jul. 13, 2018, 8 pgs. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/034705, entitled “Laparoscopic Training System,” dated Aug. 20, 2018, 14 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2017/020389, entitled “Simulated Tissue Cartridge,” dated Sep. 13, 2018, 8 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 18184147.9, titled “First Entry Model,” dated Nov. 7, 2018, 7 pgs. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2017/039113, entitled “Simulated Abdominal Wall,” dated Aug. 7, 2017, 13 pgs. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/018895, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated May 17, 2018, 12 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/062669, entitled “Simulated Dissectible Tissue,” dated May 31, 2018, 11 pgs. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/018036, entitled “Laparoscopic Training System,” dated Jun. 8, 2018, 13 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2017/039113, entitled “Simulated Abdominal Wall,” dated Jan. 10, 2019, 8 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 18210006.5, titled “Surgical Training Model for Laparoscopic Procedures,” dated Jan. 21, 2019, 7 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 18207214.0, titled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Mar. 28, 2019, 6 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 18216002.8, titled “Surgical Training Model for Laparoscopic Procedures,” dated Apr. 2, 2019, 6 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 18216005.1, titled “Surgical Training Model for Laparoscopic Procedures,” dated Apr. 2, 2019, 7 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 19159065.2, titled “Simulated Tissue Structures and Methods,” dated May 29, 2019, 8 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2018/018036, entitled “Laparoscopic Training System,” dated Aug. 29, 2019, 8 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2018/018895, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Sep. 6, 2019, 7 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 20153338.7, titled “Advanced Surgical Simulation Constructions and Methods,” dated Mar. 5, 2020, 7 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 19215545.5, titled “Advanced First Entry Model for Surgical Simulation,” dated Mar. 26, 2020, 8 pgs. |
European Patent Office, Extended European Search Report for European Patent Application No. EP 20158500.7, titled “Surgical Training Device,” dated May 14, 2020, 9 pgs. |
“Surgical Female Pelvic Trainer (SFPT) with Advanced Surgical Uterus,” Limbs & Things Limited, Issue 1, Jul. 31, 2003, URL:https://www.accuratesolutions.it/wp-content/uploads/2012/08/Surgical_Female_Pelvic_ Trainer_SFPT _with_Advanced_Uterus_Us er_Guide.pdf, retrieved Feb. 21, 2020, 2 pgs. |
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/055148, entitled “Hysterectomy Model,” dated Apr. 12, 2018, 12 pgs. |
Number | Date | Country | |
---|---|---|---|
20160071437 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
61549838 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13656467 | Oct 2012 | US |
Child | 14940444 | US |