Priority is claimed to Japanese Patent Application No. 2015-143140, filed Jul. 17, 2015, the entire content of which is incorporated herein by reference.
Technical Field
Certain embodiments of the invention relate to a method and a device that simulate a temporal change in a granular material.
Description of Related Art
In the related art, an individual element method has been widely applied to simulation of a temporal change in a granular material. Further, a simulation that employs molecular dynamics is performed with respect to fluidization of a granular material. As a related art technique, a method for calculating a behavior of a powder layer when oscillation is given to a thin powder layer through a molecular dynamics simulation has been proposed.
According to an aspect of the invention, there is provided a simulation method of a granular material including the steps of: defining a granular material S which is a simulation target in which a force acting on each grain is expressed by a potential dependent term depending on an interaction potential ϕ between grains and a dissipation term depending on dissipation of energy; renormalization-transforming a physical quantity included in the potential dependent term of a motion equation of each grain of the granular material S so that the form of a Hamiltonian expressed by a kinetic energy of each grain of the granular material S and a potential energy based on the interaction potential ϕ does not change; renormalization-transforming a physical quantity included in the dissipation term so that a rate of change of the potential dependent term and a rate of change of the dissipation term based on the renormalization transformation of the physical quantities become equal to each other; and calculating temporal development of a renormalized granular material S′ by assigning initial values to a position vector and a momentum vector of each grain of the renormalized particulate S′ and by performing numerical integration with respect to a motion equation of each grain with a certain time interval width based on the renormalized physical quantities.
According to another aspect of the invention, there is provided a simulation device that simulates temporal development of a granular material S which is a simulation target in which a force acting on each grain is expressed by a potential dependent term depending on an interaction potential ϕ between grains and a dissipation term depending on dissipation of energy, the simulation device including: an input unit; an output unit; and a processing unit, in which the processing unit renormalization-transforms, with respect to physical quantities that define the granular material S input through the input unit, the physical quantity included in the potential dependent term of a motion equation of each grain of the granular material S so that the form of a Hamiltonian expressed by a kinetic energy of each grain of the granular material S and a potential energy based on the interaction potential ϕ does not change, renormalization-transforms the physical quantity included in the dissipation term so that a rate of change of the potential dependent term and a rate of change of the dissipation term based on the renormalization transformation of the physical quantities become equal to each other, calculates temporal development of a renormalized granular material S′ by performing numerical integration with respect to a motion equation of each grain with a certain time interval width based on the renormalized physical quantities, and outputs the temporal development of the renormalized granular material S′ to the output unit.
If the number of grains of a granular material which is a simulation target increases, a calculation time when simulating a macroscopic behavior becomes very long. In the related art, a renormalization group molecular dynamics method for performing renormalization group transformation with respect to a Hamiltonian capable of reducing the number of grains while maintaining the form of the Hamiltonian without change is known. If the form of the Hamiltonian does not change in the renormalization group transformation, this means that a resolution of a renormalized granular material decreases but a behavior of the renormalized granular material becomes similar to a behavior of an original granular material.
A force acting between grains applied to the molecular dynamics simulation disclosed in the related art depends on an inter-grain interaction potential. On the other hand, in a particular dynamics simulation, a force acting between grains is expressed by a term depending on an inter-grain interaction potential and a term indicating dissipation of energy. Since the force acting between grains includes the term indicating the dissipation of energy, in a case where the renormalization group transformation disclosed in the related art is applied to the particular dynamics simulation, it is not possible to secure similarity between behaviors of granular materials.
It is desirable to provide a granular material simulation method capable of reducing a calculation time of a particular dynamics simulation. Further, it is desirable to provide a granular material simulation device capable of reducing a calculation time of a particular dynamics simulation.
Since the renormalization transformation of the physical quantities included in the dissipation term is performed so that the rate of change of the potential dependent term and the rate of change of the dissipation term based on the renormalization transformation of the physical quantities become equal to each other, it is possible to simulate temporal development of a granular material including a dissipation term. Here, since the form of the Hamiltonian expressed by the kinetic energy of each grain of the granular material S and the potential energy based on the interaction potential ϕ of the granular material S does not change due to the renormalization transformation, the temporal development of the granular material S which is the simulation target and the temporal development of the renormalized granular material S are similar to each other.
Before description of a simulation method according to an embodiment, molecular dynamics applied in the simulation method according to the embodiment will be briefly described. A force Fj acting on a grain j of a granular material S which is a simulation target configured by the number of grains N is expressed as the following equation.
Here, ϕ represents an interaction potential between grains, a vector qj represents a position vector (coordinate) of the grain j, a vector vj represents a velocity vector of the grain j, and c represents an attenuation coefficient. Σ means adding up with respect to grains which are in contact with the grain j. The first term in square brackets on the right side of Equation (1) is a potential dependent term depending on the interaction potential ϕ between grains, and the second term is a dissipation term depending on dissipation of energy. The dissipation term is expressed as a product of the attenuation coefficient c and a relative velocity of two interacting grains.
A motion equation of the grain j is obtained from the above-described Equation (1). By performing numerically integration of the motion equation with respect to each grain, temporal changes in a position vector qj and a momentum vector pj of each grain are calculated.
The interaction potential ϕ is expressed as a product εf of a non-dimensional function f depending on an inter-grain distance r and an interaction coefficient ε having a dimension of energy. The interaction potential ϕ is given as the following equation, for example.
Here, r represents an inter-grain distance, and σ represents a parameter characterizing a granular material S. The first term and the second term in the square brackets of the interaction potential ϕ when satisfying r<r0 in Equation (2) correspond to the Lennard-Jones potential. ¼ of the third term is a constant for smoothly connecting the interaction potential ϕ when r=r0.
Next, a simulation method according to the embodiment will be described with reference to
In step 11, the physical quantities included in the potential dependent term of the motion equation of each grain of the granular material S are renormalization-transformed so that the form of a Hamiltonian expressed by a kinetic energy of each grain of the granular material S and potential energy based on the interaction potential ϕ does not change. The renormalization transformation law is disclosed in the related art. If the form of the Hamiltonian does not change, this means that a motion of a granular material before renormalization and a motion of a granular material after renormalization are similar to each other.
For example, the number of grains N′ of the renormalized granular material S′, a mass m′ of each grain, a position vector q′ of each grain, and a momentum vector p′ thereof are calculated by the following renormalization transformation law.
Here, d represents a dimensionality of a space where the granular material S is included, and α represents a renormalization factor depending on the number of renormalizations. When the number of renormalizations is n, the renormalization factor α is expressed as the following equation.
α=2n (4)
The interaction potential ϕ applied to the granular material S′ renormalized by the renormalization transformation law of Equation (3) is the same as the interaction potential ϕ of the granular material S which is the simulation target. For example, before and after renormalization transformation, the interaction coefficient ε and the parameter σ included in Equation (2) do not change. If the interaction potential ϕ does not change, this means that an inter-grain distance when the original granular material S is in a stable state and an inter-grain distance when the renormalized granular material S′ is in a stable state are the same. Thus, a macroscopic dimension of the renormalized granular material S′ is reduced to 1/α times a macroscopic dimension of the original granular material S.
Then, in step 12, renormalization transformation is performed with respect to the physical quantities included in the dissipation term, specifically, with respect to the attenuation coefficient c and the velocity v so that a rate of change of the potential dependant term and a rate of change of the dissipation term based on the renormalization transformation of the physical quantities become equal to each other. Hereinafter, the renormalization transformation law of the physical quantities included in the dissipation term will be described.
Since the interaction potential ϕ does not change by the renormalization transformation, the potential dependent term of the motion equation does not change. That is, the rate of change of the potential dependent term based on the renormalization transformation of the physical quantities is 1. As shown in Equation (1), the dissipation term of the motion equation is expressed as the product of the attenuation coefficient c and the velocity v. As shown in Equation (3), due to the renormalization transformation, the size of the momentum vector p becomes α times, and the mass m becomes α2. Since the velocity v is equal to p/m, the velocity v becomes 1/α due to the renormalization transformation. In order to prevent the dissipation term expressed as the product of the attenuation coefficient c and the velocity v from changing due to the renormalization transformation, the following renormalization transformation law may be applied between the attenuation coefficient c of the granular material S and an attenuation coefficient c′ of the renormalized granular material S′.
Then, in step 13, temporal development of the renormalized granular material S′ is simulated based on the physical quantities renormalized in step 11 and step 12. Specifically, initial values of the position vector q and the momentum vector p of each grain of the granular material S′ are set. Numerical integration is performed with respect to a motion equation of each grain with a certain time interval width based on the renormalized physical quantities. Temporal changes in the position vector q and the momentum vector p of each grain are calculated by the above-mentioned numerical integration.
Then, in step 14, a simulation result is output. As the simulation result, the position of a grain at each time point may be displayed as an image, for example. Alternatively, a macroscopic appearance of the granular material S′ may be displayed as an image.
A simulation device 20 includes a reading unit 21, a processing unit 22, an input unit 23, a storage unit 24, and an output unit 25. A program for causing the simulation device 20 to execute the simulation method shown in
The reading unit 21 reads the program recorded on the recording medium 30. The read program is stored in the storage unit 24, for example, and is executed by the processing unit 22. Hereinafter, a specific procedure in steps 10 to 14 shown in
In step 10 (
In step 11 (
In step 13, the processing unit 22 executes a simulation with respect to the renormalized granular material S′. In step 14, the processing unit 22 outputs a simulation result to the output unit 25.
Next, a simulation result using the method according to the embodiment and a simulation result without performing renormalization transformation will be described with reference to
Renormalization transformation is performed once with respect to the physical quantities included in the motion equation of each grain of the granular material S which is the simulation target. That is, the number of renormalization transformation n is 1, and the renormalization factor α is 2. The number of grains of the granular material S which is the simulation target is about 170,000, and the number of grains of the renormalized granular material S′ is about 21,000. At a starting time of the simulation, the virtual walls 40 are removed, and then, temporal development of the granular material S and S′ are calculated through simulations. At time points when the granular materials S and S′ reach a normal state, the simulations are terminated.
A calculation time necessary for the simulation of the granular material S shown in
Next, a simulation method according to another embodiment will be described with reference to
In the embodiment shown in
Hereinafter, a renormalization transformation law applied in this embodiment will be described. The interaction potential ϕ applied to the granular material S which is the simulation target is defined by the following equation using a non-dimensional function f depending on an inter-grain distance r and an interaction coefficient ε.
The Equation (2) may be rewritten as follows.
Accordingly, the interaction potential ϕ expressed by Equation (2) is also included in the interaction potential ϕ shown in Equation (6). Thus, the granular material S of which the interaction potential is expressed by Equation (2) may also be handled in this embodiment.
As the physical quantities characterizing the granular material S defined in step 10 (
In step 11 (
The interaction potential ϕ′ of the renormalized granular material S′ may be expressed as the following equation. The form of the non-dimensional function f does not change.
A Hamiltonian H′ of the renormalized granular material S′ may be expressed as the following equation, as described later in detail. The form of the Hamiltonian does not change due to the renormalization transformation.
By applying the renormalization transformation law of Equation (8), the number of grains becomes 1/αd times, and the mass of a grain becomes ad times. Thus, the entire mass of the granular material S and the entire mass of the granular material S′ are the same. Further, the parameter r0, that is, the inter-grain distance in a stable state becomes α times. Thus, the macroscopic dimension of the granular material S and the macroscopic dimension of the renormalized granular material S′ are the same. Since the entire mass of the granular material and the dimension thereof do not change before and after the renormalization transformation process, the density of the granular material does not also change.
Next, renormalization transformation of a physical quantity included in the dissipation term performed in step 12 (
Here, Df is defined as the following equation.
A potential dependent term of a motion equation of each grain included in the renormalized granular material S′ is changed into the following equation.
The following equation is derived from Equation (11) and Equation (13).
From Equation (14), it can be understood that the potential dependent term becomes α(d-1) times by the renormalization transformation.
From the renormalization transformation law of the mass m of Equation (8) and the renormalization transformation law of the momentum of Equation (10), it can be understood that the velocity v does not change by the renormalization transformation. Since the velocity v included in the dissipation term of Equation (1) does not change, in order to set the dissipation term to become α(d-1) times, the renormalization transformation law for transforming the attenuation coefficient c of the granular material S to the attenuation coefficient c′ of the granular material S′ may be defined as the following equation.
c′=c·αd−1 (15)
Processes of step 13 and step 14 (
Next, derivation of the Hamiltonian H′ (Equation 10) of the renormalized granular material S′ will be described with reference to
The partition function Z(β) with respect to a canonical ensemble having a constant number of grains is expressed as the following equation.
Here, dΓN represents a volume element in a phase space, which is expressed as the following equation.
Here, h represents a Planck constant. WN is determined so that an intrinsic quantal sum of all states and integration over the phase space match each other.
First, coarse graining of an interaction potential between grains will be described, and then, coarse graining of a kinetic energy will be described. Subsequently, the renormalization transformation law is defined based on the coarse graining of the interaction potential and the coarse graining of the kinetic energy.
Coarse Graining of Interaction Potential Between Grains
First, coarse graining of an interaction potential in a granular material where grains are arranged in a one-dimensional chain pattern will be described. Then, an interaction potential in a granular material where grains are arranged in a simple cubic lattice pattern will be described.
As shown in
An interaction potential ϕ Tilda in which the contribution from the next-nearest or more distant grain is reflected may be expressed as the following equation.
{tilde over (ϕ)}(r)=ϕ(r)+ϕ(r+a)+ϕ(r+2a)+●●● (18)
Here, a represents an inter-grain distance in an equilibrium state. The inter-grain distance a in the equilibrium state may be approximated to be equal to the distance r0 where the interaction potential ϕ becomes a minimum.
Since plural grains are arranged in a one-dimensional pattern, the position vector qj of the grain j may be expressed as a one-dimensional coordinate. If the position of the grain j is expressed as qj, a cage potential made by a nearest grain with respect to the grain j is expressed as the following equation.
If integration is executed with respect to qj, the following equation is obtained using Equation (19).
∫q
Here, ra represents the diameter of a grain, and z (qi−qk) and P (qi−qk) are expressed as the following equations.
An integration region is limited to an inner region of the cage potential.
Then, z (qi−qk) is specifically calculated. In a case where the interaction potential ϕ is the Lennard-Jones type potential, ϕ(2n) is expressed as the following equation.
In a case where the interaction potential ϕ is the Morse potential, ϕ(2n) is expressed as the following equation.
Numerical integration is performed by substituting Equation (23) or Equation (24) in Equation (22). When substituting Equation (23) or Equation (24) in Equation (22), Equation (18) is used. In the numerical integration, it is assumed that “a” which appears in an integration range of Equation (22) is approximately equal to r0.
In both cases where the interaction potential ϕ is the Lennard-Jones type potential and where the interaction potential ϕ is the Morse potential, it can be understood that a change in z(qi−qk)z(qk−qm) is smoother than a change in P(qi−qk)P(qk−qm). Thus, z (qi−qk) z (qk−qm) may be nearly approximated as a constant with respect to P(qi−qk)P(qk−qm).
A probability p(qk) that the grain k is present in the position coordinate qk may be approximated as follows.
Accordingly, the following equation is derived.
Hereinbefore, coarse graining of an interaction potential of a granular material in which plural grains are arranged in a one-dimensional pattern is described. An interaction potential of a multi-dimensional granular material may be realized by a potential moving method.
A potential moving method for returning a two-dimensional lattice to a one-dimensional lattice will be described with reference to
As shown in
As shown in
As shown in
Coarse graining of an interaction potential of a granular material that forms a multi-dimensional (dimensionality d) lattice is expressed as the following equation.
Here, <i, j> means that a sum is taken between nearest-neighbor lattices.
If Equation (27) is changed with respect to the sum of all interactions, the following equation is obtained.
Coarse Graining of Kinetic Energy
Next, coarse graining of a kinetic energy will be described. Integration may be easily executed with respect to the kinetic energy, and accordingly, the following equation is derived.
In derivation of Equation (29), the following equation is used. Here, a momentum vector pj2 means an inner product of the vector.
Derivation of Renormalization Transformation Law
Next, a renormalization transformation law derived from coarse graining of an interaction potential and coarse graining of a kinetic energy will be described.
By substituting Equation (28) and Equation (29) in Equation (16) to eliminate coefficients which do not affect a result, the following equation is obtained.
From Equation (31), a Hamiltonian H′ (Hamiltonian of the renormalized granular material S′) which is subject to coarse graining is expressed as the following equation.
A list of coupling constants when performing coarse graining of the Hamiltonian is represented as K. The list K of the coupling constants is expressed as follows.
K=(m,ε,σ,r0) (33)
The renormalization transformation R is defined as follows.
K′=R(K)=(2dm,2dε,2σ,2r0) (34)
A list Kn of coupling coefficients after renormalization transformation is executed n times is expressed as the following equation.
Kn=R∘ . . . ∘R(K)=(αdm, αdε, ασ, αr0)
α=2n (35)
Accordingly, a Hamiltonian Hn after renormalization transformation is performed n times is expressed as the following equation.
Here, the momentum vector pj′ in the renormalized granular material S′ is expressed as the following equation.
{right arrow over (p)}′j=αd{right arrow over (p)}j (37)
The renormalization transformation law shown in Equation (8) and the Hamiltonian H′ of the renormalized granular material S′ shown in Equation (10) are derived from Equation (36).
In this embodiment, similarly, the form of a Hamiltonian expressed by a kinetic energy of each grain of the renormalized granular material S′ and potential energy based on an interaction potential ϕ is the same as the form of a Hamiltonian of the granular material S before renormalization. Thus, in this embodiment, in a similar way to the embodiment shown in
It should be understood that the invention is not limited to the above-described embodiment, but may be modified into various forms on the basis of the spirit of the invention. Additionally, the modifications are included in the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2015-143140 | Jul 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
9309861 | Gaul | Apr 2016 | B1 |
9315663 | Appleby | Apr 2016 | B2 |
Number | Date | Country |
---|---|---|
2 369 514 | Sep 2011 | EP |
4666357 | Apr 2011 | JP |
2011-221868 | Nov 2011 | JP |
Entry |
---|
Mervyn S. Paterson, A theory for granular flow accommodated by material transfer via an intergranular fluid, 1995. |
Herrmann, “Molecular Dynamics Simulations of Granular Materials,” International Journal of Modern Physics C., ISSN: 0129-1831, DOI: 10.1142/S012918319300032X, vol. 4, No. 2, pp. 309-316, Apr. 1, 1993. |
Extended Search Report issued in European Patent Application No. 16176728.0, dated Jan. 3, 2017. |
Keiko M. Aoki et al., “Spontaneous Wave Pattern Formation in Vibrated Granular Materials”, Physical Review Letters, Nov. 11, 1996, pp. 4166-4169 (4 sheets), vol. 77, No. 20, American Physical Society, USA. |
Number | Date | Country | |
---|---|---|---|
20170017737 A1 | Jan 2017 | US |