The present application claims priority from Japanese Patent Application JP 2021-089867 filed on May 28, 2021, the content of which are hereby incorporated by references into this application.
The present invention relates to a technique for identifying connection relations between part elements constituting a device that is indicated by structural model data of three-dimensional CAD used for design or the like. In particular, the invention relates to a technique for generating a simulation model using the identified connection relations.
JP-A-2019-016180 has been proposed as a technique for grasping connection relations between part elements in a device. In JP-A-2019-016180, an object is to “check a fixed state between parts that are in contact with each other”.
In order to achieve this object, JP-A-2019-016180 discloses that “among a plurality of parts constituting a product represented by three-dimensional CAD, one of the parts that are in contact with each other is set as a contacted part, and the other is set as a contact part. A contacted surface in the contacted part with which the contact part is in contact is identified. A contact part identification unit 14 identifies a contact part that is in contact with the contacted surface. A fixed state determination unit 15 moves the contact part identified by the contact part identification unit in a plurality of directions along the contacted surface and in a direction orthogonal to the contacted surface, and determines a fixed state of the contact part with respect to the contacted part based on whether the contact part is in contact with a portion other than the contact part. A display control unit 16 executes control such that an image of the product is displayed on a display unit in a display mode according to the fixed state determined by the fixed state determination unit”.
Here, for design, verification is executed by simulation or the like. The design includes devices related to distribution and manufacturing, a system implemented by a combination of the devices, and a process using the devices and the system. In such verification, it is required to execute detailed verification at an earlier stage before trial production from the viewpoint of shortening a manufacturing period of the design. However, when a simulation model is manually constructed, it takes more time.
Therefore, for such verification, it is conceivable to grasp the connection relations of the part elements using the technique described in JP-A-2019-016180. Here, JP-A-2019-016180 discloses that a fixed state of a designated part is automatically extracted by detecting a part that is in contact when the designated part is moved in a predetermined direction.
However, in JP-A-2019-016180, only the fixed state between the part elements can be grasped, and it is difficult to execute verification more practically.
An object of the invention is to identify connection relations between part elements in more detail and enable verification of a device or the like.
The above problem is solved by inventions described in the claims as an example.
According to the invention, the connection relations between the part elements in the device can be identified in more detail, and the verification of the device or the like can be executed accurately.
Hereinafter, embodiments of the invention will be described. In the present embodiment, descriptions will be given using an example in which a simulation model is generated by identifying, as structure model data, connection relations using 3D CAD information for design.
First, a configuration according to the present embodiment will be described.
First, the 3D CAD information input unit 1801 receives an input of the 3D CAD information. The 3D CAD information is design information of a device (component) to be verified, and is information on a shape and a size of the component and a provision position of a part constituting the component.
It is assumed that the 3D CAD information is stored in a storage unit (not shown) of the simulation model generation device 18 or a storage unit of another device. Thus, the 3D CAD information input unit 1801 has an interface function.
Next, the component analysis unit 1802 analyzes the input 3D CAD information and decomposes the 3D CAD information into part elements constituting the component. The part elements include a module that is a combination of a component itself, part elements, and parts, and can also be expressed as components.
Next, the shared rotation axis determination unit 1803 determines presence or absence of a shared rotation axis between the part elements analyzed by the component analysis unit 1802. More specifically, the shared rotation axis determination unit 1803 executes processing of determining presence or absence of a circle sharing a center between the part elements. This processing is step S102 in
Next, the contact surface number determination unit 1804 determines the number of contact surfaces between the part elements. That is, the contact surface number determination unit 1804 counts the number of the contact surfaces. More specifically, step S103 in
Next, the connection relation identification unit 1805 identifies the connection relations between the part elements based on the information on the number of the contact surfaces between the part elements and presence or absence of a common rotation circle. The connection relations include “non-contact”, “fixation”, “slide”, and “rotation”, and the connection relation identification unit 1805 identifies which of “non-contact”, “fixation”, “slide”, and “rotation” the connection relation is. Specifically, processing in steps S105 to S109 in
Next, the operation mechanism analysis unit 1806 analyzes an operation mechanism based on the connection relations. That is, what kind of operation a target component performs is identified. This identification also includes identification of an operation mechanism such as a link mechanism or a crank mechanism. The processing executes step S111 in
Next, the input and output unit 1807 presents information to the user and inputs information from the user. Therefore, the input and output unit 1807 may be implemented by a display device such as a display and an input device such as a keyboard or a mouse, or may be implemented by a configuration such as a touch panel. In addition, the input and output unit 1807 may be provided in the simulation model generation device 18, or may be implemented as another independent terminal device. The input and output unit 1807 executes a user interface shown in a flowchart in
The simulation model generation device 18 can be implemented by a so-called computer. Therefore, the component analysis unit 1802 to the operation mechanism analysis unit 1806 may be implemented by computer programs, Or may be implemented by dedicated hardware, a field programmable gate array (FPGA), or the like. The computer programs are stored in a storage medium or distributed to the simulation model generation device 18 through a network.
Next, in the present embodiment, a configuration example in which the simulation model generation device 18 is implemented by a server such as a so-called cloud is shown in
Here, the simulation model generation device 18 is implemented by a computer, and includes a processing unit 181, a storage unit 182, and an interface unit 183, which are connected to one another via the bus 1808.
Here, the processing unit 181 is implemented by a processor such as a so-called CPU. Further, the processing unit 181 executes processing by the component analysis unit 1802 to the operation mechanism analysis unit 1806. Therefore, the processing unit 181 may include the component analysis unit 1802 to the operation mechanism analysis unit 1806, or may execute processing according to the corresponding computer programs stored in the storage unit 182.
The storage unit 182 stores the information and the computer programs. Therefore, the storage unit 182 can be implemented by a memory, an HDD, an SDD, or the like. In the present embodiment, the 3D CAD information is held in the 3D CAD system 19, and the 3D CAD information may be held in the storage unit 182.
The interface unit 183 executes a function of connecting to the network 20 and the terminal device 1807-1, and corresponds to the 3D CAD information input unit 1801 in
Here, the terminal devices 1807-1 to 1807-3 correspond to the input and output unit 1807 in
Further, the 3D CAD system 19 designs components according to an operation on the terminal devices 1807-1 to 1807-3 or an input device provided in the 3D CAD system 19.
The 3D CAD system 19 stores the 3D CAD information that is design information created as a result of the design. The 3D CAD information can be acquired by the simulation model generation device 18 via the interface unit 183. The above concludes the description of the configuration according to the present embodiment.
Next, a processing flow according to the present embodiment will be described.
First, in step S101, the present processing flow is started. Therefore, it is desirable that, as a condition, the input and output unit 1807 receives an instruction to start processing from the user. At this time, the 3D CAD information input unit 1801 acquires the 3D CAD information of the target component. Here, it is desirable that the input and output unit 1807 receives an instruction to identify the target component from the user, and the 3D CAD information input unit 1801 acquires the 3D CAD information corresponding to the instruction.
As preparation for the following processing, the component analysis unit 1802 may decompose the component indicated by the acquired 3D CAD information into part elements. The 3D CAD system 19 may store, as the 3D CAD information, the information decomposed into the part elements.
Next, in step S102, the shared rotation axis determination unit 1803 determines whether a circle sharing the center is present between the part elements constituting the component. Therefore, the shared rotation axis determination unit 1803 extracts the part elements and creates a combination thereof. Then, the shared rotation axis determination unit 1803 determines presence or absence of each combination of the part elements. This step and steps S103 to S109 are executed for each part element. When it is determined in the determination processing that no circle sharing the center is present (No), the processing proceeds to step S103. In addition, when it is determined that a circle is present (Yes), the processing proceeds to step S104.
Here, details of step S102 will be described using a specific example shown in
Then, in step S103, the contact surface number determination unit 1804 executes processing of determining the number of the contact surfaces between the part elements constituting the component. That is, the contact surface number determination unit 1804 counts the number of the contact surfaces. As a result, when the number of the contact surfaces is 0, the processing proceeds to step S105. When the number of the contact surfaces is 1 or 3, the processing proceeds to step S106. Further, when the number of the contact surfaces is 2, the processing proceeds to step S107. The contact surface number determination unit 1804 may determine that the number of the contact surfaces is “0”, an “odd number”, or an “even number”. In this case, when the number of the contact surfaces is “0”, the processing proceeds to step S105, when the number of the contact surfaces is an “odd number”, the processing proceeds to step S106, and when the number of the contact surfaces is an “even number”, the processing proceeds to S107.
In step S104, the shared rotation axis determination unit 1803 determines, that is, counts the number of shared axes of the circle to be shared. As a result, when it is determined that the number of the shared axes is less than two, that is, one (No), the processing proceeds to step S109. When it is determined that the number of the shared axes is two or more (Yes), the processing proceeds to step S107.
Further, in step S107, the connection relation identification unit 1805 determines whether a slide movable range is equal to or greater than a predetermined threshold value. This is because, when the number of the contact surfaces is 2, slide is possible in a direction in which no contact surface is present, and when two or more shared axes are present, rotation is not possible and slide is possible in a direction corresponding to the rotation axis. Here, even when the slide is microscopically performed, if an amount of the slide is small, it can be determined that the connection relation is fixation, and thus step S107 is executed.
Based on results of the above processing, processing of identifying the connection relations is executed in steps S105 to S109. Steps S104 and S107 may be omitted, and the processing of identifying the connection relations in steps S105 to S109 may be executed based on the “presence or absence of the shared rotation axis (step S102)” and the “number of contact surfaces (step S103)”. In this case, when a circle to be shared is present in step S102, the processing proceeds to step S109. When it is determined in step S103 that the number of the contact surfaces is 2, the processing proceeds to step S108.
Next, the connection relation identification unit 1805 determines in step S105 that the connection relations between the target part elements are “non-contact”. In the case of 0, it is determined that the connection relations are non-contact. The determination is executed by the connection relation identification unit 1805 based on the fact that no circle sharing the center is present and the number of the contact surfaces is 0.
The connection relation identification unit 1805 determines in step S106 that the connection relation is fixation because it is determined that the slide movable range is less than the predetermined threshold value or the number of the contact surfaces is 1 to 3.
The connection relation identification unit 1805 determines in step S108 that the connection relation is slide because it is determined that the slide movable range is equal to or greater than the predetermined threshold value.
Further, the connection relation identification unit 1805 determines in step S109 that the connection relation is rotation because it is determined that one shared rotation axis is present.
Here, details of the determination of the connection relation will be described with reference to
First, as shown in
As shown in
As described above, according to the present embodiment, it is possible to automatically obtain the connection relations between the part elements constituting the component based on the number of the contact surfaces of the part elements of the 3D polygon.
Here, in the determination of the connection relation, the number of contact surfaces is determined (see
The contact surface number determination unit 1804 executes collision determination between triangular polygons indicating the part elements present in the same plane in
Next, returning to
Next, in step S111, the operation mechanism analysis unit 1806 analyzes the operation mechanism. As a result, the operation mechanism analysis unit 1806 identifies an operation mechanism including the part elements constituting the component. Further, the operation mechanism analysis unit 1806 outputs the identified operation mechanism via the input and output unit 1807.
As described above, the simulation model is generated. Then, in step S112, the present processing flow is ended.
As described above, according to the present embodiment, the processing of determining the number of the contact surfaces between the part elements and the number of circles sharing the center is automatically executed on a component including a plurality of part elements. Accordingly, it is possible to automatically extract operation mechanism information necessary for simulation from 3D CAD information, that is, design information of the component including a plurality of part elements. Therefore, it is possible to automatically generate the simulation model based on the 3D CAD information. The 3D CAD information is used in the present embodiment. Alternatively, device information including other design information and shapes may be used.
In the present embodiment, the processing is ended in step S112. Alternatively, the operation mechanism analysis unit 1806 may execute simulation (verification) according to the designation of the user from the input and output unit 1807. At this time, the operation mechanism analysis unit 1806 executes simulation using the connection relation and the operation mechanism.
As described above, the description of the processing flow according to the present embodiment is completed. Next, examples according to the present embodiment will be described.
Generation of the simulation model according to the present embodiment described above will be described using examples. First, as a first example, a component 1 will be described.
First,
Next,
Next, a connection relation table showing the connection relations identified by the connection relation identification unit 1805 will be described with reference to
First, since the number of the contact surfaces between the slide 1 (504) and the body (501) is 2 and a stroke length is not particularly small, the connection relation is slide. Here, “short” means that the stroke length is smaller than a preset threshold value.
Since the number of the contact surfaces between the cable (502) and the body (501) is 3, the connection relation is fixation. Since the number of the contact surfaces between the cable (502) and the slide 1 (504) is 3, the connection relation is fixation. Since the number of the contact surfaces between the motor (503) and the body (501) is 1, the connection relation is fixation. Since the number of the contact surfaces between the motor (503) and the slide (504) and between the motor (503) and the cable (502) is 0, the connection relation is non-contact. Since the number of the contact surfaces between the Y robot (505) and the body (501) is 0, the connection relation is non-contact. Since the number of the contact surfaces between the Y robot (505) and the slide 1 (504) is 1, the connection relation is fixation. Since the number of the contact surfaces between the Y robot (505) and the cable (502) and between the Y robot (505) and the motor (503) is 0, the connection relation is non-contact. Since the number of the contact surfaces between the slide 2 (506) and the body (501), between the slide 2 (506) and the slide 1 (504), between the slide 2 (506) and the cable (502), and between the slide 2 (506) and the motor (503) is 0, the connection relation is non-contact. Since the number of the contact surfaces between the slide 2 (506) and the Y robot (505) is 2 and the stroke length is not particularly small, the connection relation is slide.
As described above, the connection relation identification unit 1805 identifies the connection relations between the part elements and stores the connection relations in the connection relation table in the storage unit 182.
As described above, in the present embodiment, for the component 1 shown in
Next, the processing executed by the operation mechanism analysis unit 1806 for the component 1 will be described.
First, the operation mechanism analysis unit 1806 extracts, among the part elements of the component 1, the body (501) as the uppermost part of the tree. Therefore, it is desirable to receive designation of the uppermost part element from the user via the input and output unit 1807. Alternatively, the operation mechanism analysis unit 1806 extracts the uppermost part element according to a predetermined rule.
Next, the operation mechanism analysis unit 1806 extracts part elements connected to the body (501) from the connection relation table. That is, a part element having a connection relation other than non-contact with the body (501) is extracted. In this example, the operation mechanism analysis unit 1806 extracts the cable (502), the motor (503), and the slide 1 (504). Further, the operation mechanism analysis unit 1806 identifies the connection relations between the extracted part elements and the uppermost part element based on the connection relation table. That is, the cable (502) is connected to the body (501) by fixing (911). The motor (503) is connected to the body (501) by fixing (912). In addition, the slide 1 (504) is connected to the body (501) by sliding in the X axis direction (914) (the axial direction is shown in
Next, the operation mechanism analysis unit 1806 extracts, from the connection relation table, the extracted part elements and part elements connected to parts other than the uppermost part. As described above, the part elements in the connection relations other than non-contact are also extracted here. Accordingly, the operation mechanism analysis unit 1806 identifies the connection relation with a second layer of the tree diagram. Specifically, the operation mechanism analysis unit 1806 extracts the slide 1 (504) connected to the cable (502). Then, the operation mechanism analysis unit 1806 identifies that the connection relation between the cable (502) and the slide 1 (504) is fixation (913) based on the connection relation table.
The operation mechanism analysis unit 1806 identifies the slide 1 (504) as the third layer of the tree diagram. Further, among the part elements connected to the slide 1 (504), part configurations other than the body (501) and the cable (502) for which connection is identified are identified. Specifically, the Y robot (505) is identified. Then, the operation mechanism analysis unit 1806 identifies the connection relation between the slide 1 (504) and the Y robot (505) as fixation (915) based on the connection relation table.
Hereinafter, in the same manner, as the fourth layer, the slide 2 (506) is identified as a part element having a connection relation with the Y robot (505), and the connection relation thereof is also identified as slide in the Y axis direction (916) (the axial direction is shown in
Further, the operation mechanism analysis unit 1806 determines that the slide 2 (506) is the lowermost layer based on the table of the number of the contact surfaces and the connection relation table. Thus, the operation mechanism analysis unit 1806 creates the tree diagram shown in
Here, the operation mechanism analysis unit 1806 analyzes the loop shown in the tree diagram, and detects the following contradiction. The cable (502) is fixed to both of the body (501) and the slide 1 (954), but the relation between the body (501) and the slide 1 (504) is slide, which causes a contradiction.
Here, in order to solve this contradiction, it is necessary to change the slide in the X axis direction (914) to fixation, or to cut the fixation (913) or the fixation (911) and change the fixation (913) or the fixation (911) to non-contact. To cope with this, the following correspondences (1) to (3) can be achieved.
When the tree diagram is created, regarding the slide (914) in the X axis direction, it is checked that in the processing of determining the stroke length in step S107, the stroke length is equal to or greater than a predetermined threshold value. Therefore, the operation mechanism analysis unit 1806 determines to cut the fixation (913) or the fixation (911). Then, the operation mechanism analysis unit 1806 gives priority to the upper side of the tree diagram between the fixation (913) and the fixation (911). That is, the operation mechanism analysis unit 1806 cuts the fixation (913) farther from the uppermost body (501). As a result, as shown in
In this correspondence, the operation mechanism analysis unit 1806 may identify the portion between the fixation (913) and the slide 1 (504) as a first candidate for cutting. Then, the operation mechanism analysis unit 1806 outputs these to the input and output unit 1807. Further, the operation mechanism analysis unit 1806 determines a cut portion according to permission from the user.
In addition to the first candidate in (1), the operation mechanism analysis unit 1806 identifies the fixation 911 and the slide in the X axis direction (914) as other candidates. Next, the operation mechanism analysis unit 1806 outputs these candidates to the input and output unit 1807. At this time, it is desirable that the candidates are output without being particularly distinguished from each other. Then, the operation mechanism analysis unit 1806 determines, as a cut portion, selection results received from the user via the input and output unit 1807.
The operation mechanism analysis unit 1806 outputs that a contradiction occurs in the input and output unit 1807. Next, the operation mechanism analysis unit 1806 receives an instruction of a cut portion from the user via the input and output unit 1807. Then, the operation mechanism analysis unit 1806 determines the instructed portion as a cut portion.
The above concludes the description of (1) to (3). As a result, the cable (502) and the motor (503) are fixed to the body (501) which is a mother body, and the slide 1 (54) is connected to the body (501) by sliding in the X axis direction. In addition, the Y robot (505) is connected to the slide 1 (504), and the slide 2 is connected to the Y robot (505) by sliding in the Y axis direction. The operation mechanism analysis unit 1806 executes operation analysis as described above, and generates a simulation model according to the result.
The first example has been described above in which the simulation model is generated for the component 1. The first example indicates that the operation analysis can be automatically executed on a component having a slide mechanism. In addition, even for the cable (502) whose shape can be changed, it is possible to correctly execute the operation analysis by tree analysis.
Next, generation of a simulation model for a component will be described as a second example.
Processing for determining the number of contact surfaces between the part elements of the component shown in
Next,
Here, in the table of the number of the contact surfaces, a center sharing circle is present between the body 1001 and the holder 1002 as shown in
Next, a table of connection relations indicating the connection relations identified by the connection relation identification unit 1805 for the component 2 will be described with reference to
Since a center sharing circle is present between the body 1001 and the holder 1002, in
Since the number of the contact surfaces between the rod 1004 and the body 1001 is 0, the connection relation identification unit 1805 identifies the connection relation thereof to non-contact. Since a center sharing circle is present between the rod 1004 and the holder 1002, the connection relation thereof is rotation. In addition, since the number of the contact surfaces between the rod 1004 and the cylinder 1003 is 2, which does not correspond to, in particular, a case in which the stroke length is small, the connection relation identification unit 1805 identifies the connection relation thereof to slide.
Thus, the connection relation identification unit 1805 identifies the connection relations between the part elements as described above, and stores results in the connection relation table in the storage unit 182.
As described above, in this example, for the component 2, the presence or absence of a center sharing circle between the part elements and the number of the contact surfaces are obtained as shown in
Next, the processing executed by the operation mechanism analysis unit 1806 for the component 2 will be described.
In
Next, the operation mechanism analysis unit 1806 extracts part elements to be connected to the body 1001 from the table of the number of the contact surfaces shown in
Next, the operation mechanism analysis unit 1806 identifies a second layer of the connection relation. Therefore, the operation mechanism analysis unit 1806 extracts the extracted part elements and part elements connected to parts other than the uppermost part from the connection relation table in
The operation mechanism analysis unit 1806 identifies a second layer of another connection relation. First, the operation mechanism analysis unit 1806 extracts the rod 1004 as a part element having a connection relation with the cylinder 1003. Here, the operation mechanism analysis unit 1806 identifies that the connection relation between the cylinder 1003 and the rod 1004 is slide in the Z axis direction 1413.
Then, the operation mechanism analysis unit 1806 checks that no connection ahead of the rod 1404 is present. As a result, the operation mechanism analysis unit 1806 creates the tree diagram shown in
Here, processing of extracting a closed loop from the tree diagram in
A case in which the depth-first search method is applied to the tree diagram in
As a result, the operation mechanism analysis unit 1806 determines that a slide crank mechanism is present in the component 2. This determination can be executed by the operation mechanism analysis unit 1806 based on information defining an operation mechanism stored in advance. Further, according to this result, the operation mechanism analysis unit 1806 can automatically generate a simulation model.
Thus, in the present embodiment, when a closed loop shown in a tree diagram is extracted, an operation mechanism corresponding to a plurality of connection relations included in the closed loop can be identified. The above concludes the description of the second example.
Next, a processing flow related to a user interface according to the present embodiment will be described with reference to
First, in step S1701, the input and output unit 1807 receives a processing start instruction from the user. Next, in step S1702, the input and output unit 1807 receives selection of the uppermost part element from the user. Here, it is desirable that the input and output unit 1807 outputs the part elements constituting the component. In response to this output, the user can select a part element. As a result, the operation mechanism analysis unit 1806 can identify the uppermost part element. This selection is described in the first example or the second example. Thus, by receiving the selection from the user, the trial and error for identifying the uppermost part element is reduced. Therefore, the arithmetic processing time is reduced, and the generation time can be effectively reduced. In addition, since the uppermost portion of the tree diagram is the reference position of the simulation model, the information is obvious to the user, and since the time and effort to designate a part element is small, the load on the user is also small. The operation mechanism analysis unit 1806 may extract the uppermost part element according to a predetermined rule.
In step S1703, the input and output unit 1807 receives setting of an allowable error from the user. Specifically, an allowable error of information on a position and a shape such as a distance, an angle, and a diameter of a part element is identified. The allowable error can be identified according to accuracy of the 3D CAD information. As a result, the connection relation identification unit 1805 identifies the allowable error and stores a value thereof. Therefore, it is desirable that the input and output unit 1807 output an input area for each position and shape such as a distance, an angle, and a diameter, and receive an input to each input area.
In step S1704, the input and output unit 1807 receives setting of a slide condition from the user. This setting of a slide condition is used for the determination of the stroke length executed in step S107 in
Also in steps S1703 and S1704, the connection relation identification unit 1805 may identify an error or a stroke length according to a predetermined rule. A case is also included in which an error or a stroke length is recorded in advance and the error or the stroke length is used.
In step S1705, the input and output unit 1807 receives setting of a rotation determination constraint condition from the user. Then, the connection relation identification unit 1805 stores the setting of a rotation determination constraint condition. The rotation determination constraint condition is set such that a center sharing circle having a diameter smaller than a set value is not determined as rotation. The rotation determination constraint condition is for designating a fixing point such as a bolt such that the fixing point is not determined as a rotation axis. In the present embodiment, an attempt is made to efficiently separate a part which is a rotation axis with a diameter of the bolt as a reference, and a method of individually designating a bolt may be used.
In step S1706, the input and output unit 1807 receives a designation from the user for cutting the connection relation and setting the connection relation to non-contact. That is, an input for re-determining the connection relation that is determined to be fixation or the like, other than non-contact, based on the number of the contact surfaces to be non-contact is received. The input may be received from the user in advance as described in the above processing (1) to (3), or may be received in an interactive form at the time when a contradiction is found during mechanism analysis processing from the tree diagram.
The processing order in this flowchart is not limited to the order in
As described above, the description of the present embodiment has been made. According to the present embodiment, a simulation model from a 3D CAD model can be automatically generated, and the execution efficiency of the simulation is greatly improved.
According to the present embodiment, the operation mechanism can be identified from the combination of the part elements. In addition, the simulation model can be generated based on the structure model data with which the connection relation can be identified in more detail. Therefore, the verification can be executed in detail.
Number | Date | Country | Kind |
---|---|---|---|
2021-089867 | May 2021 | JP | national |