This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2018-110653, filed on Jun. 8, 2018, the entire contents of which are incorporated herein by reference.
The embodiments discussed herein are related to simulation of information searching action changed with an anchor event.
In layout design of tenants (hereinafter, also referred to as small facilities) in a facility such as a department store or a shopping mall, simulation of information searching action (hereinafter, also referred to as searching action) of human being is utilized. In this simulation, the tenants and a user agent (hereinafter, also referred to as agent) simulating a user are arranged in a virtual space corresponding to the facility such as the department store or the shopping mall. Flow of the user in the department store or the shopping mall is simulated by simulating the order of visiting the tenants by the agent.
It has been known that a person changes his(her) subsequent quantitative judgment with an initial proposed numerical value (anchoring and adjustment heuristics).
Japanese Laid-open Patent Publication Nos. 2016-218950, 2004-258762, and 8-22498 are examples of related art.
Tversky, A., & Kahneman, D., “Judgment under Uncertainty: Heuristics and Biases.”, Science, (1974), 185(4157), pp. 1124-1131 is another example of related art.
According to an aspect of the embodiments, an apparatus simulates checking action of checking, by an agent, a plurality of selection candidates in order for which expected values are set. Upon checking each of the plurality of selection candidates, the apparatus calculates an evaluated value of each selection candidate for the agent, and performs continuation judgment of determining whether the checking action is to be performed for a next one of the plurality of selection candidates, based on the expected values of unchecked selection candidates for which the checking action has not been performed yet and the evaluated values of checked selection candidates for which the checking action has been performed. Upon completion of checking a first selection candidate of the plurality of selection candidates, the apparatus modifies the expected values of the unchecked selection candidates, based on the evaluated value of the first selection candidate.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention.
The above-described simulation simulates the flow of the user without considering change in the searching action of the user with an impressive event. It is therefore difficult to reproduce the change in the searching action with the impressive event.
It is preferable to reproduce the change in the searching action with the impressive event.
Hereinafter, an embodiment of a recording medium, a simulation method, and a simulation apparatus that are disclosed by the present application will be described in detail with reference to the drawings. The embodiment does not limit disclosed technology. The following embodiment may be appropriately combined in a consistent range.
First, simulation of the searching action using the expected values and actual evaluated values, and an anchor event will be described with reference to
When the user visits the unimpressive small facility, which has the actual evaluated value of “10”, as the first store, the user performs the searching to the second store because the actual evaluated value of the first store is “10” and the expected value of the second store is “15”. The user finishes the searching with the second store because the actual evaluated value of the second store is “15” and the expected value of the third store is “5”. For example, when the user visits the unimpressive small facility as the first store, the reasonable shopping-around action of searching for the facility having the highest evaluated value is reproduced.
When the user visits the impressive small facility with low quality, which has the actual evaluated value of “5”, as the first store, the user first performs the searching to the second store because the actual evaluated value of the first store is “5” and the expected value of the second store is “10”. Then, the user performs the searching to the third store and compromise is not reproduced because the actual evaluated value of the second store is “10” and the expected value of the third store is “15”. For example, in the searching action using the expected values and the actual evaluated values as illustrated in
On the other hand, the anchoring and adjustment heuristics proposes estimation of a best value from an anchor while a numerical value corresponding to the impressive event is set to the anchor. In this case, judgment action changes in conjunction with the anchor because judgment is made using the estimated best value. Examples of the impressive event include a visit to the first store, a visit to a store selling commercial products with high quality, and a visit to a store conducting a campaign or an event.
When the actual evaluated value of the first store is as low as “5” and impressive, the estimated best value is “10”. The user compares the actual evaluated value “10” of the second store and the estimated best value “10” with each other and finishes the searching with the second store because the actual evaluated value is equal to or higher than the estimated best value. Thus, usage of the anchor may reproduce the compromise when the actual evaluated value of the first store is low and impressive.
As illustrated in
It is also considered that the reasonable shopping-around action is reproduced by adjusting a distance of the estimated best value (“+5” in the “comparative example 1” in
For example, as indicated in a “comparative example 2” in
As described above, the searching action using the expected values and the actual evaluated values as illustrated in
It is then considered that the purchase judgment action is changed within the framework of the searching action based on the comparison between the expected values and the actual evaluated values, which involves the comparison between all combinations.
In the example of
Subsequently, the configuration of the simulation apparatus 1 will be described. As illustrated in
The input unit 10 receives input information related to simulation, such as selection candidate information 11, by, for example, an input device such as a mouse, a keyboard, or the like.
The input information storage unit 20 stores the input information such as the selection candidate information 11 input by the input unit 10 in a storage device such as a random access memory (RAM), a hard disk drive (HDD), or the like.
The selection candidate information 11 is information that correlates selection candidates corresponding to small facilities in a facility and expected values of the small facilities with each other.
The simulation management unit 30 manages processing of simulating the searching action of the user of the facility, the simulation execution unit 40 executing the processing. For example, the simulation management unit 30 and the simulation execution unit 40 execute simulation of the action of checking, by the agent, the plurality of selection candidates in order for which the expected values are set for each.
The simulation management unit 30 reads the input information stored in the input information storage unit 20 and an interim process (actual evaluated values and modified expected values of stores) of the simulation, which is stored in the agent information storage unit 60, in accordance with progress of the simulation that the simulation execution unit 40 executes. The simulation management unit 30 outputs the read contents to the simulation execution unit 40. The simulation management unit 30 outputs, to the simulation result output unit 50, a result of sequential simulation of user's action by the simulation execution unit 40.
The simulation management unit 30 extracts one unchecked selection candidate (small facility) from the selection candidate aggregation in accordance with the progress of the simulation and outputs it to the simulation execution unit 40. The simulation management unit 30 decides a visit destination based on, for example, a layout of the facility, user's preferences on the small facilities, and temporal restriction. The simulation management unit 30 extracts the unchecked selection candidate as the decided visit destination and outputs it to the simulation execution unit 40.
When a selection unit 44, which will be described later, stores the decided selection candidate in the agent information storage unit 60, the simulation management unit 30 moves the agent to the decided selection candidate and decides purchase in the small facility of the selection candidate. The simulation management unit 30 outputs the movement of the agent and the purchase result to the simulation result output unit 50.
The simulation execution unit 40 sequentially simulates the evaluated values when the user of the facility actually visits the small facilities. The simulation execution unit 40 modifies the expected values when the anchor event occurs and determines next action to be performed by the user based on the modified expected values and the actual evaluated values. For example, the simulation execution unit 40 determines whether to check the unchecked small facility or select one small facility from the checked small facilities. The simulation execution unit 40 outputs the simulation result to the simulation management unit 30.
The simulation execution unit 40 includes a calculation unit 41, a determination unit 42, a modification unit 43, the selection unit 44, and an evaluation unit 45.
The calculation unit 41 calculates the actual evaluated value for the selection candidate input from the simulation management unit 30. The calculation unit 41 calculates the actual evaluated value stochastically based on the average and dispersion of the expected values while the expected values have a normal distribution, for example. The calculation unit 41 outputs the calculated actual evaluated value to the simulation result output unit 50. For example, the calculation unit 41 calculates the evaluated value of the selection candidate for the agent every time the agent (user) checks the selection candidate (small facility).
The determination unit 42 determines whether all of the selection candidates (small facilities) have been checked. When the determination unit 42 determines that all of the selection candidates have not been checked, it performs continuation judgment of the checking action based on the actual evaluated values and the expected values. For example, the determination unit 42 determines whether to finish the searching of the small facilities based on the actual evaluated values and the expected values. The determination unit 42 determines to finish the searching of the small facilities when the actual evaluated value of the extracted selection candidate is higher than all of the expected values and all of the other actual evaluated values in the determination. When there is the expected value or another actual evaluated value being equal to or higher than the actual evaluated value of the extracted selection candidate, the determination unit 42 determines to continue the searching of the small facilities and instructs the modification unit 43 to determine the anchor event.
When the determination unit 42 determines to finish the searching of the small facilities, it outputs a selection instruction to the selection unit 44. Also when the determination unit 42 determines that all of the selection candidates have been checked, it outputs the selection instruction to the selection unit 44.
In other words, the determination unit 42 performs the continuation judgment of the checking action based on the expected values of the unchecked selection candidates and the evaluated values of the checked selection candidates every time the agent checks the selection candidate. The determination unit 42 judges to finish the checking action when a maximum value of the evaluated values of the checked selection candidates is higher than a maximum value of the expected values of the unchecked selection candidates. The determination unit 42 judges to continue the checking action when the maximum value of the evaluated values of the checked selection candidates is lower than the maximum value of the expected values of the unchecked selection candidates.
When the modification unit 43 receives the instruction to determine the anchor event from the determination unit 42, it determines whether there is the anchor event. The anchor event is, for example, checking of the first selection candidate, an in-store campaign, the number of the checked selection candidates, a period of time during which the agent stays in the facility having the plurality of selection candidates, a walking-around distance of the agent, passage of a predetermined period of time, or a combination thereof. When the modification unit 43 determines that there is the anchor event, it modifies the expected values of the unchecked selection candidates, for example, the expected values of the unsearched small facilities based on the actual evaluated value of the selection candidate. The modification unit 43 outputs the modified expected values to the simulation result output unit 50. When the modification unit 43 determines that there is no anchor event, it does not modify the expected values of the unchecked selection candidates. The modification unit 43 instructs the simulation management unit 30 to extract the next unchecked selection candidate after the determination of the anchor event.
In other words, the modification unit 43 modifies the expected values of the unchecked selection candidates based on the evaluated value of the selection candidate after the agent finishes checking of at least any one of the plurality of selection candidates. The modification unit 43 modifies the expected values of the unchecked selection candidates based on the evaluated value of the selection candidate when the anchor event as the impressive event for the agent occurs. The modification unit 43 modifies such that a relatively large value is added to each of the expected values of the unchecked selection candidates as the evaluated value of the selection candidate is relatively higher than distribution of the expected values of the unchecked selection candidates. The modification unit 43 modifies such that a relatively large value is subtracted from each of the expected values of the unchecked selection candidates as the evaluated value of the selection candidate is relatively lower than the distribution of the expected values of the unchecked selection candidates.
When the selection unit 44 receives the selection instruction input from the determination unit 42, it decides the selection candidate based on the actual evaluated values with reference to the agent information storage unit 60. The selection unit 44 outputs the decided selection candidate to the simulation result output unit 50.
The evaluation unit 45 acquires the expected values (including the modified expected values) and the actual evaluated values of the small facilities for the agent from the agent information storage unit 60 through the simulation management unit 30. Thus, the acquired expected values and actual evaluated values are a plurality of patterns of the expected values and the actual evaluated values when the evaluated value corresponding to the anchor event is changed.
The evaluation unit 45 evaluates a ripple effect indicating increase in walking-around promotion based on the plurality of patterns of the expected values and the actual evaluated values. The evaluation unit 45 derives cost-effectiveness and rebates of the small facilities based on the ripple effect and cost for the anchor event. The evaluation unit 45 outputs an evaluation result such as the ripple effect, the cost-effectiveness, the rebates, or the like to the simulation result output unit 50 through the simulation management unit 30. For example, the evaluation unit 45 evaluates the ripple effect of the anchor event using a result of the continuation judgment of the checking action.
The simulation result output unit 50 stores, in the agent information storage unit 60, the expected values (including modified expected values), the actual evaluated values, the decided selection candidate, the movement and purchase result of the agent, and the evaluation result. The simulation result output unit 50 displays, on a display device such as a monitor, a printer, or the like, the expected values (including modified expected values), the actual evaluated values, the decided selection candidate, the movement and purchase result of the agent, and the evaluation result. It is to be noted that the simulation result output unit 50 may sequentially output a simulation result. The simulation result output unit 50 may output a collected result of the results obtained by the simulation for a predetermined period of time.
The agent information storage unit 60 stores, in a storage device such as a RAM and an HDD, the expected values (including modified expected values), the actual evaluated values, the decided selection candidate, the movement and purchase result of the agent, the evaluation result, and the like obtained by the simulation.
Modification of the expected values based on the anchor event will be described with reference to
The simulation apparatus 1 decides the visit destination based on the previously set layout of the facility, the user's preferences on the small facilities, and the temporal restriction. The simulation management unit 30 extracts the unchecked selection candidate as the decided visit destination and calculates the actual evaluated value (step S12).
When there is the expected value or another actual evaluated value which is equal to or higher than the actual evaluated value of the extracted selection candidate, the simulation apparatus 1 proceeds to step S14 and modifies the expected values based on the anchor event. On the other hand, when the actual evaluated value of the extracted selection candidate is higher than all of the expected values and all of the other actual evaluated values, the simulation apparatus 1 determines to finish the searching of the small facilities (step S13) and proceeds to step S15.
When the simulation apparatus 1 determines that there is the expected value or another actual evaluated value which is equal to or higher than the actual evaluated value of the extracted selection candidate at step S13, it determines whether there is the anchor event (step S14). When the simulation apparatus 1 determines that there is the anchor event, it modifies the expected values of the remaining small facilities based on the actual evaluated value of the extracted selection candidate, returns to step S12, and continues the searching of the small facilities. On the other hand, when the simulation apparatus 1 determines that there is no anchor event, it returns to step S12 without modifying the expected values of the remaining small facilities and continues the searching of the small facilities.
When the simulation apparatus 1 determines to finish the searching of the small facilities at step S13, it decides the selection candidate based on the actual evaluated values. The simulation apparatus 1 moves the agent to the decided selection candidate and decides purchase in the small facility of the selection candidate (step S15). Thus, the simulation apparatus 1 may simulate flow of purchasing, by the user, the commercial product in the small facility decided based on the expected values modified by the impressive event.
In
Then, the case in which the actual evaluated value of the first store is low will be described using small facilities 82a to 82c. In this case, it is assumed that an agent 83 visits the small facilities 82a to 82c in this order, the actual evaluated value of the small facility 82a as the first store is “5”, and the expected values of the small facilities 82b and 82c before modification are respectively “10” and “15”. The modification unit 43 modifies the expected values of the small facilities 82b and 82c such that the actual evaluated value “5” of the small facility 82a for the agent 83 is identical to an average of distribution of the expected values of the small facilities 82b and 82c. The modification unit 43 subtracts difference “7.5” between the average “12.5” of the distribution of the expected values of the small facilities 82b and 82c and the actual evaluated value “5” of the small facility 82a from the expected values of the small facilities 82b and 82c. As a result, the expected value of the small facility 82b is “2.5” and the expected value of the small facility 82c is “7.5”. The agent 83 then visits the next small facility 82b because there is the small facility 82c having the expected value after modification, which is higher than the actual evaluated value “5” of the small facility 82a. The agent 83 decides purchase in the small facility 82b because the actual evaluated value of the small facility 82b is “10” and the expected value of the small facility 82c after modification is “7.5”, thereby reproducing the compromise of the searching.
Subsequently, the case in which the actual evaluated value of the first store is average will be described with reference to
In the “case 2” in
In
Next, an effect of in-store promotion as an example of the anchor event will be described with reference to
First, a baseline is set to the case with no promotion. In this case, the evaluated values (EV) of the small facilities F1 to F5 are assumed to be respectively “1”, “7”, “10”, “15”, and “17”. When an agent visits the small facility F1, the modification unit 43 modifies the expected values of the small facilities F2 to F5 such that the evaluated value “1” of the small facility F1 is identical to an average of distribution of the expected values of the small facilities F2 to F5. The modification unit 43 subtracts difference “11.25” between the average “12.25” of the distribution of the expected values of the small facilities F2 to F5 and the actual evaluated value “1” of the small facility F1 from the expected values of the small facilities F2 to F5. As a result, the expected values of the small facilities F2 to F5 after modification are respectively “−4.25”, “−1.25”, “3.75”, and “5.75”. When the evaluated values (EV) are compared with the expected values after modification in the order from the small facility F1, the evaluated value (EV) of the small facility F2 is higher than the expected values of the small facilities F3 to F5 after modification. Therefore, the agent visits the small facilities up to the small facility F2.
The weak promotion is set to the case in which the evaluated value of the small facility F1 is “+2”. In this case, when comparing with the baseline, the evaluated value (EV) of the small facility F1 is “3” and the evaluated values (EV) of the small facilities F2 to F5 are the same as those of the baseline. When the agent visits the small facility F1, the modification unit 43 modifies the expected values of the small facilities F2 to F5 such that the evaluated value “3” of the small facility F1 is identical to the average of the distribution of the expected values of the small facilities F2 to F5. The modification unit 43 subtracts difference “9.25” between the average “12.25” of the distribution of the expected values of the small facilities F2 to F5 and the actual evaluated value “3” of the small facility F1 from the expected values of the small facilities F2 to F5. As a result, the expected values of the small facilities F2 to F5 after modification are respectively “−2.25”, “0.75”, “5.75”, and “7.75”. When the evaluated values (EV) are compared with the expected values after modification in the order from the small facility F1, the evaluated value (EV) of the small facility F3 is higher than the expected values of the small facilities F4 and F5 after modification. Therefore, the agent visits the small facilities to the small facility F3. It is therefore said that the weak promotion provides the ripple effect of increasing the walking-around promotion by “1” in comparison with that of the baseline.
The medium promotion is set to the case in which the evaluated value of the small facility F1 is “+5”. In this case, when comparing with the baseline, the evaluated value (EV) of the small facility F1 is “6” and the evaluated values (EV) of the small facilities F2 to F5 are the same as those of the baseline. When the agent visits the small facility F1, the modification unit 43 modifies the expected values of the small facilities F2 to F5 such that the evaluated value “6” of the small facility F1 is identical to the average of the distribution of the expected values of the small facilities F2 to F5. The modification unit 43 subtracts difference “6.25” between the average “12.25” of the distribution of the expected values of the small facilities F2 to F5 and the actual evaluated value “6” of the small facility F1 from the expected values of the small facilities F2 to F5. As a result, the expected values of the small facilities F2 to F5 after modification are respectively “0.75”, “3.75”, “8.75”, and “10.75”. When the evaluated values (EV) are compared with the expected values after modification in the order from the small facility F1, the evaluated value (EV) of the small facility F4 is higher than the expected value of the small facility F5 after modification. Therefore, the agent visits the small facilities up to the small facility F4. It is therefore said that the medium promotion provides the ripple effect of increasing the walking-around promotion by “2” in comparison with that of the baseline.
The strong promotion is set to the case in which the evaluated value of the small facility F1 is “+10”. In this case, when comparing with the baseline, the evaluated value (EV) of the small facility F1 is “11” and the evaluated values (EV) of the small facilities F2 to F5 are the same as those of the baseline. When the agent visits the small facility F1, the modification unit 43 modifies the expected values of the small facilities F2 to F5 such that the evaluated value “11” of the small facility F1 is identical to the average of the distribution of the expected values of the small facilities F2 to F5. The modification unit 43 subtracts difference “1.25” between the average “12.25” of the distribution of the expected values of the small facilities F2 to F5 and the actual evaluated value “11” of the small facility F1 from the expected values of the small facilities F2 to F5. As a result, the expected values of the small facilities F2 to F5 after modification are respectively “5.75”, “8.75”, “13.75”, and “15.75”. When the evaluated values (EV) are compared with the expected values after modification in the order from the small facility F1, the evaluated value (EV) of the small facility F4 is lower than the expected value of the small facility F5 after modification. Therefore, the agent visits the small facilities up to the small facility F5. It is therefore said that the strong promotion provides the ripple effect of increasing the walking-around promotion by “3” in comparison with that of the baseline.
The calculation of the rebate as bearing cost per facility is “0.66” for the weak promotion, “1.25” for the medium promotion, and “2.00” for the strong promotion based on the cost and the number of facilities receiving benefit of the in-store promotion. The evaluation unit 45 thus derives the ripple effect, the cost-effectiveness, and the rebate amount of the in-store promotion. For example, the evaluation unit 45 may evaluate influences on walking-around in an overall complex facility by the measure of holding the anchor event (for example, the in-store promotion). The evaluation unit 45 may evaluate the ripple effects by individual measures which are individually held by the small facilities and calculate the cost-effectiveness of the small facilities and the rebates for the small facilities that have held the measures.
Next, operations of the simulation apparatus 1 in the embodiment will be described.
The input unit 10 of the simulation apparatus 1 receives input of the selection candidate information 11, for example, selection candidate aggregation and input of expected values of each of selection candidates when the processing is started (steps S21 and S22). The input unit 10 stores the received selection candidate information 11 in the input information storage unit 20.
The simulation management unit 30 extracts one unchecked selection candidate from the selection candidate aggregation in accordance with progress of simulation and outputs it to the simulation execution unit 40 (step S23).
The calculation unit 41 calculates an actual evaluated value of the selection candidate input from the simulation management unit 30, which is the extracted selection candidate (step S24). The calculation unit 41 outputs the calculated actual evaluated value to the simulation result output unit 50.
The determination unit 42 determines whether all of the selection candidates have been checked (step S25). When the determination unit 42 determines that all of the selection candidates have not been checked (No at step S25), it determines whether searching of small facilities is finished based on the actual evaluated values and the expected values (step S26). When the determination unit 42 determines that the searching of the small facilities is not finished (No at step S26), it instructs the modification unit 43 to determine an anchor event.
When the modification unit 43 receives the instruction to determine the anchor event from the determination unit 42, it determines whether there is the anchor event (step S27). When the modification unit 43 determines that there is the anchor event (Yes at step S27), it modifies the expected values of the unchecked selection candidates based on the actual evaluated value of the selection candidate (step S28). The modification unit 43 outputs the modified expected values to the simulation result output unit 50. The modification unit 43 instructs the simulation management unit 30 to extract the next unchecked selection candidate and returns to step S23.
When the modification unit 43 determines that there is no anchor event (No at step S27), it instructs the simulation management unit 30 to extract the next unchecked selection candidate without modifying the expected values of the unchecked selection candidates and returns to step S23.
When the determination unit 42 determines that all of the selection candidates have been checked (Yes at step S25) or determines that the searching of the small facilities is finished (Yes at step S26), it outputs a selection instruction to the selection unit 44.
When the selection unit 44 receives the selection instruction input from the determination unit 42, it decides the selection candidate based on the actual evaluated values with reference to the agent information storage unit 60 (step S29). The selection unit 44 outputs the decided selection candidate to the simulation result output unit 50.
The simulation management unit 30 moves the agent to the decided selection candidate (step S30). The simulation management unit 30 decides purchase in the small facility of the selection candidate and outputs the movement of the agent and a purchase result to the simulation result output unit 50 (step S31). The simulation apparatus 1 may thereby reproduce change in the searching action with an impressive event. For example, the simulation apparatus 1 may reproduce the purchase judgment action which is changed by the anchor event chance while maintaining the framework of reproduction of the action of searching for the facility having the highest evaluated value, which involves the comparison between all combinations.
Thus, the simulation apparatus 1 performs the checking action of checking, by the agent, the plurality of selection candidates in order for which the expected values are respectively set. The simulation apparatus 1 calculates the evaluated value of the selection candidate for the agent every time the agent checks the selection candidate. The simulation apparatus 1 performs continuation judgment of the checking action based on the expected values of the unchecked selection candidates and the evaluated value of the checked selection candidate every time the agent checks the selection candidate. The simulation apparatus 1 modifies the expected values of the unchecked selection candidates based on the evaluated value of the selection candidate after the agent finishes checking of at least any one of the plurality of selection candidates. As a result, the simulation apparatus 1 may reproduce the change in the searching action with the impressive event.
The simulation apparatus 1 modifies the expected values of the unchecked selection candidates based on the evaluated value of the selection candidate when the anchor event as the impressive event for the agent occurs. As a result, the simulation apparatus 1 may reproduce the change in the searching action with occurrence of the impressive event.
In the simulation apparatus 1, the anchor event is checking of the first selection candidate, the in-store campaign, the number of the checked selection candidates, the period of time during which the agent stays in the facility having the plurality of selection candidates, the walking-around distance of the agent, the passage of a predetermined period of time, or a combination thereof. As a result, the simulation apparatus 1 may modify the expected values of the unchecked selection candidates in accordance with various events.
The simulation apparatus 1 evaluates the ripple effect of the anchor event using a result of the continuation judgment of the checking action. As a result, the simulation apparatus 1 may evaluate influence on walking-around in the overall complex facility by the measure of holding the anchor event.
The simulation apparatus 1 modifies such that the average value of the distribution of the expected values of the unchecked selection candidates is equal to the evaluated value of the selection candidate. As a result, the simulation apparatus 1 may set the distribution of the expected values of the unchecked selection candidates to the vicinity of the evaluated value of the selection candidate.
The simulation apparatus 1 calculates the estimated best value based on the evaluated value of the selection candidate and modifies such that the average value of the distribution of the expected values of the unchecked selection candidates is equal to the calculated estimated best value. As a result, the simulation apparatus 1 may set the distribution of the expected values of the unchecked selection candidates to the vicinity of the estimated best value.
The simulation apparatus 1 modifies such that the median or the mode of the distribution of the expected values of the unchecked selection candidates is equal to the evaluated value of the selection candidate. As a result, the simulation apparatus 1 may appropriately set the expected values of the unchecked selection candidates even when the distribution of the expected values of the unchecked selection candidates deviates.
The simulation apparatus 1 calculates the estimated best value based on the evaluated value of the selection candidate and modifies such that the average value of the distribution of the expected values of the unchecked selection candidates is equal to the intermediate value between the evaluated value of the selection candidate and the calculated estimated best value. As a result, the simulation apparatus 1 may set the distribution of the expected values of the unchecked selection candidates based on the evaluated value of the selection candidate and the estimated best value.
The simulation apparatus 1 modifies such that a relatively large value is added to each of the expected values of the unchecked selection candidates as the evaluated value of the selection candidate is relatively higher than the distribution of the expected values of the unchecked selection candidates. The simulation apparatus 1 modifies such that a relatively large value is subtracted from each of the expected values of the unchecked selection candidates as the evaluated value of the selection candidate is relatively lower than the distribution of the expected values of the unchecked selection candidates. As a result, the simulation apparatus 1 may reproduce the change in the searching action with the impressive event.
The simulation apparatus 1 judges to finish the checking action when a maximum value of the evaluated values of the checked selection candidates is higher than a maximum value of the expected values of the unchecked selection candidates. The simulation apparatus 1 judges to continue the checking action when the maximum value of the evaluated values of the checked selection candidates is lower than the maximum value of the expected values of the unchecked selection candidates. As a result, the simulation apparatus 1 may reproduce the change in the searching action with the impressive event.
Each of the components of each of the units illustrated in the drawings are not necessarily configured physically as illustrated in the drawings. For example, specific forms of dispersion and integration of each of the units are not limited to those illustrated in the drawings, and all or a part of them may be configured to be dispersed or integrated functionally or physically based on a desired unit depending on various loads and usage conditions, or the like. For example, the determination unit 42 and the selection unit 44 may be integrated with each other. Various pieces of processing illustrated in the drawings are not limited to be executed in the above-described order and may be simultaneously executed or may be executed while switching the order in a consistent range of processing contents.
All or a desired part of various processing functions that are executed by the simulation apparatus 1 in the above-described embodiment may be implemented on a central processing unit (CPU) (or microcomputer such as micro processing unit (MPU) and micro controller unit (MCU)). It is needless to say that all or a desired part of the various processing functions may be implemented on a program to be analyzed and executed by the CPU (or microcomputer such as MPU and MCU) or may be implemented with hardware by wired logic.
Various pieces of processing described in the above-described embodiment may be implemented by executing a previously prepared program by a computer. Hereinafter, an example of the computer (hardware) executing the program having the same functions as those in the above-described embodiment will be described.
As illustrated in
The hard disk device 109 stores therein a program 111 for executing the various pieces of processing described in the above-described embodiment. The hard disk device 109 stores therein various pieces of data 112 to which the program 111 refers. The input device 102 receives input of operation information from an operator of the simulation apparatus 1, for example. The monitor 103 displays, for example, various screens on which the operator operates. For example, a printing apparatus or the like is connected to the interface device 106. The communication device 107 is connected to a communication network such as a local area network (LAN) and transmits and receives various pieces of information to and from an external apparatus via the communication network.
The CPU 101 reads the program 111 stored in the hard disk device 109 and expands and executes it on the RAM 108 for various pieces of processing. The program 111 may not be stored in the hard disk device 109. The simulation apparatus 1 may read and execute the program 111 stored in a storage medium readable by the simulation apparatus 1, for example. The storage medium readable by the simulation apparatus 1 corresponds to, for example, a portable recording medium such as a CD-ROM, a DVD disk, a Universal Serial Bus (USB) memory, a semiconductor memory such as a flash memory, a hard disk drive, or the like. The program may be stored in a device connected to a public network, the Internet, a local area network (LAN), or the like, and the simulation apparatus 1 may read and execute the program therefrom.
All examples and conditional language provided herein are intended for the pedagogical purposes of aiding the reader in understanding the invention and the concepts contributed by the inventor to further the art, and are not to be construed as limitations to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although one or more embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2018-110653 | Jun 2018 | JP | national |