The invention relates to a simulation system, in particular for a control system which controls a process running in a technical installation, the control system comprising at least one first execution environment which is in the form of a container, is designed to simulate the automation process on which the installation is based and has corresponding interfaces to the control system. The invention also relates to a method for carrying out a simulation using the simulation system according to the invention. A corresponding control system and a computer program product are also stated.
In large-scale technical installations, for example power plants, training simulators are being increasingly used in order to train control room personnel for operation of the power plant and in order to train them for exceptional situations and critical operating states which may occur during actual operation of the power plant. However, simulators are also used for test purposes during the engineering of a technical installation in order to make it possible for a project engineer to find optimal solutions for the connection of functions inside the technical installation or to detect faults before the installation is implemented and thus to shorten start-up.
A simulator is generally a computer system in which processes of a technical installation can be carried out or illustrated under realistic conditions.
In the power plant sector, for example, a power plant is, in principle, simulated in the simulator as software. In order to simulate the operation of a power plant as realistically as possible on a computer, it is necessary to simulate both the process engineering process, which runs in an actual power plant and affects the operating behavior and interaction of the power plant components, and the automation engineering process, which comprises the process control system used for operation and control with its automation and operation and observation components, with the aid of complex software. The simulator accordingly behaves in an identical manner to the actual power plant. If the power plant is run with a particular control system, for example the Siemens SPPA-T3000 control system, all details on the simulator screen correspond to those from the control room of the actual installation.
Simulation computers which are independent of the control system, that is to say are a separate computer system, are usually used to simulate power plants. The effort required for this usually requires a gigantic computer power of the simulation computer used. The hardware for the simulation computer must be constructed, installed and maintained at each place of use.
Nowadays, there are two different simulator approaches (cf. also description of
There are often simulators which have separate computers for the hardware, which is the automation servers of the control system and the hardware connected to the control system such as I/O subassemblies, motors, valves etc., and for the physical process on which the technical installation is based (cf. also description of
In both cases, the software, like the hardware of the simulators, is decoupled from the control system. Parts of the original software engineering data relating to the automation of the control system are often used, that is to say the inputs for the simulation software receive values from the control system which are written, however, to software separate from the control system. Furthermore, the configuration of these simulators is very complex (sometimes not accessible at all to the user in the case of process simulators) and is carried out using configuration tools of a completely different type to those of the control system. A consistency check between simulators and the control system does not take place. In addition, the configuration of simulators generally does not take into account the engineering data relating to the cabling or wiring of connected hardware (sensors, actuators).
Therefore, an object herein is to specify a simulation system, as a result of which the simulation becomes an integral part of a control system. This object is also to specify a control system with an integrated simulation system. Another object is to specify an improved simulation method. In addition, the intention is to specify a corresponding computer program product embodied on a non-transitory computer readable medium.
These objects are achieved by the features of the independent patent claim. Advantageous refinements are respectively described in the dependent patent claims.
In an embodiment, the simulation system herein comprises execution environments for simulating the hardware of the peripherals of the control system and for simulating the process running in the technical installation. All execution environments have the same interfaces and are connected to the bus system via these interfaces.
The execution environments may also merge to form a single execution environment. In addition, each execution environment may itself be a software component. Inside the execution environments and software components, there are embedded software components as representatives of functions, subassemblies, devices and computational models or other computation units of the process.
As a result of the simulation system herein, the simulation of the hardware of the peripherals of the control system and the simulation of the process on which the technical installation is based are incorporated in the software of the control system. In a control system having a universally usable execution environment for software components, this execution environment may now be used both in the normal control system in real time for the automation of a power plant, for example, and in other entities in order to simulate the hardware and the process. The simulation both of the hardware of the peripherals of the control system and the process simulation advantageously take place here in one entity. For this purpose, the module library only needs to be expanded with simulation modules for the hardware of the peripherals of the control system and possibly with process simulation modules for the process.
In this manner, the control system and the simulator merge, in terms of software and therefore also in terms of computer technology, to form a unit, which entails numerous advantages:
The simulation system is configured using the same engineering or planning tools as the configuration of the control system.
The simulation system is planned with graphical tools using modular technology, just like the planning of the actual installation inside the control system.
As a result of the use of the same tools for configuration and planning, a consistency check between the automation and simulation is possible for the first time. All functions of the control system can therefore be ensured with the greatest degree of reliability.
A result is a simplified simulation system for training and test purposes. This results in reduced downtimes during operation of a technical installation, shortening and improvements during start-up and improved simulation quality since there is consistency within the entire simulator solution and everything runs on one platform.
Some of the terms used in this application are explained below in order to ensure the same understanding:
A program which includes software code that can be directly executed on an operating system and which is closed to the outside, with the result that communication with other software components takes place only via exactly defined interfaces to other software components, is generally referred to as a software component. An embedded software component is a software component which is embedded in another software component. Although it is likewise closed to the outside and communicates only via exactly defined interfaces to other software components, it is not directly executed on the operating system but rather in the environment of the software component surrounding it.
A program which includes directly executable software code, has at least one interface to an embedded software component and at least one interface to the operating system and is directly executable on the operating system is referred to as a container in computer science. A container which, for its part, is in the form of a software component and forms a universally usable execution environment for one or more embedded software components is referred to as an “execution container” below. The execution container is therefore, on the one hand, a coupling element between any desired embedded software component and the operating system and makes it possible for the embedded software component to run on the computer. On the other hand, it also facilitates and manages, in its property as a software component, communication between the embedded software components and other software components outside the container by means of external interfaces.
In this context, an entity should be understood as meaning the specific use of a type of software component in the system.
The invention is explained in more detail below using exemplary embodiments which are illustrated in the drawings, in which
As already stated in the introduction, prior simulation systems are usually designed in such a manner that either a very powerful computer which simulates the entire user interface GUI of the control system (as indicated by the box SIM1 in the figure) is provided or a separate simulation computer SIM2 rather than the automation server AUTS is accessed via the user interface GUI of the control system. The latter solution may also be implemented by means of two computers, for example by means of a computer SIMHW, which simulates the hardware of the underlying automation process, and by means of a computer SIMP which simulates the underlying process.
The automation function of the control system is illustrated in this exemplary embodiment by separate software. This is an execution container 10, that is to say a container which, for its part, is in the form of a software component 1 and forms a universally usable execution environment for one or more embedded software components 101, 102, 111 and 112. The execution container 10 manages and carries out all existing automation functions including the processing functions. The execution container 10 typically has a plurality of interfaces. An interface is used to mean a data interface below. This may be, for example, an interface 13 for the engineering or the interfaces 11 and 12 which are connected to the remaining control technology, inter alia also to other entities of an execution environment. In addition, interfaces for diagnosis, for particular messages or for operation may be provided. Embedded software components 101 and 102 are illustrated inside the execution container 10 in
Furthermore, so-called representative modules 111 and 112 are illustrated inside the execution container 10. The representative modules substantially represent existing hardware components, for example an input or output subassembly. Their software is illustrated by 81 and 82 here. The representative modules 111 and 112 ensure that the input raw data are connected to/from the field devices and monitor them and are therefore responsible for communicating with the field devices. The bus interface 18 is used for this connection. This interface of the execution container 10 leads to an automation bus (bus interface to the bus system BS) via which the input and output subassemblies and the intelligent field devices are connected to the automation server. The representative modules 111 and 112 inside the execution container 10 communicate with the input and output subassemblies (and intelligent field devices) which are indeed outside the automation server (and therefore outside the execution container 10) via this interface. Depending on the design, the automation bus may be, for example, a Profibus, a Modbus, another serial bus or else an Ethernet-based bus (for example Profinet or pure TCP/IP or UDP-based communication).
During ongoing operation of the control system, the software component 1 and therefore also the software components 101, 102 and representative modules 111 and 112, which are embedded inside 1 and are connected via their internal interfaces in such a manner that the entire automation process is implemented, are executed.
In the exemplary embodiment 200a illustrated in
The simulation system 200a from
The hardware simulator here comprises the execution environment 20, which simulates the hardware of the peripherals of the control system with all of its connections in software. So-called representative modules 211 and 212 which represent the control system peripherals which are connected, for example, directly to the automation server AUTS from
Whereas a representative module of the type 111 and 112 generally ensures that the input raw data are connected to/from the control technology interface, a representative module of the type 211 and 212 already simulates a subassembly and is therefore responsible for converting the field data into the input raw data for higher software modules.
The entire execution environment 20 can now be formed according to the container definition described above or may be in the form of a software component 2. In both cases, there are a particular number of external interfaces, for example 21, 22 and 23, which make it possible to communicate with the other program parts of the control system Like the interface 13 of the first execution environment 10 responsible for automation, the interface 23 may be responsible for filling the container with engineering data and may be connected to the component bus 90. The software components 1 and 2 and the execution environments 10 and 20 can communicate via the interfaces 18 and 28. Depending on the type of bus, the interface 28 is either identical to the interface 18 (generally for Ethernet-based bus systems) or, depending on the bus system, provides the complementary interface to the interface 18 (generally for serial bus systems with a master/slave functionality). In addition, there may be a further interface 24 which allows connection to the process simulation. This interface 24 can be used to transmit process data from a process simulator, i.e. a simulation computer responsible only for the technical process.
In this case, the process simulator comprises the execution environment 30 which simulates the process on which the technical installation is based in software. The process on which the technical installation is based may be a physical, chemical, biological or other technical process. In
According to an embodiment, the interfaces 21, 22, 23 of the execution environment 20 are virtually identical to the interfaces 31, 32, 33 of the execution environment 30 and virtually identical to the interfaces 11, 12, 13 of the first execution environment 10. This means that the two containers 20 and 30 communicate via the same interface which leads to the control system. The interfaces 21, 22 and 23 are designed in exactly the same manner, in terms of their function and physically, as the interfaces 31, 32 and 33. Minor changes for adaptation to particular boundary conditions may be possible. In principle, a plurality of variants of the connection of the two execution environments are possible. According to
In a second embodiment variant 200b for the simulation system, which is illustrated in
The simulation system 200b can be connected to the automation server, that is to say to the execution environment 10 for automation, either via a connection between the interfaces 11 and 12 and the interfaces 21 and 22 or via a connection between the interfaces 18 and 28. However, it should be noted in this case whether or not the representative modules 111 and 112 are in a simulation mode. It is also possible for the entire automation container 10 or parts of the latter to be in a simulation mode. If the execution environment 10 or parts of the latter (in particular 111 and 112) is/are in the simulation mode, the signals can be communicated either via the connection between the interfaces 11 and 12 and the interfaces 21 and 22 or via the connection between the interfaces 18 and 28. If the execution environment 10 is in the normal mode (normal operation of the control system, execution environment 10 is executed), communication between the execution environments 10 and 25 takes place via the interfaces 18 and 28 (bus interfaces, for example Profibus).
The control system or parts of the latter is/are now simulated as follows:
The first execution environment 10 is produced using a planning tool of the control system.
The second and third execution environments 20 and 30 with all embedded software components, for example 201, the representative modules 211, 212 and connections are likewise produced using the planning tool of the control system previously used for the first execution environment. Modules of the type 211, 212 may even be automatically generated.
The execution environment 10 or parts of the latter, which is/are designed to simulate the automation process on which the installation is based with its connections, is/are executed and therefore control(s) the installation.
Irrespective of the events in the actual installation, the execution environments 20 and 30 are executed either separately or together in parallel with the execution environment 10, in which case the technical installation or parts of the technical installation is/are simulated.
Number | Date | Country | Kind |
---|---|---|---|
102011077317.7 | Jun 2011 | DE | national |
This application is the US National Stage of International Application No. PCT/EP2012/060561 filed Jun. 5, 2012, and claims the benefit thereof. The International Application claims the benefit of German Application No. DE 102011077317.7 filed Jun. 9, 2011. All of the applications are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/060561 | 6/5/2012 | WO | 00 | 2/24/2014 |