The present invention relates generally to mass customized bikes, and more specifically to a simulation tool that simulates the final configuration of a customized bike. The present invention also relates to a method of using the simulation tool to create a specification that may be used to manufacture and sell customized bikes based on a combination of the rider's biomechanical measurements and the simulation.
Bikes that are mass-produced are not generally suitable or comfortable for all individuals, since each individual has a unique body shape and size. This can make it particularly difficult for individuals whose biomechanical measurements fall far outside of the normal ranges to purchase bikes that are comfortable for them. Manufacturers fail to account for the wide variety of body shapes and sizes that exist in the public, instead manufacturing bikes that are suitable for those individuals whose biomechanical measurements fall within the norm.
One industry that is particularly impacted by this mass-production standard is the motorcycle industry. Many individuals who desire to own and ride a motorcycle face limitations in the style of motorcycle that is comfortable for them to ride as a result of the individuals' physical attributes. Furthermore, existing methods for manufacturing customized motorcycles do not account for the biomechanical measurements of the rider. Such a consideration is particularly important to riders who have biomechanical measurements that differ from those of the average person. For example, women, race car drivers, and pro-athletes have biomechanical measurements that make it challenging for them to comfortably ride on and handle a motorcycle that is mass-produced. For example, a woman may like the look of a motorcycle with a rake that has a steep pitch to the fork, but may discover when she rides the motorcycle that the motorcycle has a lot of flop and therefore requires more strength to steer than she is able to sustain. Unfortunately, many of the manufacturers that claim to manufacture customized motorcycles tend to focus their customized market on catering to the rider's preference regarding the cosmetic appearance of the bike, while failing to account for each rider's individual biomechanical measurements prior to manufacturing the customized bike. Thus, these so-called “customized motorcycles” are not customized to the rider's body at all. Rather, they are customized only to the extent that the rider is able to select external or cosmetic features based on his/her unique preferences. As a result, the rider ends up paying a considerable amount of money for a bike that is not customized to meet his/her individual physical needs.
Additionally, existing methods of selling bikes, even so-called customized bikes, merely permit the rider to view and test-drive pre-manufactured bikes. This means that a rider is limited to test-driving whatever bikes a given dealer has on his/her sales lot, or which the dealer can access from the manufacturer or other dealers. Often, the bikes available for a test-drive do not offer the exact combination of features that the rider may end up selecting for his/her bike. This means that a rider may never experience the actual “feel” of riding the bike s/he purchases until after the purchase is completed and the bike is manufactured and delivered. This can result in considerable disappointment on the part of the rider, when, for example, the bike does not handle as expected, or is too difficult for the rider to control.
Finally, a rider may be forced to compromise his/her selection of a bike by being forced to choose between two or more different models or styles of bike, each of which has some features that the rider finds attractive and others that the rider doesn't like as well, based for example, on appearance, style, comfort, or other factors.
Thus, there is a need for a simulation tool that simulates the ride characteristics of a customized bike. There is also a need for a simulation tool that may be used to manufacture and sell a customized bike while at the same time serving a mass market.
One embodiment of the present invention is directed to a simulation tool that simulates the final configuration of a customized bike. The simulation tool is adjustable and comprises a frame and a means for imparting a controllable simulation of the ride characteristics to the frame. The adjustability of the simulation tool allows the rider to select adjustments to the simulation tool so that the simulation tool, and the customized bike created there from, have the ride characteristics that the rider desires, such as for examples, vibration, harmonics, bounce, controllability, steerability, stiff to ride, or a combination thereof. The frame includes first and second wheel simulation points and an engine support means. When the simulation tool is activated, the means for imparting the simulation to the frame occurs through at least the first wheel simulation point. The frame also has first and second adjustable vertical members. The first adjustable vertical member is for positioning a seat means on the simulation tool and the second adjustable vertical member adjustably secures a steering means to the frame. By adjusting these adjustable vertical members, the rider may adjust the seat means and the steering means to a preferred riding position that is both comfortable and that imparts the rider's desired ride characteristics. The frame preferably includes a first adjustable fork member connected to the second adjustable vertical member. The fork member is operatably connected to the steering means to simulate control at the first wheel simulation point. Adjustment of the fork member affects the amount of strength required by the rider to control the simulation tool so that the rider may select a preferred riding position. The frame has a first adjustable longitudinal member positioned between the first adjustable vertical member and the first adjustable fork member. The frame also has at least one pair of adjustable foot pods so that the rider may adjust the foot pods to a preferred riding position. In another preferred embodiment, the simulation tool has additional points of adjustment.
The means for simulating the ride preferably include motorized actuators, preferably step motors, controlled and activated by a computerized program synchronized with a visualization of a road or terrains.
In another embodiment of the present invention, a method of using the simulation tool to create a specification related to the rider's body is described. The specification is based on the simulation in combination with the rider's biomechanical measurements. The method of use comprises the step of collecting and recording at least one biomechanical measurement of the rider, such as physical measurements related directly to the body of the rider. The method of use also comprises the step of the rider selecting a simulation tool from a display of simulation tools. Each simulation tool of the display may simulate, for example, a different bike or may be differently adjustable. Alternatively, one such tool can be configured to a desired type of ride characteristic for the rider. The simulation tool is adjusted to a first suggested position based on the rider's biomechanical measurements. The rider is then positioned on the frame of the simulation tool and the simulation tool is activated to simulate the ride characteristics of the frame. Optionally, the rider may further adjust the simulation tool to fit his body or to obtain the desired ride characteristics. These steps may be performed in any order and optionally, at any time during the simulation, the rider may make further adjustments to the simulation tool to compare the simulation before and after the adjustments. When the simulation yields the desired ride characteristics and the simulation tool is comfortable for the rider, the rider's preferred riding position for the simulation tool is recorded and then combined with the rider's biomechanical measurements to create a specification related to the body of the rider. This method of using the simulation tool to create a specification may be used to manufacture and/or sell customized bikes, at least one accessory, or a combination thereof. Optionally, the method of use may include a passenger.
It is an object of the present invention to provide a simulation tool that is capable of simulating the performance of a customized bike.
It is a further object of the present invention to provide an adjustable simulation tool.
It is a further object of the present invention to provide a simulation tool that is capable of simulating a variety of riding surfaces.
It is still a further object of the present invention to provide a computerized method to control ride simulation of the frame with environmental visualization of a ride over various road types and weather.
It is yet a further object of the present invention to provide a method of using the simulation tool of the present invention to create a specification based on the simulation.
It is yet a further object of the present invention to provide a simulation tool that has a means for viewing an animated model of a rider positioned on the simulation tool to enable the rider to visualize him/herself on a customized bike.
It is still a further object of the present invention to include a passenger in the simulation.
It is still a further object of the present invention to provide a rider with a bike that has a customized exterior.
It is still a further object of the present invention to provide a rider with a digital art library from which the rider can choose the cosmetic features of a customized bike.
It is yet a further object of the present invention to provide a rider with a digital art library that is inexpensive to apply to the customized bike.
It is yet a further object of the present invention to provide a method of using the simulation tool to manufacture and sell customized bikes.
It is still a further object of the present invention to provide a method of selling customized motorcycles whereby a dealer does not have to maintain an inventory of bikes.
The simulation tool 10 of the present invention comprises a frame 20 that simulates at least one structural component of a bike and a means for imparting a controllable simulation of the ride characteristics to the frame 20. The means for imparting a simulation preferably include motorized actuators, preferably step motors 90, 92, 94, 95, 96, 98, controlled and activated by a computerized program 100 synchronized with a visualization, for example on a projection screen 200, of a road or terrain. See
The simulation tool 10 of the present invention may be, for examples, any motorized bike, such as a motorcycle or a dirt bike. The skilled artisan will appreciate, however, that there are other bikes that may be simulated using the present invention, and that this list is not intended to be limiting in any way. Schematics of examples of embodiments of the simulation tool 20 of the present invention in which the simulation tool 10 is a motorcycle are shown in
The frame 20 includes first and second wheel simulation points 30, 35 and an engine support means (not shown). See
Adjustment of the first adjustable fork member 50 determines the rake angle α, β, δ, measured from a point vertical to a centerline through the attachment point of first fork member 50 counterclockwise to a center of fork member 50. When first adjustable fork member 50 is adjusted so that angle a approaches 90°, first wheel simulation point 30 extends from frame 20 a distance F″, as is shown in
Angles α, β, δ affect the amount of flop that the simulation tool 10 has. As angle α approaches 90°, first adjustable longitudinal member 60 and second adjustable vertical member 42 extend to lengths B′ and E′, respectively, as shown in
Angle α, β, δ also affects the “trail” of simulation tool 10, which is the position of the second wheel simulation point 35 of the simulation tool 10 in relation to the first wheel simulation point 30. On a simulation tool 10 having angle α approaching 90°, second wheel simulation point 35 may be, for an example, within twenty-four inches (24″) of the first wheel simulation point 30. See
The simulation tool 10 of the present invention is adjustable. Adjustment of the simulation tool 10 refers to an adjustment of at least one of the adjustable features on the simulation tool. In a preferred embodiment, adjustment of the simulation tool refers to adjustment of at least one of the first adjustable longitudinal member 60, first or second adjustable vertical members 40, 42, or first adjustable fork member 50. The adjustability of the simulation tool 10 allows the rider 300 to simulate and compare the angle α, β, δ, flop, and trail of the simulation tool 10 when the simulation tool 10 is differently adjusted so that the rider 300 may select a preferred riding position based on, for example, comfort and ability to control the simulation tool 10 (as is discussed below). In an embodiment, the simulation tool is spatially adjustable. In an example, the simulation tool is infinitely adjustable between first and second endpoints, such that the simulation tool may be adjusted to any point that exists between endpoints. In another example, the simulation tool is adjustable to at least one discrete point between endpoints. In yet another example, the simulation tool 10 is three-dimensionally adjustable relative to a predetermined point of origin 38. In
Adjustment, however, is not limited to spatial orientation, but may also include a variation in how the simulation tool 10 is constructed or the materials from which the simulation tool is constructed. For an example, the frame 20 of the simulation tool 10 may be adjustable in that the rider 300 may select from at least two frames, each frame being constructed of a different material, such as for example, aluminum, steel, fiberglass, titanium, or a combination thereof. In another example, the simulation tool may have an adjustable steering means 80. As described above, the steering means 80 may be three-dimensionally adjustable relative to a predetermined point of origin such that the position of the steering means 80 may be adjusted along the X, Y, and Z axes. Additionally, the adjustable steering means 80 may be adjusted from a steering means having a solid shaped rod to a steering means having a hollow shaped rod by physically interchanging the solid steering means for one that is hollow (not shown). This physical interchangeability allows the ride to experience the vibration created by each steering means. This adjustment may occur by interchanging the steering means one for another. In yet another example, the steering means may be adjustable both three-dimensionally and by physically interchanging the steering means.
In another example, the frame 20 may further include a first at least one pair of adjustably removable shock absorbers (not shown) positioned between the fork member 50 and the frame 20 and the other of the first at least one pair of shock absorbers and between the first vertical member 40 and the first seat means 85. In yet another example, the simulation tool may not have any shock absorbers, creating a hard tail ride, but may be adjusted to be equipped with shock absorbers to create an air ride, thus simulating the two ride characteristics and enabling the rider 300 to compare the ride characteristics with and without shock absorbers to select a preferred riding position of the shock absorbers (i.e., whether or not to ultimately equip the customized bike with shock absorbers). In another example, the frame 20 may be equipped with a first at least one model of shock absorbers that may be interchanged with a second at least one model of shock absorbers so that the rider 300 may interchange first and second models of shock absorbers and compare the ride characteristics of each model.
Finally, in yet another example of an embodiment of the invention, the simulation tool 10 may have an adjustable center of gravity (not shown). For an example, a rider 300 may select a simulation tool 10 that has a low center of gravity, which makes the bike feel lighter to the rider 300 and gives the bike less lean limits. The rider 300 may adjust the center of gravity to be higher to give the bike more lean limits. This enables the rider 300 to compare the different rides created by the adjustment and to select a preferred riding position of the center of gravity.
Optionally, in an embodiment, the simulation tool 10 may further comprise a means for imparting a simulation of a riding surface to the frame. In an example, the riding surface is adjustable so that the simulation tool 10 may simulate a variety of surfaces. The riding surface may include asphalt, concrete, pavement, dirt, rock, grass, mud, weeds, or a combination thereof. In another example, the simulation tool 10 simulates bumps in the riding surface. In embodiments, the adjustability of the riding surface allows the rider 300 to simulate the ride characteristics of bikes with and without shock absorbers to select a preferred riding position, or to compare the ride characteristics of frames having different types of shock absorbers to select a preferred riding position.
The means for imparting the simulations of the frame ride and the riding surface may be a computer controlled network operably connected to the frame. In an example of an embodiment, there are motorized actuators, preferably step motors 90, 92, 94, 95, 96, 98, controlled and activated by a computerized program 100 synchronized with a visualization, for example on a projection screen 200, of a road or terrain, as is shown in
The simulation tool 10 of the present invention may also optionally further comprise a means for viewing, such as a projection screen 200, an animated model of the rider 300 positioned on the simulation tool. This allows the rider 300 to see what s/he will look like on a customized bike manufactured from the simulation. In an example of an embodiment, the means for viewing is a screen 200 that shows the rider 300 positioned on the frame 20 traveling on a road or terrain. See
The simulation tool of the present invention may also optionally further include a computer controlled means for measuring or calculating from a fixed point any adjustment made to the frame 20. The means for measuring or calculating adjustment may be used to provide an output that may be used to design or manufacture a customized bike. An example of an output is the specification shown in Table 1, discussed below.
In an embodiment, the invention is a method of using the simulation tool described above to create a specification related to the body of the rider 300, the specification being based on the simulation. In an embodiment, the specification may be used to manufacture or sell a customized bike, at least one accessory, or a combination thereof A schematic of the method of use of the present invention is depicted in
The method of use comprises collecting and recording at least one biomechanical measurement of the rider. Such biomechanical measurements may include, for examples, the rider's height, weight, arm length, leg length, shoe size, arm strength, leg strength, hand strength, or a combination thereof. The skilled artisan will appreciate, however, that there is a plurality of biomechanical measurements that may be taken for a particular rider, and that this list is not intended to be limiting.
The biomechanical measurements may be collected and recorded by any means known to those skilled in the art. In an example, the biomechanical measurements may be made by scanning the rider's body and creating a model or virtual image of the rider's body by any method known to those skilled in the art of scanners to create a model of the rider's body. In an example of an embodiment, a digitized image that outlines the rider's body is created and from that digitized image electronic data points are plotted on a digitized map. From the digitized map, the at least one biomechanical measurement may be made. In another example, the biomechanical measurements may be collected using such devices as scales, measuring tapes, and/or weight machines or free weights, or a combination thereof. The measurements may be recorded by hand, electronically, digitally, or by a combination thereof. In yet another example, the collected and recorded biomechanical measurements and the body scan may be combined to create the virtual image.
The method of use also comprises the step of the rider selecting a simulation tool from a display of at least one simulation tool. See
The method of use also comprises adjusting the selected simulation tool to a first suggested position based on the rider's biomechanical measurements. The first suggested position is an expected or anticipated preferred riding position that considers and combines the selected simulation tool, the rider's biomechanical measurements, and the ride characteristics that the rider desires from the simulation tool to arrive at the first suggested position. These considerations are not intended to be limiting, however, as the skilled artisan will appreciate that a plurality of considerations may go into determining the suggested position.
Optionally, the method of using the simulation tool may comprise the step of selecting a riding surface from at least one available riding surface. In an embodiment, there are at least two riding surfaces so that the ride characteristics of the simulation tool on each riding surface may be simulated and compared by the rider.
Continuing through the steps shown in
The method of use shown in
The rider may optionally adjust the simulation tool from the suggested position. Although the example shown in
The method of use also comprises the rider selecting a preferred riding position. The preferred riding position is the adjustment of the simulation tool that simulates the rider's desired ride characteristics. The preferred riding position of the simulation tool will be defined by different criteria unique to each rider, but for examples may be based upon such considerations as comfort, controllability, amount of strength required to control the simulation tool, physical appearance, or a combination thereof This list is not intended to be limiting, as other factors may also influence a rider's preferred riding position.
Referring again to
Referring still to
Adjustment of these features of the simulation tool, however, is not limited to adjustment based on the passenger's preferred riding position. The rider may also adjust the simulation tool to adjust features that are generally related to the passenger's comfort.
For example, the rider may select a simulation tool that does not have a grab means or a support means.
In yet another example of an embodiment of the present invention, a plurality of biographical data about the rider is collected and may optionally be used to customize the exterior of the customized bike (not shown). For example, data such as the rider's profession, hobbies, interests, or a combination thereof may be used to customize the exterior of the customized bike. In an embodiment, there is a digital art library of commissioned and consigned artwork that the rider may view and select to customize the exterior of the customized bike. In examples, the artwork is applied to the exterior of the customized bike by an electronic means, by hand, or by a combination thereof. The benefit of the digital art library being applied by an electronic means is that it provides an inexpensive alternative to customizing the exterior of each customized bike.
In an example of an embodiment, the method of use of the present invention may include viewing a virtual image of the rider, and optionally the passenger, positioned on the customized bike that will ultimately be manufactured based on the specification created from the simulation (not shown). This virtual image will show what the customized bike will look like with the rider and optionally the passenger positioned thereon.
Optionally, the method of use of the present invention comprises further adjusting the simulation tool after the customized bike is manufactured or purchased (not shown).
This further adjustability gives the rider the ability to maintain a customized bike despite changes that occur after the simulation, creation of the specification, and manufacture of the customized bike, such as for examples, changes in the rider's and/or passenger's weight or strength. Optionally, the adjustment after manufacture may include a passenger that was not included in the simulation prior to manufacture. The inclusion of a passenger may require the rider to adjust the simulation tool to a new preferred riding position to maintain the desired ride characteristics of the customized bike. Optionally, the passenger may be able to adjust the simulation tool after manufacture, as described above.
Table 1 shows an example of a specification created from the simulation. The specification may be created by hand, graphically, or by a combination thereof. In an example, the specification defines the selected simulation tool, the biomechanical measurements of the rider, and the rider's preferred riding position of the adjustable simulation tool. In the example shown, the preferred riding position of the steering means, first seat means, and first pair of foot pods are defined by a set of numbers. Each set of numbers represents the position of each steering means, seat means, and foot pods relative to a predetermined point of origin. In the example specification shown, each number corresponds to one of the X, Y, or Z axes, and represents a distance in inches from the predetermined point of origin, which in this example is a point on a first surface of the second wheel simulation point. Any point may be chosen as the point of origin, however.
As detailed in the example specification shown in Table 1, the first seat means is adjusted to a position that is five (5) inches from the point of origin along the X-axis, twelve (12) inches from the point of origin along the Y-axis, and zero (0) inches from the point of origin along the Z-axis. The steering means is adjusted to a position that is twenty (20) inches from the point of origin along the X-axis, seventeen (17) inches from the point of origin along the Y-axis, and twelve (12) inches from the point of origin along the Z-axis. Finally, Table 1 shows that the foot pods are positioned twenty-five (25) inches from the point of origin along the X-axis, four (4) inches from the point of origin along the Y-axis, and four (4) inches from the point of origin along the Z-axis.
The example specification shown in Table 1 also indicates that the rider has selected an aluminum frame and a 90 HP engine. Details on angle α and lengths of adjustable features on the frame are also provided.
Finally, the specification provides the biographical data that were collected about the rider. In this example, the rider is a doctor whose hobbies include hunting and fishing. The rider has selected to customize the exterior of the customized bike by
including a medical symbol electronically applied over the black base color of the customized bike.
In an embodiment, the present invention is a method of selling to the public a customized bike using the simulation tool 10. The method of selling comprises the step of having a customer input data relating to modelable aspects of a bike into a configurator 150 which provides a graphic display of a bike configurable by a touch screen, for example, to build a bike of the customer's selection. Only compatible parts are selectable by the customer. A database 151 is accessible through configurator 150 and contains all possible selections which can be used to make a bike, including modelable aspects of the bike. For example, these modelable aspects may include, but are not limited to, color of exterior paint, style of wheels, handlebars, or foot pegs, engine size, and chrome choices. The variations in modelable aspects available are provided on the screen configurator 150 and allow the customer to see the finished configuration of at least the physical parameters of the bike before the bike is manufactured. After the customer selects a bike preference, the configurator sends data relating to the frame's 20 physical components to computer-aided design 152 which imparts its output specification to the simulation tool 10. The method includes simulating-the configuration preferred by the customer using the simulation tool 10, whereby the customer is positioned on a simulation tool 10 having a frame 20 with the customer's selected physical components. Optionally, the customer may modify the configuration based on the simulation sent by CAD 152. The simulation tool 10 is iteratively connected to the configurator 150 so that these modifications or adjustments may be made. The simulation that meets the customer's expectations is then outputted to an input system that creates a build specification for production of the modeled bike. This build specification is sent to the factory and a customized bike is manufactured.
While the foregoing has been set forth in considerable detail, it is to be understood that the drawings, detailed embodiments, and examples are presented for elucidation and not limitation. Design variations, especially in matters of shape, size, and arrangements of parts, may be made but are within the principles of the invention. Those skilled in the art will realize that such changes or modifications of the invention or combinations of elements, variations, equivalents, or improvements therein are still within the scope of the invention as defined in the appended claims.