The invention relates to medical devices, such as catheters, that can accomplish multiple tasks at a treatment site, such as imaging, therapeutic delivery, and diagnostic measurement.
Endovascular techniques allow a variety of disorders to be evaluated and treated without creating an open surgical field. Such techniques include vascular imaging, aneurism and lesion repair, or even heart valve replacement. Because the techniques are less invasive, they reduce the length of hospital stays associated with treatment, as well as the rate of complications from the treatments. Accordingly, the techniques can reduce costs associated with chronic disease, such as cardiovascular disease.
With current technology, each procedural step typically requires a separate specialized catheter. For example, a patient having a suspected thrombus (blood clot) in an artery will have a guidewire placed in proximity to the occlusion and then an imaging catheter will be delivered to the location to evaluate the site. In particular, the guidewire may be placed within the artery and the imaging catheter may be inserted into the artery by way of the guidewire and positioned at or near the occlusion site. After evaluation, the site may be re-imaged with angiography to verify the location of the defect. The imaging catheter will then be removed, and a new drug delivery catheter will be delivered on the original guidewire. Once delivered, a thrombolytic agent can be administered via the drug delivery catheter. The drug delivery catheter is then removed, and the imaging catheter is replaced to evaluate the success of the thrombolytic agent. Alternatively, a flow-sensing catheter may be used to evaluate the success of the procedure.
Procedures requiring multiple catheter exchanges expose patients to a variety of risks. Because multiple components have to be located within the patient, the patient is exposed to substantial amounts of contrast and x-rays. In addition, each catheter exchange increases the risk of a perforated vessel or other mechanical damage. Exchange procedures can also inadvertently dislodge plaque between the entry point and the treatment site. The dislodged plaque may lead to an embolism or other damage away from the site of treatment.
The invention facilitates advanced endovascular treatments by providing devices that allow multiple endovascular procedures to be performed with the same device. Because the procedures of the present invention require no, or fewer, catheter exchanges, the procedure can be completed faster than conventional procedures generally requiring multiple exchanges, thereby reducing a patient's exposure to contrast and x-rays, and reducing the cumulative risk of perforation.
The invention includes catheters that can use various combinations of imaging, treatment, and measurement. The imaging may be intravascular ultrasound (IVUS), optical coherence tomography (OCT), or visible imaging. The treatment may be drug delivery, energy therapy (e.g., light or acoustic), aspiration, ablation, angioplasty, debulking, or implant delivery (stent, filter, valve). The measurement may include flow, pressure, temperature, oxygenation, or spectroscopic measurements to determine the presence of specific chemical species. Because the catheters are multifunctional, it will be possible to evaluate a treatment site, administer a treatment, and then re-evaluate the site to determine the success of the treatment. For example, the invention makes it possible to image an arterial lesion with intravascular ultrasound (IVUS), deliver a thrombolytic agent to the lesion, and then measure blood flow in at or near the lesion site in order to gauge the success of the treatment.
The invention is not limited to cardiovascular procedures, however, because devices according to the invention generally provide an ability to image tissue(s), deliver one or more therapies to the tissue(s), and evaluate the success of the therapy. For example, devices of the invention can be used to evaluate a site suspected to be cancerous and deliver therapeutics to the tissues simultaneously with the imaging. Using this technique, a physician can easily treat multiple sites because it is not necessary to change catheters between tumors. Furthermore, there is less risk that a tumor site will be missed because the imaging catheter was removed and the drug delivery catheter was not returned to the correct site. Additionally, because the devices of the invention have such a small diameter, disease sites can be reached through other entry points, such as the urethra.
In one instance, the invention is a device configured to provide acoustic energy to a tissue, receive reflected acoustic energy from the tissue, deliver therapy to the tissue, and measure a property of the tissue, or an environment associated with the tissue. In some embodiments, the device is configured to deliver, for example, a solution comprising a therapeutic agent to a tissue. In some embodiments, the device is configured to image the tissue with intravascular ultrasound (IVUS). Other modes of therapy are additionally available.
In another instance, the invention is a device configured to image a tissue with optical coherence tomography, deliver a therapy, and measure a property of the tissue, or an environment in proximity to the tissue. The device is configured to deliver, for example, a solution comprising a therapeutic agent to a tissue. Other modes of therapy are additionally available.
In another instance, the invention is a system for delivering therapeutic agents to a subject, including a guidewire having an ultrasound transducer, configured to image, monitor, or deliver acoustic therapy to a tissue. The system also includes a catheter having a first lumen in fluid communication with a proximal end and a distal end of the catheter, a second lumen for receiving the guidewire located in proximity to the distal end of the catheter, an ultrasound transducer in communication with a connector located in proximity to the proximal end of the catheter, and an ultrasound receiver in communication with the connector. In some embodiments, the guidewire includes an optical fiber.
In another instance, the invention is a device for delivering therapy to a subject. The device includes a first lumen in fluid communication with a proximal end and a distal end of the device, a second lumen for receiving a guidewire located in proximity to the distal end of the device, an ultrasound transducer in communication with a connector located in proximity to the proximal end of the device, and an ultrasound receiver in communication with the connector. The ultrasound transducer and receiver may each include a piezoelectric element in electrical communication with the connector. The ultrasound transducer may further include a photoacoustic member in optical communication with the connector. The ultrasound receiver may include a photoreflective member in optical communication with the connector. The ultrasound transducer may be configured to produce acoustic energy with a frequency between 15 and 30 MHz and/or between 5 and 15 MHz and/or between 100 kHz and 5 MHz. Further, the ultrasound transducer may be located at a distal tip of the device. The ultrasound transducer may be a pulsed ultrasound transducer.
The device may further include an optical fiber in optical communication with the proximal end and the distal end of the device. The optical fiber may include a blazed Bragg grating. The device may further include a lens located in proximity to the distal end of the device and in optical communication with the optical fiber.
In some embodiments, the first lumen of the device can be used to deliver a therapeutic agent. For example, the first lumen can be used to aspirate a tissue, to inflate a balloon at the distal end of the device, or combinations thereof. The device may further include a port in fluid communication with the proximal end of the first lumen. Further, in some embodiments, the second lumen may be less than 100 mm in length. In some embodiments, the device can be delivered through an introducer having an opening of 12 French or less (4 mm or smaller). Further, the device may include a radiopaque label. In some embodiments, the device may be a catheter.
In another instance, the invention is a system for delivering therapy to a subject. The system includes a guidewire including a guidewire ultrasound transducer in communication with a guidewire connector located at the proximal end of the guidewire. The system further includes a catheter including a first lumen in fluid communication with a proximal end and a distal end of the catheter, a second lumen for receiving the guidewire located in proximity to the distal end of the catheter, a plurality of catheter ultrasound transducers in communication with a connector located in proximity to the proximal end of the catheter, and a plurality of catheter ultrasound receivers in communication with the connector.
In some embodiments, the guidewire additionally includes a guidewire ultrasound receiver in communication with the guidewire connector. In some embodiments, at least one of the guidewire ultrasound transducers and receivers may include a piezoelectric element in electrical communication with the guidewire connector. In some embodiments, at least one of the guidewire ultrasound transducers and receivers may each include a photoacoustic member in optical communication with the guidewire connector. In some embodiments, at least one of the guidewire ultrasound transducers and receivers may each include a photoreflective member in optical communication with the guidewire connector. In some embodiments, at least one of the catheter ultrasound transducers and receivers may include piezoelectric elements in electrical communication with the catheter connector. In some embodiments, the catheter ultrasound transducers may include photoacoustic members in optical communication with the catheter connector. In some embodiments, the catheter ultrasound receivers may include photoreflective members in optical communication with the catheter connector. Further, in some embodiments, the guidewire includes at least one of an optical fiber and a lens.
In another instance, the invention is a system for delivering therapy to a subject. The system includes a guidewire including a guidewire ultrasound transducer in communication with a guidewire connector located at the proximal end of the guidewire. The system further includes a catheter including a first lumen in fluid communication with a proximal end and a distal end of the catheter, a second lumen for receiving the guidewire located in proximity to the distal end of the catheter, and a rotational imaging element.
The invention also provides methods for treating tissues, including imaging a tissue with acoustic energy from a device, administering therapy to the tissue with the device, and measuring a property of an environment associated with the tissue with the device. The imaging includes at least one of IVUS and OCT methods. The administering of therapy to the tissue may include delivering a solution including a therapeutic agent and further administering electromagnetic radiation to the therapeutic agent. The administering of therapy may also, or alternatively, include placing a medical device selected from a strut, stent, valve, or filter.
The property may include blood flow in a vessel, blood pressure in a vessel, blood oxygenation in a vessel, temperature, presence of a chemical species, or a combination thereof. The measuring may include making a spectroscopic measurement selected from infrared absorption, visible absorption, Raman, fluorescence, or combinations thereof. The therapy may also, or alternatively, include aspirating a tissue, angioplasty, and/or ablation.
The invention also provides methods for treating tissues, including imaging a tissue with acoustic energy from a device, administering therapy to the tissue with the device, and administering acoustic therapy to the tissue with the device. The method also includes measuring a property of the tissue or an environment associated with the tissue with the device. The imaging includes at least one of IVUS and OCT methods. The administering of therapy to the tissue may include delivering a solution including a therapeutic agent and further administering electromagnetic radiation to the therapeutic agent. The administering of therapy may also, or alternatively, include placing a medical device selected from a strut, stent, valve, or filter.
The property may include blood flow in a vessel, blood pressure in a vessel, blood oxygenation in a vessel, temperature, presence of a chemical species, or a combination thereof. The measuring may include making a spectroscopic measurement selected from infrared absorption, visible absorption, Raman, fluorescence, or combinations thereof. The therapy may also, or alternatively, include aspirating a tissue, angioplasty, and/or ablation.
These and other aspects, advantages, and features of the invention will be better understood with reference to the following drawings and description.
The invention provides advanced intraluminal devices configured to image tissues, deliver therapy to the tissues, and monitor the results of the therapy on an environment in proximity to the tissue. The devices allow a variety of treatments to be administered with the devices, including, but not limited to drug delivery, energy therapy (e.g., light or acoustic), aspiration, ablation, angioplasty, debulking, or implant delivery (stent, filter, valve). For example, the invention includes drug delivery catheters that are configured to provide IVUS imaging and Doppler flow monitoring. The devices of the invention may use “conventional” IVUS components, such as piezoelectric transducers, or the devices may use optical IVUS components, described in detail below. The devices may use optical coherence tomography (OCT). The devices lend themselves to methods for the treatment of tissues in need thereof as well as systems including the devices of the invention.
Using the devices of the invention, a variety of target tissues can be imaged, diagnosed, treated, and evaluated with the devices, methods, and systems of the invention. In particular the invention is useful for treating tissues that are accessible via the various lumens of the body, including, but not limited to, blood vessels, vasculature of the lymphatic and nervous systems, structures of the gastrointestinal tract (lumens of the small intestine, large intestine, stomach, esophagus, colon, pancreatic duct, bile duct, hepatic duct), lumens of the reproductive tract (vas deferens, uterus and fallopian tubes), structures of the urinary tract (urinary collecting ducts, renal tubules, ureter, and bladder), and structures of the head and neck and pulmonary system (sinuses, parotid, trachea, bronchi, and lungs). Accordingly, the devices, methods, and systems of the invention may be beneficial in the treatment of a number of disorders, including, but not limited to, atherosclerosis, ischemia, coronary blockages, thrombi, occlusions, stenosis, and aneurysms. The devices, methods, and systems can also be used to treat cancer, inflammatory disease (e.g., autoimmune disease, arthritis), pain, and genetic disorders.
The devices, methods, and systems of the invention can be used to administer a variety of therapeutics, such as thrombolytic agents, anti-cancer agents, anti-inflammatory agents, analgesic agents, or combinations thereof. For example, the therapeutic agent may comprise streptokinases, anistreplases, urokinases, tissue plasminogen activators (t-PA), alteplases, tenecteplases, or reteplases. The devices, methods, and systems of the invention may be used to administer more than one therapeutic or more than one class of therapeutics. For example, a solution delivered to a tissue in need of treatment may comprise a thrombolytic drug and an anti-coagulant, such as heparin.
The devices, methods, and systems of the invention can be used to administer therapy with a catheter. The devices can be used for angioplasty, such as balloon angioplasty. The devices can be used for ablation, such as balloon ablation, or probe ablation. The devices can be used to aspirate or remove tissues. The devices can be used for medical device placement, such as stents, struts, valves, filters, pacemakers, or radiomarkers. The devices, methods, and systems of the invention may be used to administer more than one therapy of combinations of therapies and therapeutics, e.g., drugs. For example, a solution delivered to a tissue in need of treatment may comprise a thrombolytic drug and aspiration.
Devices of the invention are typically catheters. A variety of intravascular catheters are known. In practice, intravascular catheters are delivered to a tissue of interest via an introducer sheath placed in the radial, brachial or femoral artery. The introducer is inserted into the artery with a large needle, and after the needle is removed, the introducer provides access for guidewires, catheters, and other endovascular tools. An experienced cardiologist can perform a variety of procedures through the introducer by inserting tools such as balloon catheters, stents, or cauterization instruments. When the procedure is complete the introducer is removed, and the wound can be secured with suture tape. Catheter lengths vary up to 400 cm, depending on the anatomy and work flow. The ends of the catheter are denoted as distal (far from the user, i.e., inside the body) and proximal (near the user, i.e., outside the body).
An important function of the devices is an ability to image a tissue prior to treatment. In particular, the invention provides devices, systems and methods for imaging tissue using intravascular ultrasound (IVUS). IVUS uses a catheter with an ultrasound probe attached at the distal end. Systems for IVUS are also discussed in U.S. Pat. No. 5,771,895, U.S. Pat. Pub. 2009/0284332, U.S. Pat. Pub. 2009/0195514 A1, U.S. Pat. Pub. 2007/0232933, and U.S. Pat. Pub. 2005/0249391, the entire contents of each of which are incorporated herein by reference.
In some embodiments, the devices are configured to image tissues with optical coherence tomography (OCT), which uses interferometric measurements to determine radial distances and tissue compositions. Systems for OCT imaging are discussed in U.S. Pat. No. 7,813,609 and US Patent Publication No. 20090043191, both of which are incorporated herein by reference in their entireties.
The disclosed devices are commonly used in conjunction with guidewires. Guidewires are known medical devices used in the vasculature or other passageway and act as a guide for other devices, e.g., a catheter. Typically, the guidewire is inserted into an artery or vein and guided through the vasculature under fluoroscopy (real time x-ray imaging) to the location of interest. (As discussed previously, some procedures require one or more catheters to be delivered over the guide wire to diagnose, image, or treat the condition.) Guidewires typically have diameters of 0.010″ to 0.035″, with 0.014″ being the most common. Guidewires (and other intravascular objects) are also sized in units of French, each French being ⅓ of a mm or 0.013″. Guidewire lengths vary up to 400 cm, depending on the anatomy and work flow. Often a guidewire has a flexible distal tip portion about 3 cm long and a slightly less flexible portion about 30 to 50 cm long leading up to the tip with the remainder of the guidewire being stiffer to assist in maneuvering the guidewire through tortuous vasculature, etc. The tip of a guidewire typically has a stop or a hook to prevent a guided device, e.g., a catheter from passing beyond the distal tip. In some embodiments, the tip can be deformed by a user to produce a desired shape.
Advanced guidewire designs include sensors that measure flow and pressure, among other things. For example, the FLOWIRE Doppler Guide Wire, available from Volcano Corp. (San Diego, Calif.), has a tip-mounted ultrasound transducer and can be used in all blood vessels, including both coronary and peripheral vessels, to measure blood flow velocities during diagnostic angiography and/or interventional procedures. Advanced guidewires, such as FLOWIRE, can be used with the described inventions. In some instances, an advanced guidewire can be used to supplement the capabilities of the devices of the invention. In some instances, an advanced guidewire can be used to replace a capability (e.g., flow sensing) of a disclosed device. In some instances, and advanced guidewire is incorporated into a system of the invention, e.g., additionally including a catheter described below.
The distal end 110 of a device of the invention (i.e., a catheter) is shown in
The ultrasound transducers 140 are constructed from piezoelectric components that produce sound energy at 20-50 MHz. The ultrasound transducers 140 are known in the field of intravascular ultrasound imaging, and are commercially available from suppliers such as Blatek, Inc. (State College, Pa.). As shown in
As can be seen more clearly in
The Doppler sensor 160, located in the distal tip 115 of the device allows a physician to measure and observe a property of an environment associated with the tissue being imaged and treated. For example, in one embodiment, the tissue being imaged and treated may be an arterial lesion. Accordingly, the Doppler sensor 160 may be configured to measure a property (e.g., blood flow) of an environment associated with the lesion. As generally understood, an environment associated with the lesion may refer any environment that is connected, either directly or indirectly, to the lesion or sharing a common pathway (e.g., artery) with the lesion. For example, the environment may include one or more portions of the lumen of the artery in which the lesion has formed. The one or more portions may include a portion of the lumen adjacent to the lesion or a portion that is located a distance away from the lesion, either downstream or upstream, along a length of the artery. Accordingly, the Doppler sensor 160 can be inserted within the lumen of the artery and positioned at a location of the lumen associated with the lesion, so as to acquire measurements of blood flow in order to gauge the success of treatment to the lesion. For example, the Doppler sensor 160 may be positioned within a portion of the lumen directly adjacent to the lesion and may acquire blow flow data of the artery. In other examples, the Doppler sensor 160 can be positioned in other portions of the lumen (e.g., downstream and a distance away from the lesion, upstream and a distance away from the lesion, locations therebetween, etc.).
The Doppler sensor is electrically connected (not shown) to the proximal end of the device, which provides power for the sensor and a return path for recovering measurements. Typically, the sensor produces ultrasound in the range of 5 to 15 MHz, e.g., about 12 MHz. In other embodiments, the Doppler sensor may be replaced with an acoustic therapy transducer (not shown) to deliver acoustic waves to a tissue being treated. Acoustic therapy transducers typically operate in the range of 100 kHz and 5 MHz. Because the Doppler sensor and the acoustic therapy transducers are rather small, it is also possible for a device to include both a Doppler sensor and an acoustic therapy transducer.
Other sensors can also be accommodated in distal end 110 and are configured to measure one or more properties of an environment associated with the tissue being imaged and treated, as described herein. For example, the distal end 110 may include a thermocouple, a thermistor, or a temperature diode to measure the temperature of the surroundings associated with the tissue. The distal end 110 may include a pressure sensor, such as a piezoelectric pressure sensor, or a semiconductor pressure sensor. The distal end 110 may also include one or more elements to perform spectroscopic measurements, e.g., infrared absorption spectroscopy, visible wavelength absorption spectroscopy, fluorescence spectroscopy, or Raman spectroscopy. In some embodiments, the spectroscopic measurement will rely on collecting back-scattered or fluorescent light. In some embodiments, the spectroscopic measurements can be made with optical elements that are also used to make OCT measurements. In some embodiments, the distal end 110 of the catheter will include an optical pathway which is in fluid communication with the surroundings of the catheter, thereby allowing direct absorption measurements, for example, visible absorbance spectroscopy.
Using spectroscopic methods, it is possible to probe a tissue, or the environment around the tissue, for the presence of specific chemical species indicative of the health of the tissue (or the surroundings) or indicative of the efficacy of an administered treatment. The chemical species may include, for example, calcium ions or sodium ions. The methods may also be used to monitor oxygen content of the blood or to determine a level of hemoglobin, for example. In some instances, a dye, i.e., an intercalating dye, can be used in conjunction with the spectroscopic methods to determine the presence of free nucleic acids.
A different embodiment of the imaging/delivery/evaluation catheter 200 is shown in
The catheter 200 employs fiber Bragg gratings (225 and 245) to couple light into or out of source and return optical fibers 220 and 240. A fiber Bragg grating is a periodic modulation of the index of refraction in a fiber. When the periodicity, d, of the modulation satisfies the Bragg condition (d=nλ/2) for a wavelength 2, that wavelength will be reflected. That is, the fiber Bragg grating acts as a wavelength-selective mirror. The degree of index change and the length of the grating influences the ratio of light reflected to that transmitted through the grating. A review of fiber Bragg gratings, including blazed Bragg gratings can be found at A. Othonos, Rev. Sci. Inst., 68 (12), 4309 (1997), incorporated by reference herein in its entirety.
As shown in
In one embodiment, the photoacoustic member 230 has a thickness in the direction of propagation that increases the efficiency of emission of acoustic energy. In some embodiments, the thickness of the photoacoustic material is selected to be about one fourth of the acoustic wavelength of the material at the desired acoustic frequency (“quarter wave matching”). Providing photoacoustic material with quarter wave matching improves the generation of acoustic energy by the photoacoustic material, resulting in improved ultrasound images. Using the quarter wave matching and sensor shaping techniques, the productivity of the fiber blazed Bragg 225 and photoacoustic member 230 approaches the productivity of piezoelectric transducers known in the field of ultrasound imaging.
In preferred embodiments, the incident light in source optical fiber 220 is pulsed at a frequency at which the acoustic waves will be produced. Light sources that produce pulses at ultrasonic frequencies, e.g., 1 MHz and greater, are commercially-available, typically solid state lasers. Nonetheless, photoacoustic materials have natural acoustic resonances, and the photoacoustic material will naturally produce a spectrum of acoustic frequencies when the material absorbs the incident light, and the photoacoustic material relaxes by producing acoustic waves. If it is desired to rely on the natural frequencies of the photoacoustic material, the incident light in source optical fiber 220 may be continuous.
The acoustic waves generated by the photoacoustic member 230 interact with tissues vasculature) in the vicinity of the distal end 110 of the catheter 200, and are reflected back (echoes). The reflected acoustic waves are collected and analyzed to obtain information about the distance from the tissues to the catheter 200, or the type of tissue, or other information, such as blood flow or pressure. The return acoustic energy can also be monitored using light via coupled optical fibers as shown in detail in
The photoreflective member 250 is flexibly resilient, and is displaced by acoustic waves reflected by the tissues. A transparent (or translucent) flexible material is disposed between the return optical fiber 240 and the photoreflective member 250, thereby allowing a deflection in the photoreflective member 250 to change the path length of the light between the return optical fiber 240 and the photoreflective member 250. In alternative embodiments, a void can be left between the return optical fiber 240 and the photoreflective member 250. The dashed curved line in the photoreflective members 250 in
In the absence of incident acoustic energy, the photoreflective material will be in a neutral position, providing a baseline path length between the return optical fiber 240 and the photoreflective member 250. Incident light, transmitted via the return optical fiber 240, will be reflected from the photoreflective member 250, and return to a detector at the proximal end of the catheter 200 (not shown) with a characteristic round trip time. The light transmitted via the return optical fiber 240 may be the same light as used to produce acoustic energy (discussed above) or a different light (wavelength, pulse frequency, etc.) may be used. When the photoreflective member 250 is deflected, i.e., with the absorbance of incident acoustic waves, the path length between the return optical fiber 240 and the photoreflective member 250 will change, resulting in a measurable change in the properties of the reflected light, as measured by a detector at the proximal end of catheter 200 (not shown). The change may be a shift in the time of the return trip, or the shift may be an interferometric measurement. The change in the properties of the reflected light can then be analyzed to determine properties of the tissues from which the acoustic waves were reflected.
The catheter 200 can be fabricated with various techniques. In an embodiment, the catheter 200 is assembled, such as by binding the optical fibers 220 and 240 to the device and adding coating 170. The photoacoustic member 230 is then integrated into the device 200 by etching or grinding a groove in the assembled catheter 200 above the intended location of the blazed Bragg grating 245 in the source optical fiber 220. As discussed above, the depth of the groove in the assembled catheter 200 can play a role in the efficiency of the acoustic wave production (e.g., quarter wave matching). After the photoacoustic member 230 location has been defined, the blazed Bragg grating 225 can be added to the source optical fiber 220. In one example, the grating 225 is created using an optical process in which the portion of the source optical fiber 220 is exposed to a carefully controlled pattern of UV radiation that defines the blazed Bragg grating 225. After the blazed Bragg grating 225 is complete, a photoacoustic material is deposited or otherwise added over the blazed Bragg grating 225 to complete the photoacoustic member 230. An exemplary photoacoustic material is pigmented polydimethylsiloxane (PDMS), such as a mixture of PDMS, carbon black, and toluene. The photoacoustic materials may naturally absorb the light from the source optical fiber 220, or the photoacoustic material may be supplemented with dyes, e.g., organic dyes, or nanomaterials (e.g., quantum dots) that absorb the light strongly. The photoacoustic material can also be “tuned” to selectively absorb specific wavelengths by selecting suitable components.
While not shown in the figures, the described catheters may include radiopaque markers at various locations on or within the catheter to identify structures, e.g., with fluoroscopy. The radiopaque markers will be small in most instances, having a longitudinal dimension of less than 5 mm, e.g., less than 4 mm, e.g., less than 3 mm, e.g., less than 2 mm, e.g., less than 1 mm. The radiopaque markers will be at least 0.2 mm, e.g., at least 0.3 mm, e.g., at least 0.4 mm, e.g., at least 0.5 mm. The radiopaque markers may vary in axial size or diameter, depending upon their shape; however it will necessarily be small enough to fit within a catheter, e.g., catheter 100 or 200. The radiopaque markers may be constructed from any material that does not transmit x-rays and has suitable mechanical properties, including platinum, palladium, rhenium, tungsten, and tantalum.
An alternative embodiment is an aspiration catheter 300, suitable for imaging, aspirating, and sensor measurement. The distal end 110 of the aspiration catheter 300 is shown in
As can be seen more clearly in
The Doppler sensor 160, located in the distal tip 115 of the device allows a physician to observe blood flow in proximity to the tissues being imaged and aspirated. The Doppler sensor is electrically connected (not shown) to the proximal end of the device, which provides power for the sensor and a return path for recovering measurements. Typically, the sensor produces ultrasound in the range of 5 to 15 MHz, e.g., about 12 MHz. In other embodiments, the Doppler sensor may be replaced with an acoustic therapy transducer (not shown) to deliver acoustic waves to a tissue being treated. Acoustic therapy transducers typically operate in the range of 100 kHz and 5 MHz. Because the Doppler sensor and the acoustic therapy transducers are rather small, it is also possible for a device to include both a Doppler sensor and an acoustic therapy transducer.
A distal end view of catheter 100 and catheter 200 is identical, as shown in
Cross-sectional views of catheters 100 and 200 are shown in
Other embodiments may combine delivery therapies with optical coherence tomography (OCT) imaging. In OCT, light from a broad band light source or tunable laser source is split by an optical fiber splitter with one fiber directing light to the distal end of a catheter, e.g., for imaging a tissue, and the other fiber directing light to a reference mirror. The distal end of the optical fiber is interfaced with the distal end of a catheter for interrogation of tissues, etc. The light emerges from the optical fiber and is reflected from the tissue being imaged. The reflected light from the tissue is collected with the optical fiber and recombined with the signal from the reference mirror forming interference fringes (measured by a detector) allowing precise depth-resolved imaging of the tissue on a micron scale.
An alternative embodiment, configured to image the tissues with OCT is shown in
Catheter 500 includes rotational element 320 and mirror 330 which direct light out of an optical fiber (not shown) and collect light that scatters off of the imaged tissue for the purpose of creating tissue measurements using the technique of optical coherence tomography (OCT), OCT typically uses a superluminescent diode source or tunable laser source emitting a 400-2000 nm wavelength, with a 50-250 nm band width (distribution of wave length) to make in-situ tomographic images with axial resolution of 2-20 μm and tissue penetration of 2-3 mm. The near infrared light sources used in OCT instrumentation can penetrate into heavily calcified tissue regions characteristic of advanced coronary artery disease. With cellular resolution, application of OCT may be used to identify other details of the vulnerable plaque such as infiltration of monocytes and macrophages. In short, application of OCT can provide detailed images of a pathologic specimen without cutting or disturbing the tissue.
The rotational element 320 may only rotate, or the rotational element 320 may translate and rotate, i.e., pull-back imaging. The principles of pull-back OCT devices are described in detail in U.S. Pat. No. 7,813,609 and US Patent Publication No. 200900431911 both of which are incorporated herein by reference in their entireties.
Because of the presence of the rotational element 320, the drug delivery lumen 120 is axially displaced. Other embodiments of the invention need not adopt this design. For example, drug delivery lumen 120 may comprise multiple lumens that are arranged about rotational element 320 to provide adequate throughput for the delivery of therapeutic agents, typically formulated as a liquid. Additionally, while the views of
The Doppler sensor 160, located in the distal tip 115 of the device allows a physician to observe blood flow in proximity to the tissues being imaged and treated. The Doppler sensor is electrically connected (not shown) to the proximal end of the device, which provides power for the sensor and a return path for recovering measurements. Typically, the sensor produces ultrasound in the range of 5 to 15 MHz, e.g., about 12 MHz. In other embodiments, the Doppler sensor may be replaced with an acoustic therapy transducer (not shown) to deliver acoustic waves to a tissue being treated. Acoustic therapy transducers typically operate in the range of 100 kHz and 5 MHz. Because the Doppler sensor and the acoustic therapy transducers are rather small, it is also possible for a device to include both a Doppler sensor and an acoustic therapy transducer.
The corresponding proximal end 610 of a catheter 600 is shown in
The proximal end 610 will also include one or more electrical connections 145 in communication with electrical components at the distal end, e.g., ultrasound transducer 140, ultrasound receiver 150, or Doppler sensor 160. The proximal end 610 may further comprise one or more optical fibers 165 in optical communication with optical components at the distal end, e.g., photoacoustic member 230, photoreflective member 250 or an embodiment of the Doppler sensor 160 including a photoacoustic material. The electrical connections 145 and/or the optical fibers 165 exit the proximal end 610 of the catheter 600 at or near the proximal tip, where they are coupled to electro-optical components for imaging and evaluation. In some embodiments, the electrical connections 145 and/or the optical fibers 165 are bundled into a pigtail 723 having a connector designed to interconnect with a Patient Interface Module (PIM), discussed below.
A system 700, including a multifunction catheter 710, is shown in
As shown in
In embodiments using optical fibers, such as catheter 200, the source light and the return light may be coupled or split with fiber couplers, dichroics, and filters as necessary to achieve the desired performance. Additionally, multiple light sources may be used or only a single light source. Furthermore, a particular fiber need not be limited to a single light source, as some fibers can support multiple wavelengths simultaneously and the wavelengths can be separated for analysis using known multiplexing techniques. These functions will be controlled by the imaging controller 736.
The sources of light may be any known light source configured to produce light with the desired temporal and frequency characteristics, for example, solid-state lasers, gas lasers, dye lasers, or semiconductor lasers. The sources may also be LED or other broadband sources, provided that the sources are sufficiently powerful to drive the photoacoustic transducers. In some instances the imaging controller 736 will gate the sources to provide the needed temporal resolution. In other instances, the sources will inherently provide short pulses of light at the desired frequency, e.g., 20 MHz, and the imaging controller will synchronize other imaging tasks to this natural frequency. Embodiments using optical fibers for acoustic signal collection will additionally include a detector (not shown) coupled to return fiber 240. The detector will be used to monitor changes to the coupled light to determine how the acoustic environment of the catheter 200 is changing. The detector may be a photodiode, photomultiplier tube, charge coupled array, microchannel detector, or other suitable detector. The detector may directly observe shifts in return light pulses, e.g., due to deflection of the photoreflective material, or the detector may observe interferometric changes in the returned light due to changes in path length or shape. Fourier transformation from time to frequency can also be used to improve the resolution of the detection.
At least a portion of the output from the PIM 730 will be directed to image processing 760 prior to being output to a display 770 for viewing. The image processing will deconvolve received signals to produce distance and/or tissue measurements, and those distance and tissue measurements will be used to produce an image, for example an intravascular ultrasound (IVUS) image. The image processing may additionally include spectral analysis, i.e., examining the energy of the returned acoustic signal at various frequencies. Spectral analysis is useful for determining the nature of the tissue and the presence of foreign objects. A plaque deposit, for example, will typically have a different spectral signature than nearby vascular tissue without such plaque, allowing discrimination between healthy and diseased tissue. Also a metal surface, such as a stent, will have a different spectral signal. Such signal processing may additionally include statistical processing (e.g., averaging, filtering, or the like) of the returned ultrasound signal in the time domain. Other signal processing techniques known in the art of tissue characterization may also be applied.
Other image processing may facilitate use of the images or identification of features of interest. For example, the border of a lumen may be highlighted or plaque deposits may be displayed in a visually different manner (e.g., by assigning plaque deposits a discernible color) than other portions of the image. Other image enhancement techniques known in the art of imaging may also be applied. In a further example, similar techniques can be used to discriminate between vulnerable plaque and other plaque, or to enhance the displayed image by providing visual indicators to assist the user in discriminating between vulnerable and other plaque. Other measurements, such as flow rates or pressure may be displayed using color mapping or by displaying numerical values.
As shown in
In other embodiments, a system may comprise a vacuum aspiration pump or additional mechanical components, e.g., rotary power, as needed to achieve the desired procedures.
In embodiments using OCT, the system 700 will additionally comprise an OCT subsystem, depicted in
In OCT, a light source delivers a beam of light to an imaging device to image target tissue. Light sources can be broad spectrum light sources, or provide a more limited spectrum of wavelengths, e.g., near infra-red. The light sources may be pulsed or continuous wave. For example the light source may be a diode (e.g., superluminescent diode), or a diode array, a semiconductor laser, an ultrashort pulsed laser, or supercontinuum light source. Typically the light source is filtered and allows a user to select a wavelength of light to be amplified. Wavelengths commonly used in medical applications include near-infrared light, for example between about 800 nm and about 1700 nm. Methods of the invention apply to image data obtained from obtained from any OCT system, including OCT systems that operate in either the time domain or frequency (high definition) domain.
In time-domain OCT, an interference spectrum is obtained by moving a scanning optic, such as a reference mirror, longitudinally to change the reference path and match multiple optical paths due to reflections of the light within the sample. The signal giving the reflectivity is sampled over time, and light traveling at a specific distance creates interference in the detector. Moving the scanning mechanism laterally (or rotationally) across the sample produces reflectance distributions of the sample (i.e., an imaging data set) from which two-dimensional and three-dimensional images can be produced.
In frequency domain OCT, a light source configured to emit a range of optical frequencies passes through an interferometer, where the interferometer combines the light returned from a sample with a reference beam of light from the same source, and the intensity of the combined light is recorded as a function of optical frequency to form an interference spectrum. A Fourier transform of the interference spectrum provides the reflectance distribution along the depth within the sample.
Several methods of frequency domain OCT are described in the literature. In spectral-domain OCT (SD-OCT), also sometimes called “Spectral Radar” (Optics Letters, vol. 21, No. 14 (1996) 1087-1089), a grating or prism or other means is used to disperse the output of the interferometer into its optical frequency components. The intensities of these separated components are measured using an array of optical detectors, each detector receiving an optical frequency or a fractional range of optical frequencies. The set of measurements from these optical detectors forms an interference spectrum (Smith, L. M. and C. C. Dobson, Applied Optics vol. 28: (1989) 3339-3342), wherein the distance to a scatterer is determined by the wavelength dependent fringe spacing within the power spectrum. SD-OCT has enabled the determination of distance and scattering intensity of multiple scatters lying along the illumination axis by analyzing the exposure of an array of optical detectors so that no scanning in depth is necessary.
Alternatively, in swept-source OCT, the interference spectrum is recorded by using a source with adjustable optical frequency, with the optical frequency of the source swept through a range of optical frequencies, and recording the interfered light intensity as a function of time during the sweep. An example of swept-source OCT is described in U.S. Pat. No. 5,321,501.
Time- and frequency-domain systems can further vary based upon the optical layout of the systems: common beam path systems and differential beam path systems. A common beam path system sends all produced light through a single optical fiber to generate a reference signal and a sample signal whereas a differential beam path system splits the produced light such that a portion of the light is directed to the sample and the other portion is directed to a reference surface. Common beam path systems are described in U.S. Pat. No. 7,999,938; U.S. Pat. No. 7,995,210; and U.S. Pat. No. 7,787,127 and differential beam path systems are described in U.S. Pat. No. 7,783,337; U.S. Pat. No. 6,134,003; and U.S. Pat. No. 6,421,164, the contents of each of which are incorporated by reference herein in their entireties.
In certain embodiments, the invention provides a differential beam path OCT system with intravascular imaging capability as illustrated in
An embodiment of imaging engine 859 is shown in
The reflected light is transmitted along sample path 913 to be recombined with the light from reference path 915 at splitter 919. A variable delay line (VDL) 925 on the reference path uses an adjustable fiber coil to match the length of reference path 915 to the length of sample path 913. The reference path length is adjusted by a stepper motor translating a mirror on a translation stage under the control of firmware or software.
The combined light from splitter 919 is split into orthogonal polarization states, resulting in RF-band polarization-diverse temporal interference fringe signals. The interference fringe signals are converted to photocurrents using PIN photodiodes 929a, and 929b, on optical controller board (OCB) 851. The interfering, polarization splitting, and detection steps are done by a polarization diversity module (PDM) (not shown) on OCB 851. Signal from OCB 851 is sent to DAQ 855, shown in
Additional embodiments of the invention including other combinations of imaging, treatment and assessment will be evident to those of skill in the art in view of this disclosure and the claims below.
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, and web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.
This application claims the benefit of, and priority to, U.S. Provisional Application Ser. No. 61/745,119, filed Dec. 21, 2012, the contents of which are incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3301258 | Werner | Jan 1967 | A |
3617880 | Cormack et al. | Nov 1971 | A |
3789841 | Antoshkiw | Feb 1974 | A |
3841308 | Tate | Oct 1974 | A |
4140364 | Yamashita et al. | Feb 1979 | A |
4274423 | Mizuno et al. | Jun 1981 | A |
4344438 | Schultz | Aug 1982 | A |
4398791 | Dorsey | Aug 1983 | A |
4432370 | Hughes et al. | Feb 1984 | A |
4552554 | Gould et al. | Nov 1985 | A |
4577543 | Wilson | Mar 1986 | A |
4676980 | Segal et al. | Jun 1987 | A |
4682895 | Costello | Jul 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4744619 | Cameron | May 1988 | A |
4762129 | Bonzel | Aug 1988 | A |
4766386 | Oliver et al. | Aug 1988 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4794931 | Yock | Jan 1989 | A |
4800886 | Nestor | Jan 1989 | A |
4803639 | Steele et al. | Feb 1989 | A |
4816567 | Cabilly et al. | Mar 1989 | A |
4819740 | Warrington | Apr 1989 | A |
4821731 | Martinelli et al. | Apr 1989 | A |
4824435 | Giesy et al. | Apr 1989 | A |
4830023 | de Toledo et al. | May 1989 | A |
4834093 | Littleford et al. | May 1989 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4864578 | Proffitt et al. | Sep 1989 | A |
4873690 | Adams | Oct 1989 | A |
4877314 | Kanamori | Oct 1989 | A |
4887606 | Yock et al. | Dec 1989 | A |
4917085 | Smith | Apr 1990 | A |
4917097 | Proudian et al. | Apr 1990 | A |
4928693 | Goodin et al. | May 1990 | A |
4932413 | Shockey et al. | Jun 1990 | A |
4932419 | de Toledo | Jun 1990 | A |
4948229 | Soref | Aug 1990 | A |
4951677 | Crowley et al. | Aug 1990 | A |
4969742 | Falk et al. | Nov 1990 | A |
4987412 | Vaitekunas et al. | Jan 1991 | A |
4993412 | Murphy-Chutorian | Feb 1991 | A |
4998972 | Chin et al. | Mar 1991 | A |
5000185 | Yock | Mar 1991 | A |
5024234 | Leary et al. | Jun 1991 | A |
5025445 | Anderson et al. | Jun 1991 | A |
5032123 | Katz et al. | Jul 1991 | A |
5037169 | Chun | Aug 1991 | A |
5039193 | Snow et al. | Aug 1991 | A |
5040548 | Yock | Aug 1991 | A |
5041108 | Fox et al. | Aug 1991 | A |
5054492 | Scribner et al. | Oct 1991 | A |
5065010 | Knute | Nov 1991 | A |
5065769 | de Toledo | Nov 1991 | A |
5085221 | Ingebrigtsen et al. | Feb 1992 | A |
5095911 | Pomeranz | Mar 1992 | A |
5100424 | Jang et al. | Mar 1992 | A |
5120308 | Hess | Jun 1992 | A |
5125137 | Corl et al. | Jun 1992 | A |
5135486 | Eberle et al. | Aug 1992 | A |
5135516 | Sahatjian et al. | Aug 1992 | A |
5155439 | Holmbo et al. | Oct 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5163445 | Christian et al. | Nov 1992 | A |
5167233 | Eberle et al. | Dec 1992 | A |
5174295 | Christian et al. | Dec 1992 | A |
5176141 | Bom et al. | Jan 1993 | A |
5176674 | Hofmann | Jan 1993 | A |
5178159 | Christian | Jan 1993 | A |
5183048 | Eberle | Feb 1993 | A |
5188632 | Goldenberg | Feb 1993 | A |
5201316 | Pomeranz et al. | Apr 1993 | A |
5202745 | Sorin et al. | Apr 1993 | A |
5203779 | Muller et al. | Apr 1993 | A |
5220922 | Barany | Jun 1993 | A |
5224953 | Morgentaler | Jul 1993 | A |
5226421 | Frisbie et al. | Jul 1993 | A |
5240003 | Lancee et al. | Aug 1993 | A |
5240437 | Christian | Aug 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5243988 | Sieben et al. | Sep 1993 | A |
5257974 | Cox | Nov 1993 | A |
5266302 | Peyman et al. | Nov 1993 | A |
5267954 | Nita | Dec 1993 | A |
5301001 | Murphy et al. | Apr 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5313949 | Yock | May 1994 | A |
5313957 | Little | May 1994 | A |
5319492 | Dorn et al. | Jun 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5325198 | Hartley et al. | Jun 1994 | A |
5336178 | Kaplan et al. | Aug 1994 | A |
5346689 | Peyman et al. | Sep 1994 | A |
5348017 | Thornton et al. | Sep 1994 | A |
5348481 | Ortiz | Sep 1994 | A |
5353798 | Sieben | Oct 1994 | A |
5358409 | Obara | Oct 1994 | A |
5358478 | Thompson et al. | Oct 1994 | A |
5368037 | Eberle et al. | Nov 1994 | A |
5373845 | Gardineer et al. | Dec 1994 | A |
5373849 | Maroney et al. | Dec 1994 | A |
5375602 | Lancee et al. | Dec 1994 | A |
5377682 | Ueno et al. | Jan 1995 | A |
5383853 | Jung et al. | Jan 1995 | A |
5387193 | Miraki | Feb 1995 | A |
5396328 | Jestel et al. | Mar 1995 | A |
5397355 | Marin et al. | Mar 1995 | A |
5405377 | Cragg | Apr 1995 | A |
5411016 | Kume et al. | May 1995 | A |
5419777 | Hofling | May 1995 | A |
5421338 | Crowley et al. | Jun 1995 | A |
5423806 | Dale et al. | Jun 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5431673 | Summers et al. | Jul 1995 | A |
5436759 | Dijaili et al. | Jul 1995 | A |
5439139 | Brovelli | Aug 1995 | A |
5443457 | Ginn et al. | Aug 1995 | A |
5453575 | O'Donnell et al. | Sep 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5480388 | Zadini et al. | Jan 1996 | A |
5485845 | Verdonk et al. | Jan 1996 | A |
5492125 | Kim et al. | Feb 1996 | A |
5496997 | Pope | Mar 1996 | A |
5507761 | Duer | Apr 1996 | A |
5512044 | Duer | Apr 1996 | A |
5514128 | Hillsman et al. | May 1996 | A |
5529674 | Hedgcoth | Jun 1996 | A |
5541730 | Chaney | Jul 1996 | A |
5546717 | Penczak et al. | Aug 1996 | A |
5546948 | Hamm et al. | Aug 1996 | A |
5565332 | Hoogenboom et al. | Oct 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5581638 | Givens et al. | Dec 1996 | A |
5586054 | Jensen et al. | Dec 1996 | A |
5592939 | Martinelli | Jan 1997 | A |
5596079 | Smith et al. | Jan 1997 | A |
5598844 | Diaz et al. | Feb 1997 | A |
5609606 | O'Boyle | Mar 1997 | A |
5630806 | Inagaki et al. | May 1997 | A |
5651366 | Liang et al. | Jul 1997 | A |
5660180 | Malinowski et al. | Aug 1997 | A |
5667499 | Welch et al. | Sep 1997 | A |
5667521 | Keown | Sep 1997 | A |
5672877 | Liebig et al. | Sep 1997 | A |
5674232 | Halliburton | Oct 1997 | A |
5693015 | Walker et al. | Dec 1997 | A |
5713848 | Dubrul et al. | Feb 1998 | A |
5745634 | Garrett et al. | Apr 1998 | A |
5771895 | Slager | Jun 1998 | A |
5779731 | Leavitt | Jul 1998 | A |
5780958 | Strugach et al. | Jul 1998 | A |
5798521 | Froggatt | Aug 1998 | A |
5800450 | Lary et al. | Sep 1998 | A |
5803083 | Buck et al. | Sep 1998 | A |
5814061 | Osborne et al. | Sep 1998 | A |
5817025 | Alekseev et al. | Oct 1998 | A |
5820594 | Fontirroche et al. | Oct 1998 | A |
5824520 | Mulligan-Kehoe | Oct 1998 | A |
5827313 | Ream | Oct 1998 | A |
5830222 | Makower | Nov 1998 | A |
5848121 | Gupta et al. | Dec 1998 | A |
5851464 | Davila et al. | Dec 1998 | A |
5857974 | Eberle et al. | Jan 1999 | A |
5872829 | Wischmann et al. | Feb 1999 | A |
5873835 | Hastings et al. | Feb 1999 | A |
5882722 | Kydd | Mar 1999 | A |
5912764 | Togino | Jun 1999 | A |
5916194 | Jacobsen et al. | Jun 1999 | A |
5921931 | O'Donnell et al. | Jul 1999 | A |
5925055 | Adrian et al. | Jul 1999 | A |
5949929 | Hamm | Sep 1999 | A |
5951586 | Berg et al. | Sep 1999 | A |
5974521 | Akerib | Oct 1999 | A |
5976120 | Chow et al. | Nov 1999 | A |
5978391 | Das et al. | Nov 1999 | A |
5997523 | Jang | Dec 1999 | A |
6021240 | Murphy et al. | Feb 2000 | A |
6022319 | Willard et al. | Feb 2000 | A |
6031071 | Mandeville et al. | Feb 2000 | A |
6036889 | Kydd | Mar 2000 | A |
6043883 | Leckel et al. | Mar 2000 | A |
6050949 | White et al. | Apr 2000 | A |
6059738 | Stoltze et al. | May 2000 | A |
6068638 | Makower | May 2000 | A |
6074362 | Jang et al. | Jun 2000 | A |
6078831 | Belef et al. | Jun 2000 | A |
6080109 | Baker et al. | Jun 2000 | A |
6091496 | Hill | Jul 2000 | A |
6094591 | Foltz et al. | Jul 2000 | A |
6095976 | Nachtomy et al. | Aug 2000 | A |
6097755 | Guenther, Jr. et al. | Aug 2000 | A |
6099471 | Torp et al. | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6102938 | Evans et al. | Aug 2000 | A |
6106476 | Corl et al. | Aug 2000 | A |
6120445 | Grunwald | Sep 2000 | A |
6123673 | Eberle et al. | Sep 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6141089 | Thoma et al. | Oct 2000 | A |
6146328 | Chiao et al. | Nov 2000 | A |
6148095 | Prause et al. | Nov 2000 | A |
6151433 | Dower et al. | Nov 2000 | A |
6152877 | Masters | Nov 2000 | A |
6152878 | Nachtomy et al. | Nov 2000 | A |
6159225 | Makower | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6176842 | Tachibana et al. | Jan 2001 | B1 |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6186949 | Hatfield et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6200266 | Shokrollahi et al. | Mar 2001 | B1 |
6200268 | Vince et al. | Mar 2001 | B1 |
6203537 | Adrian | Mar 2001 | B1 |
6208415 | De Boer et al. | Mar 2001 | B1 |
6210332 | Chiao et al. | Apr 2001 | B1 |
6210339 | Kiepen et al. | Apr 2001 | B1 |
6212308 | Donald | Apr 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6245066 | Morgan et al. | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6254543 | Grunwald et al. | Jul 2001 | B1 |
6256090 | Chen et al. | Jul 2001 | B1 |
6258052 | Milo | Jul 2001 | B1 |
6261246 | Pantages et al. | Jul 2001 | B1 |
6275628 | Jones et al. | Aug 2001 | B1 |
6283921 | Nix et al. | Sep 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6295308 | Zah | Sep 2001 | B1 |
6299622 | Snow et al. | Oct 2001 | B1 |
6312384 | Chiao | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328696 | Fraser | Dec 2001 | B1 |
6343168 | Murphy et al. | Jan 2002 | B1 |
6343178 | Burns et al. | Jan 2002 | B1 |
6350240 | Song et al. | Feb 2002 | B1 |
6364841 | White et al. | Apr 2002 | B1 |
6366722 | Murphy et al. | Apr 2002 | B1 |
6367984 | Stephenson et al. | Apr 2002 | B1 |
6373970 | Dong et al. | Apr 2002 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6375618 | Chiao et al. | Apr 2002 | B1 |
6375628 | Zadno-Azizi et al. | Apr 2002 | B1 |
6376830 | Froggatt et al. | Apr 2002 | B1 |
6379352 | Reynolds et al. | Apr 2002 | B1 |
6381350 | Klingensmith et al. | Apr 2002 | B1 |
6387124 | Buscemi et al. | May 2002 | B1 |
6396976 | Little et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6417948 | Chowdhury et al. | Jul 2002 | B1 |
6419644 | White et al. | Jul 2002 | B1 |
6421164 | Tearney et al. | Jul 2002 | B2 |
6423012 | Kato et al. | Jul 2002 | B1 |
6426796 | Pulliam et al. | Jul 2002 | B1 |
6428041 | Wohllebe et al. | Aug 2002 | B1 |
6428498 | Uflacker | Aug 2002 | B2 |
6429421 | Meller et al. | Aug 2002 | B1 |
6440077 | Jung et al. | Aug 2002 | B1 |
6443903 | White et al. | Sep 2002 | B1 |
6450964 | Webler | Sep 2002 | B1 |
6457365 | Stephens et al. | Oct 2002 | B1 |
6459844 | Pan | Oct 2002 | B1 |
6468290 | Weldon et al. | Oct 2002 | B1 |
6475149 | Sumanaweera | Nov 2002 | B1 |
6480285 | Hill | Nov 2002 | B1 |
6491631 | Chiao et al. | Dec 2002 | B2 |
6491636 | Chenal et al. | Dec 2002 | B2 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6504286 | Porat et al. | Jan 2003 | B1 |
6508824 | Flaherty et al. | Jan 2003 | B1 |
6514237 | Maseda | Feb 2003 | B1 |
6520269 | Geiger et al. | Feb 2003 | B2 |
6520677 | Iizuka | Feb 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6538778 | Leckel et al. | Mar 2003 | B1 |
6544217 | Gulachenski | Apr 2003 | B1 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6545760 | Froggatt et al. | Apr 2003 | B1 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6551250 | Khalil | Apr 2003 | B2 |
6566648 | Froggatt | May 2003 | B1 |
6570894 | Anderson | May 2003 | B2 |
6572555 | White et al. | Jun 2003 | B2 |
6579311 | Makower | Jun 2003 | B1 |
6584335 | Haar et al. | Jun 2003 | B1 |
6592612 | Samson et al. | Jul 2003 | B1 |
6594448 | Herman et al. | Jul 2003 | B2 |
6602241 | Makower et al. | Aug 2003 | B2 |
6611322 | Nakayama et al. | Aug 2003 | B1 |
6611720 | Hata et al. | Aug 2003 | B2 |
6612992 | Hossack et al. | Sep 2003 | B1 |
6615062 | Ryan et al. | Sep 2003 | B2 |
6615072 | Izatt et al. | Sep 2003 | B1 |
6621562 | Durston | Sep 2003 | B2 |
6631284 | Nutt et al. | Oct 2003 | B2 |
6638227 | Bae | Oct 2003 | B2 |
6645152 | Jung et al. | Nov 2003 | B1 |
6646745 | Verma et al. | Nov 2003 | B2 |
6655386 | Makower et al. | Dec 2003 | B1 |
6659957 | Vardi et al. | Dec 2003 | B1 |
6660024 | Flaherty et al. | Dec 2003 | B1 |
6663565 | Kawagishi et al. | Dec 2003 | B2 |
6665456 | Dave et al. | Dec 2003 | B2 |
6669716 | Gilson et al. | Dec 2003 | B1 |
6671055 | Wavering et al. | Dec 2003 | B1 |
6673015 | Glover et al. | Jan 2004 | B1 |
6673064 | Rentrop | Jan 2004 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6689144 | Gerberding | Feb 2004 | B2 |
6696173 | Naundorf et al. | Feb 2004 | B1 |
6701044 | Arbore et al. | Mar 2004 | B2 |
6701176 | Halperin et al. | Mar 2004 | B1 |
6709444 | Makower | Mar 2004 | B1 |
6712836 | Berg et al. | Mar 2004 | B1 |
6714703 | Lee et al. | Mar 2004 | B2 |
6719717 | Johnson et al. | Apr 2004 | B1 |
6725073 | Motamedi et al. | Apr 2004 | B1 |
6726677 | Flaherty et al. | Apr 2004 | B1 |
6730107 | Kelley et al. | May 2004 | B2 |
6733474 | Kusleika | May 2004 | B2 |
6738144 | Dogariu | May 2004 | B1 |
6740113 | Vrba | May 2004 | B2 |
6746464 | Makower | Jun 2004 | B1 |
6780157 | Stephens et al. | Aug 2004 | B2 |
6795188 | Ruck et al. | Sep 2004 | B2 |
6795196 | Funakawa | Sep 2004 | B2 |
6798522 | Stolte et al. | Sep 2004 | B2 |
6822798 | Wu et al. | Nov 2004 | B2 |
6830559 | Schock | Dec 2004 | B2 |
6832024 | Gerstenberger et al. | Dec 2004 | B2 |
6842639 | Winston et al. | Jan 2005 | B1 |
6847449 | Bashkansky et al. | Jan 2005 | B2 |
6855115 | Fonseca et al. | Feb 2005 | B2 |
6856138 | Bohley | Feb 2005 | B2 |
6856400 | Froggatt | Feb 2005 | B1 |
6856472 | Herman et al. | Feb 2005 | B2 |
6860867 | Seward et al. | Mar 2005 | B2 |
6866670 | Rabiner et al. | Mar 2005 | B2 |
6878113 | Miwa et al. | Apr 2005 | B2 |
6886411 | Kjellman et al. | May 2005 | B2 |
6891984 | Petersen et al. | May 2005 | B2 |
6895106 | Wang et al. | May 2005 | B2 |
6898337 | Averett et al. | May 2005 | B2 |
6900897 | Froggatt | May 2005 | B2 |
6912051 | Jensen | Jun 2005 | B2 |
6916329 | Zhao | Jul 2005 | B1 |
6922498 | Shah | Jul 2005 | B2 |
6937346 | Nebendahl et al. | Aug 2005 | B2 |
6937696 | Mostafavi | Aug 2005 | B1 |
6943939 | DiJaili et al. | Sep 2005 | B1 |
6947147 | Motamedi et al. | Sep 2005 | B2 |
6947787 | Webler | Sep 2005 | B2 |
6949094 | Yaron | Sep 2005 | B2 |
6952603 | Gerber et al. | Oct 2005 | B2 |
6954737 | Kalantar et al. | Oct 2005 | B2 |
6958042 | Honda | Oct 2005 | B2 |
6961123 | Wang et al. | Nov 2005 | B1 |
6966891 | Ookubo et al. | Nov 2005 | B2 |
6969293 | Thai | Nov 2005 | B2 |
6969395 | Eskuri | Nov 2005 | B2 |
6985234 | Anderson | Jan 2006 | B2 |
7004963 | Wang et al. | Feb 2006 | B2 |
7006231 | Ostrovsky et al. | Feb 2006 | B2 |
7010458 | Wilt | Mar 2006 | B2 |
7024025 | Sathyanarayana | Apr 2006 | B2 |
7027211 | Ruffa | Apr 2006 | B1 |
7027743 | Tucker et al. | Apr 2006 | B1 |
7033347 | Appling | Apr 2006 | B2 |
7035484 | Silberberg et al. | Apr 2006 | B2 |
7037269 | Nix et al. | May 2006 | B2 |
7042573 | Froggatt | May 2006 | B2 |
7044915 | White et al. | May 2006 | B2 |
7044964 | Jang et al. | May 2006 | B2 |
7048711 | Rosenman et al. | May 2006 | B2 |
7049306 | Konradi et al. | May 2006 | B2 |
7058239 | Singh et al. | Jun 2006 | B2 |
7060033 | White et al. | Jun 2006 | B2 |
7060421 | Naundorf et al. | Jun 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7068852 | Braica | Jun 2006 | B2 |
7074188 | Nair et al. | Jul 2006 | B2 |
7095493 | Harres | Aug 2006 | B2 |
7110119 | Maestle | Sep 2006 | B2 |
7113875 | Terashima et al. | Sep 2006 | B2 |
7123777 | Rondinelli et al. | Oct 2006 | B2 |
7130054 | Ostrovsky et al. | Oct 2006 | B2 |
7139440 | Rondinelli et al. | Nov 2006 | B2 |
7153299 | Tu et al. | Dec 2006 | B1 |
7171078 | Sasaki et al. | Jan 2007 | B2 |
7175597 | Vince et al. | Feb 2007 | B2 |
7177491 | Dave et al. | Feb 2007 | B2 |
7190464 | Alphonse | Mar 2007 | B2 |
7215802 | Klingensmith et al. | May 2007 | B2 |
7218811 | Shigenaga et al. | May 2007 | B2 |
7236812 | Ballerstadt et al. | Jun 2007 | B1 |
7245125 | Harer et al. | Jul 2007 | B2 |
7245789 | Bates et al. | Jul 2007 | B2 |
7249357 | Landman et al. | Jul 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7292715 | Furnish | Nov 2007 | B2 |
7292885 | Scott et al. | Nov 2007 | B2 |
7294124 | Eidenschink | Nov 2007 | B2 |
7300460 | Levine et al. | Nov 2007 | B2 |
7335161 | Von Arx et al. | Feb 2008 | B2 |
7337079 | Park et al. | Feb 2008 | B2 |
7355716 | de Boer et al. | Apr 2008 | B2 |
7356367 | Liang et al. | Apr 2008 | B2 |
7358921 | Snyder et al. | Apr 2008 | B2 |
7359062 | Chen et al. | Apr 2008 | B2 |
7359554 | Klingensmith et al. | Apr 2008 | B2 |
7363927 | Ravikumar | Apr 2008 | B2 |
7366376 | Shishkov et al. | Apr 2008 | B2 |
7382949 | Bouma et al. | Jun 2008 | B2 |
7387636 | Cohn et al. | Jun 2008 | B2 |
7391520 | Zhou et al. | Jun 2008 | B2 |
7397935 | Kimmel et al. | Jul 2008 | B2 |
7399095 | Rondinelli | Jul 2008 | B2 |
7408648 | Kleen et al. | Aug 2008 | B2 |
7414779 | Huber et al. | Aug 2008 | B2 |
7440087 | Froggatt et al. | Oct 2008 | B2 |
7447388 | Bates et al. | Nov 2008 | B2 |
7449821 | Dausch | Nov 2008 | B2 |
7450165 | Ahiska | Nov 2008 | B2 |
RE40608 | Glover et al. | Dec 2008 | E |
7458967 | Appling et al. | Dec 2008 | B2 |
7463362 | Lasker et al. | Dec 2008 | B2 |
7463759 | Klingensmith et al. | Dec 2008 | B2 |
7491226 | Palmaz et al. | Feb 2009 | B2 |
7515276 | Froggatt et al. | Apr 2009 | B2 |
7527594 | Vardi et al. | May 2009 | B2 |
7534251 | WasDyke | May 2009 | B2 |
7535797 | Peng et al. | May 2009 | B2 |
7547304 | Johnson | Jun 2009 | B2 |
7564949 | Sattler et al. | Jul 2009 | B2 |
7577471 | Camus et al. | Aug 2009 | B2 |
7583857 | Xu et al. | Sep 2009 | B2 |
7603165 | Townsend et al. | Oct 2009 | B2 |
7612773 | Magnin et al. | Nov 2009 | B2 |
7633627 | Choma et al. | Dec 2009 | B2 |
7645229 | Armstrong | Jan 2010 | B2 |
7658715 | Park et al. | Feb 2010 | B2 |
7660452 | Zwirn et al. | Feb 2010 | B2 |
7660492 | Bates et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7672790 | McGraw et al. | Mar 2010 | B2 |
7680247 | Atzinger et al. | Mar 2010 | B2 |
7684991 | Stohr et al. | Mar 2010 | B2 |
7711413 | Feldman et al. | May 2010 | B2 |
7720322 | Prisco | May 2010 | B2 |
7728986 | Lasker et al. | Jun 2010 | B2 |
7734009 | Brunner et al. | Jun 2010 | B2 |
7736317 | Stephens et al. | Jun 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7743189 | Brown et al. | Jun 2010 | B2 |
7762954 | Nix et al. | Jul 2010 | B2 |
7766896 | Kornkven Volk et al. | Aug 2010 | B2 |
7773792 | Kimmel et al. | Aug 2010 | B2 |
7775981 | Guracar et al. | Aug 2010 | B1 |
7777399 | Eidenschink et al. | Aug 2010 | B2 |
7781724 | Childers et al. | Aug 2010 | B2 |
7783337 | Feldman et al. | Aug 2010 | B2 |
7787127 | Galle et al. | Aug 2010 | B2 |
7792342 | Barbu et al. | Sep 2010 | B2 |
7801343 | Unal et al. | Sep 2010 | B2 |
7801590 | Feldman et al. | Sep 2010 | B2 |
7813609 | Petersen et al. | Oct 2010 | B2 |
7831081 | Li | Nov 2010 | B2 |
7846101 | Eberle et al. | Dec 2010 | B2 |
7853104 | Oota et al. | Dec 2010 | B2 |
7853316 | Milner et al. | Dec 2010 | B2 |
7860555 | Saadat | Dec 2010 | B2 |
7862508 | Davies et al. | Jan 2011 | B2 |
7872759 | Tearney et al. | Jan 2011 | B2 |
7880868 | Aoki | Feb 2011 | B2 |
7881763 | Brauker et al. | Feb 2011 | B2 |
7909844 | Alkhatib et al. | Mar 2011 | B2 |
7921854 | Hennings et al. | Apr 2011 | B2 |
7927784 | Simpson | Apr 2011 | B2 |
7929148 | Kemp | Apr 2011 | B2 |
7930014 | Huennekens et al. | Apr 2011 | B2 |
7930104 | Baker et al. | Apr 2011 | B2 |
7936462 | Jiang et al. | May 2011 | B2 |
7942852 | Mas et al. | May 2011 | B2 |
7947012 | Spurchise et al. | May 2011 | B2 |
7951186 | Eidenschink et al. | May 2011 | B2 |
7952719 | Brennan, III | May 2011 | B2 |
7972353 | Hendriksen et al. | Jul 2011 | B2 |
7976492 | Brauker et al. | Jul 2011 | B2 |
7977950 | Maslen | Jul 2011 | B2 |
7978916 | Klingensmith et al. | Jul 2011 | B2 |
7981041 | McGahan | Jul 2011 | B2 |
7981151 | Rowe | Jul 2011 | B2 |
7983737 | Feldman et al. | Jul 2011 | B2 |
7993333 | Oral et al. | Aug 2011 | B2 |
7995210 | Tearney et al. | Aug 2011 | B2 |
7996060 | Trofimov et al. | Aug 2011 | B2 |
7999938 | Wang | Aug 2011 | B2 |
8021377 | Eskuri | Sep 2011 | B2 |
8021420 | Dolan | Sep 2011 | B2 |
8036732 | Milner | Oct 2011 | B2 |
8040586 | Smith et al. | Oct 2011 | B2 |
8047996 | Goodnow et al. | Nov 2011 | B2 |
8049900 | Kemp et al. | Nov 2011 | B2 |
8050478 | Li et al. | Nov 2011 | B2 |
8050523 | Younge et al. | Nov 2011 | B2 |
8052605 | Muller et al. | Nov 2011 | B2 |
8057394 | Dala-Krishna | Nov 2011 | B2 |
8059923 | Bates et al. | Nov 2011 | B2 |
8070800 | Lock et al. | Dec 2011 | B2 |
8080800 | Hoctor et al. | Dec 2011 | B2 |
8088102 | Adams et al. | Jan 2012 | B2 |
8100838 | Wright et al. | Jan 2012 | B2 |
8104479 | Glynn et al. | Jan 2012 | B2 |
8108030 | Castella et al. | Jan 2012 | B2 |
8114102 | Galdonik et al. | Feb 2012 | B2 |
8116605 | Petersen et al. | Feb 2012 | B2 |
8125648 | Milner et al. | Feb 2012 | B2 |
8126239 | Sun et al. | Feb 2012 | B2 |
8133199 | Weber et al. | Mar 2012 | B2 |
8133269 | Flechsenhar et al. | Mar 2012 | B2 |
8140708 | Zaharia et al. | Mar 2012 | B2 |
8148877 | Jiang et al. | Apr 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8172757 | Jaffe et al. | May 2012 | B2 |
8177809 | Mavani et al. | May 2012 | B2 |
8187191 | Hancock et al. | May 2012 | B2 |
8187267 | Pappone et al. | May 2012 | B2 |
8187830 | Hu et al. | May 2012 | B2 |
8199218 | Lee et al. | Jun 2012 | B2 |
8206429 | Gregorich et al. | Jun 2012 | B2 |
8208995 | Tearney et al. | Jun 2012 | B2 |
8222906 | Wyar et al. | Jul 2012 | B2 |
8233681 | Aylward et al. | Jul 2012 | B2 |
8233718 | Klingensmith et al. | Jul 2012 | B2 |
8238624 | Doi et al. | Aug 2012 | B2 |
8239938 | Simeral et al. | Aug 2012 | B2 |
8277386 | Ahmed et al. | Oct 2012 | B2 |
8280470 | Milner et al. | Oct 2012 | B2 |
8289284 | Glynn et al. | Oct 2012 | B2 |
8289522 | Tearney et al. | Oct 2012 | B2 |
8298147 | Huennekens et al. | Oct 2012 | B2 |
8298149 | Hastings et al. | Oct 2012 | B2 |
8301000 | Sillard et al. | Oct 2012 | B2 |
8309428 | Lemmerhirt et al. | Nov 2012 | B2 |
8317713 | Davies et al. | Nov 2012 | B2 |
8323201 | Towfiq et al. | Dec 2012 | B2 |
8329053 | Martin et al. | Dec 2012 | B2 |
8336643 | Harleman | Dec 2012 | B2 |
8349000 | Schreck | Jan 2013 | B2 |
8353945 | Andreas et al. | Jan 2013 | B2 |
8353954 | Cai et al. | Jan 2013 | B2 |
8357981 | Martin et al. | Jan 2013 | B2 |
8361097 | Patel et al. | Jan 2013 | B2 |
8386560 | Ma et al. | Feb 2013 | B2 |
8398591 | Mas et al. | Mar 2013 | B2 |
8412312 | Judell et al. | Apr 2013 | B2 |
8417491 | Trovato et al. | Apr 2013 | B2 |
8449465 | Nair et al. | May 2013 | B2 |
8454685 | Hariton et al. | Jun 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8475522 | Jimenez et al. | Jul 2013 | B2 |
8478384 | Schmitt et al. | Jul 2013 | B2 |
8486062 | Belhe et al. | Jul 2013 | B2 |
8486063 | Werneth et al. | Jul 2013 | B2 |
8491567 | Magnin et al. | Jul 2013 | B2 |
8500798 | Rowe et al. | Aug 2013 | B2 |
8550911 | Sylla | Oct 2013 | B2 |
8594757 | Boppart et al. | Nov 2013 | B2 |
8597349 | Alkhatib | Dec 2013 | B2 |
8600477 | Beyar et al. | Dec 2013 | B2 |
8600917 | Schimert et al. | Dec 2013 | B1 |
8601056 | Lauwers et al. | Dec 2013 | B2 |
8620055 | Barratt et al. | Dec 2013 | B2 |
8644910 | Rousso et al. | Feb 2014 | B2 |
9283033 | Gelfand | Mar 2016 | B2 |
20010007940 | Tu et al. | Jul 2001 | A1 |
20010029337 | Pantages et al. | Oct 2001 | A1 |
20010037073 | White et al. | Nov 2001 | A1 |
20010046345 | Snyder et al. | Nov 2001 | A1 |
20010049548 | Vardi et al. | Dec 2001 | A1 |
20020034276 | Hu et al. | Mar 2002 | A1 |
20020041723 | Ronnekleiv et al. | Apr 2002 | A1 |
20020069676 | Kopp et al. | Jun 2002 | A1 |
20020089335 | Williams | Jul 2002 | A1 |
20020099289 | Crowley | Jul 2002 | A1 |
20020163646 | Anderson | Nov 2002 | A1 |
20020186818 | Arnaud et al. | Dec 2002 | A1 |
20020196446 | Roth et al. | Dec 2002 | A1 |
20020197456 | Pope | Dec 2002 | A1 |
20030004412 | Izatt et al. | Jan 2003 | A1 |
20030016604 | Hanes | Jan 2003 | A1 |
20030018273 | Corl et al. | Jan 2003 | A1 |
20030023153 | Izatt et al. | Jan 2003 | A1 |
20030032886 | Dgany et al. | Feb 2003 | A1 |
20030050871 | Broughton | Mar 2003 | A1 |
20030065371 | Satake | Apr 2003 | A1 |
20030069723 | Hegde | Apr 2003 | A1 |
20030077043 | Hamm et al. | Apr 2003 | A1 |
20030085635 | Davidsen | May 2003 | A1 |
20030090753 | Takeyama et al. | May 2003 | A1 |
20030092995 | Thompson | May 2003 | A1 |
20030093059 | Griffin et al. | May 2003 | A1 |
20030103212 | Westphal et al. | Jun 2003 | A1 |
20030152259 | Belykh et al. | Aug 2003 | A1 |
20030181802 | Ogawa | Sep 2003 | A1 |
20030187369 | Lewis et al. | Oct 2003 | A1 |
20030194165 | Silberberg et al. | Oct 2003 | A1 |
20030195419 | Harada | Oct 2003 | A1 |
20030208116 | Liang et al. | Nov 2003 | A1 |
20030212491 | Mitchell et al. | Nov 2003 | A1 |
20030219202 | Loeb et al. | Nov 2003 | A1 |
20030220749 | Chen et al. | Nov 2003 | A1 |
20030228039 | Green | Dec 2003 | A1 |
20040015065 | Panescu et al. | Jan 2004 | A1 |
20040023317 | Motamedi et al. | Feb 2004 | A1 |
20040028333 | Lomas | Feb 2004 | A1 |
20040037742 | Jen et al. | Feb 2004 | A1 |
20040042066 | Kinoshita et al. | Mar 2004 | A1 |
20040054287 | Stephens | Mar 2004 | A1 |
20040067000 | Bates et al. | Apr 2004 | A1 |
20040068161 | Couvillon | Apr 2004 | A1 |
20040082844 | Vardi et al. | Apr 2004 | A1 |
20040092830 | Scott et al. | May 2004 | A1 |
20040106853 | Moriyama | Jun 2004 | A1 |
20040111552 | Arimilli et al. | Jun 2004 | A1 |
20040126048 | Dave et al. | Jul 2004 | A1 |
20040143160 | Couvillon | Jul 2004 | A1 |
20040146546 | Gravett et al. | Jul 2004 | A1 |
20040186369 | Lam | Sep 2004 | A1 |
20040186558 | Pavcnik et al. | Sep 2004 | A1 |
20040195512 | Crosetto | Oct 2004 | A1 |
20040220606 | Goshgarian | Nov 2004 | A1 |
20040225220 | Rich | Nov 2004 | A1 |
20040239938 | Izatt | Dec 2004 | A1 |
20040242990 | Brister et al. | Dec 2004 | A1 |
20040248439 | Gernhardt et al. | Dec 2004 | A1 |
20040260236 | Manning et al. | Dec 2004 | A1 |
20050013778 | Green et al. | Jan 2005 | A1 |
20050031176 | Hertel et al. | Feb 2005 | A1 |
20050036150 | Izatt et al. | Feb 2005 | A1 |
20050078317 | Law et al. | Apr 2005 | A1 |
20050101859 | Maschke | May 2005 | A1 |
20050140582 | Lee et al. | Jun 2005 | A1 |
20050140682 | Sumanaweera et al. | Jun 2005 | A1 |
20050140981 | Waelti | Jun 2005 | A1 |
20050140984 | Hitzenberger | Jun 2005 | A1 |
20050147303 | Zhou et al. | Jul 2005 | A1 |
20050165439 | Weber et al. | Jul 2005 | A1 |
20050171433 | Boppart et al. | Aug 2005 | A1 |
20050171438 | Chen et al. | Aug 2005 | A1 |
20050182297 | Gravenstein et al. | Aug 2005 | A1 |
20050196028 | Kleen et al. | Sep 2005 | A1 |
20050197585 | Brockway et al. | Sep 2005 | A1 |
20050213103 | Everett et al. | Sep 2005 | A1 |
20050215942 | Abrahamson et al. | Sep 2005 | A1 |
20050234445 | Conquergood et al. | Oct 2005 | A1 |
20050243322 | Lasker et al. | Nov 2005 | A1 |
20050249391 | Kimmel et al. | Nov 2005 | A1 |
20050251567 | Ballew et al. | Nov 2005 | A1 |
20050254059 | Alphonse | Nov 2005 | A1 |
20050264823 | Zhu et al. | Dec 2005 | A1 |
20060013523 | Childlers et al. | Jan 2006 | A1 |
20060015126 | Sher | Jan 2006 | A1 |
20060029634 | Berg et al. | Feb 2006 | A1 |
20060036167 | Shina | Feb 2006 | A1 |
20060038115 | Maas | Feb 2006 | A1 |
20060039004 | de Boer et al. | Feb 2006 | A1 |
20060041180 | Viswanathan et al. | Feb 2006 | A1 |
20060045536 | Arahira | Mar 2006 | A1 |
20060055936 | Yun et al. | Mar 2006 | A1 |
20060058622 | Tearney et al. | Mar 2006 | A1 |
20060064009 | Webler et al. | Mar 2006 | A1 |
20060067620 | Shishkov et al. | Mar 2006 | A1 |
20060072808 | Grimm et al. | Apr 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060094930 | Sparks | May 2006 | A1 |
20060098927 | Schmidt et al. | May 2006 | A1 |
20060100522 | Yuan | May 2006 | A1 |
20060100694 | Globerman | May 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060132790 | Gutin | Jun 2006 | A1 |
20060135870 | Webler | Jun 2006 | A1 |
20060139633 | Puppels | Jun 2006 | A1 |
20060142703 | Carter et al. | Jun 2006 | A1 |
20060142733 | Forsberg | Jun 2006 | A1 |
20060173299 | Romley et al. | Aug 2006 | A1 |
20060179255 | Yamazaki | Aug 2006 | A1 |
20060184048 | Saadat | Aug 2006 | A1 |
20060187537 | Huber et al. | Aug 2006 | A1 |
20060195269 | Yeatman et al. | Aug 2006 | A1 |
20060204119 | Feng et al. | Sep 2006 | A1 |
20060229591 | Lee | Oct 2006 | A1 |
20060239312 | Kewitsch et al. | Oct 2006 | A1 |
20060241342 | Macaulay et al. | Oct 2006 | A1 |
20060241465 | Huennekens et al. | Oct 2006 | A1 |
20060241503 | Schmitt et al. | Oct 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20060258895 | Maschke | Nov 2006 | A1 |
20060264743 | Kleen et al. | Nov 2006 | A1 |
20060267756 | Kates | Nov 2006 | A1 |
20060270976 | Savage et al. | Nov 2006 | A1 |
20060276709 | Khamene et al. | Dec 2006 | A1 |
20060279742 | Tearney et al. | Dec 2006 | A1 |
20060279743 | Boesser et al. | Dec 2006 | A1 |
20060285638 | Boese et al. | Dec 2006 | A1 |
20060287595 | Maschke | Dec 2006 | A1 |
20060293597 | Johnson et al. | Dec 2006 | A1 |
20070015969 | Feldman et al. | Jan 2007 | A1 |
20070016029 | Donaldson et al. | Jan 2007 | A1 |
20070016034 | Donaldson | Jan 2007 | A1 |
20070016054 | Cao | Jan 2007 | A1 |
20070016062 | Park et al. | Jan 2007 | A1 |
20070027390 | Maschke et al. | Feb 2007 | A1 |
20070036417 | Argiro et al. | Feb 2007 | A1 |
20070038061 | Huennekens et al. | Feb 2007 | A1 |
20070038121 | Feldman et al. | Feb 2007 | A1 |
20070038125 | Kleen et al. | Feb 2007 | A1 |
20070043292 | Camus et al. | Feb 2007 | A1 |
20070043597 | Donaldson | Feb 2007 | A1 |
20070049847 | Osborne | Mar 2007 | A1 |
20070060973 | Ludvig et al. | Mar 2007 | A1 |
20070065077 | Childers et al. | Mar 2007 | A1 |
20070066888 | Maschke | Mar 2007 | A1 |
20070066890 | Maschke | Mar 2007 | A1 |
20070066983 | Maschke | Mar 2007 | A1 |
20070084995 | Newton et al. | Apr 2007 | A1 |
20070100226 | Yankelevitz et al. | May 2007 | A1 |
20070135887 | Maschke | Jun 2007 | A1 |
20070142707 | Wiklof et al. | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070161893 | Milner et al. | Jul 2007 | A1 |
20070161896 | Adachi et al. | Jul 2007 | A1 |
20070161963 | Smalling | Jul 2007 | A1 |
20070162860 | Muralidharan et al. | Jul 2007 | A1 |
20070165141 | Srinivas et al. | Jul 2007 | A1 |
20070167710 | Unal et al. | Jul 2007 | A1 |
20070167804 | Park et al. | Jul 2007 | A1 |
20070191682 | Rolland et al. | Aug 2007 | A1 |
20070201736 | Klingensmith et al. | Aug 2007 | A1 |
20070206193 | Pesach | Sep 2007 | A1 |
20070208276 | Kornkven Volk et al. | Sep 2007 | A1 |
20070225220 | Ming et al. | Sep 2007 | A1 |
20070225590 | Ramos | Sep 2007 | A1 |
20070229801 | Tearney et al. | Oct 2007 | A1 |
20070232872 | Prough et al. | Oct 2007 | A1 |
20070232874 | Ince | Oct 2007 | A1 |
20070232890 | Hirota | Oct 2007 | A1 |
20070232891 | Hirota | Oct 2007 | A1 |
20070232892 | Hirota | Oct 2007 | A1 |
20070232893 | Tanioka | Oct 2007 | A1 |
20070232933 | Gille et al. | Oct 2007 | A1 |
20070238957 | Yared | Oct 2007 | A1 |
20070247033 | Eidenschink et al. | Oct 2007 | A1 |
20070250000 | Magnin et al. | Oct 2007 | A1 |
20070250036 | Volk et al. | Oct 2007 | A1 |
20070258094 | Izatt et al. | Nov 2007 | A1 |
20070260138 | Feldman et al. | Nov 2007 | A1 |
20070278389 | Ajgaonkar et al. | Dec 2007 | A1 |
20070287914 | Cohen | Dec 2007 | A1 |
20080002183 | Yatagai et al. | Jan 2008 | A1 |
20080013093 | Izatt et al. | Jan 2008 | A1 |
20080021275 | Tearney et al. | Jan 2008 | A1 |
20080027481 | Gilson et al. | Jan 2008 | A1 |
20080043024 | Schiwietz et al. | Feb 2008 | A1 |
20080045842 | Furnish | Feb 2008 | A1 |
20080051660 | Kakadaris et al. | Feb 2008 | A1 |
20080063304 | Russak et al. | Mar 2008 | A1 |
20080085041 | Breeuwer | Apr 2008 | A1 |
20080095465 | Mullick et al. | Apr 2008 | A1 |
20080095714 | Castella et al. | Apr 2008 | A1 |
20080097194 | Milner | Apr 2008 | A1 |
20080101667 | Begelman et al. | May 2008 | A1 |
20080108867 | Zhou | May 2008 | A1 |
20080114254 | Matcovitch et al. | May 2008 | A1 |
20080119739 | Vardi et al. | May 2008 | A1 |
20080124495 | Horn et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080139897 | Ainsworth et al. | Jun 2008 | A1 |
20080143707 | Mitchell | Jun 2008 | A1 |
20080146941 | Dala-Krishna | Jun 2008 | A1 |
20080147111 | Johnson et al. | Jun 2008 | A1 |
20080154128 | Milner | Jun 2008 | A1 |
20080161696 | Schmitt et al. | Jul 2008 | A1 |
20080171944 | Brenneman et al. | Jul 2008 | A1 |
20080175465 | Jiang et al. | Jul 2008 | A1 |
20080177183 | Courtney et al. | Jul 2008 | A1 |
20080180683 | Kemp | Jul 2008 | A1 |
20080181477 | Izatt et al. | Jul 2008 | A1 |
20080187201 | Liang et al. | Aug 2008 | A1 |
20080228086 | Ilegbusi et al. | Sep 2008 | A1 |
20080247622 | Aylward et al. | Oct 2008 | A1 |
20080247716 | Thomas et al. | Oct 2008 | A1 |
20080262470 | Lee et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20080269599 | Csavoy et al. | Oct 2008 | A1 |
20080281205 | Naghavi et al. | Nov 2008 | A1 |
20080281248 | Angheloiu et al. | Nov 2008 | A1 |
20080285043 | Fercher et al. | Nov 2008 | A1 |
20080287795 | Klingensmith et al. | Nov 2008 | A1 |
20080291463 | Milner et al. | Nov 2008 | A1 |
20080292173 | Hsieh et al. | Nov 2008 | A1 |
20080294034 | Krueger et al. | Nov 2008 | A1 |
20080298655 | Edwards | Dec 2008 | A1 |
20080306766 | Ozeki et al. | Dec 2008 | A1 |
20090009801 | Tabuki | Jan 2009 | A1 |
20090018393 | Dick et al. | Jan 2009 | A1 |
20090034813 | Dikmen et al. | Feb 2009 | A1 |
20090043191 | Castella et al. | Feb 2009 | A1 |
20090046295 | Kemp et al. | Feb 2009 | A1 |
20090052614 | Hempel et al. | Feb 2009 | A1 |
20090069843 | Agnew | Mar 2009 | A1 |
20090079993 | Yatagai et al. | Mar 2009 | A1 |
20090088650 | Corl | Apr 2009 | A1 |
20090093980 | Kemp et al. | Apr 2009 | A1 |
20090122320 | Petersen et al. | May 2009 | A1 |
20090138544 | Wegenkittl et al. | May 2009 | A1 |
20090149739 | Maschke | Jun 2009 | A9 |
20090156941 | Moore | Jun 2009 | A1 |
20090174886 | Inoue | Jul 2009 | A1 |
20090174931 | Huber et al. | Jul 2009 | A1 |
20090177090 | Grunwald et al. | Jul 2009 | A1 |
20090177183 | Pinkernell et al. | Jul 2009 | A1 |
20090195514 | Glynn et al. | Aug 2009 | A1 |
20090196470 | Carl et al. | Aug 2009 | A1 |
20090198125 | Nakabayashi et al. | Aug 2009 | A1 |
20090203991 | Papaioannou et al. | Aug 2009 | A1 |
20090264768 | Courtney et al. | Oct 2009 | A1 |
20090269014 | Winberg et al. | Oct 2009 | A1 |
20090270695 | McEowen | Oct 2009 | A1 |
20090284322 | Harrison et al. | Nov 2009 | A1 |
20090284332 | Moore et al. | Nov 2009 | A1 |
20090284749 | Johnson et al. | Nov 2009 | A1 |
20090290167 | Flanders et al. | Nov 2009 | A1 |
20090292048 | Li et al. | Nov 2009 | A1 |
20090299195 | Muller et al. | Dec 2009 | A1 |
20090299284 | Holman et al. | Dec 2009 | A1 |
20090318951 | Kashkarov et al. | Dec 2009 | A1 |
20090326634 | Vardi | Dec 2009 | A1 |
20100007669 | Bethune et al. | Jan 2010 | A1 |
20100030042 | Denninghoff et al. | Feb 2010 | A1 |
20100061611 | Xu et al. | Mar 2010 | A1 |
20100063400 | Hall et al. | Mar 2010 | A1 |
20100087732 | Eberle et al. | Apr 2010 | A1 |
20100094125 | Younge et al. | Apr 2010 | A1 |
20100094127 | Xu | Apr 2010 | A1 |
20100094135 | Fang-Yen et al. | Apr 2010 | A1 |
20100094143 | Mahapatra et al. | Apr 2010 | A1 |
20100113919 | Maschke | May 2010 | A1 |
20100125238 | Lye et al. | May 2010 | A1 |
20100125268 | Gustus et al. | May 2010 | A1 |
20100125648 | Zaharia et al. | May 2010 | A1 |
20100128348 | Taverner | May 2010 | A1 |
20100152717 | Keeler | Jun 2010 | A1 |
20100160788 | Davies et al. | Jun 2010 | A1 |
20100161023 | Cohen et al. | Jun 2010 | A1 |
20100168714 | Burke et al. | Jul 2010 | A1 |
20100179421 | Tupin | Jul 2010 | A1 |
20100179426 | Davies et al. | Jul 2010 | A1 |
20100220334 | Condit et al. | Sep 2010 | A1 |
20100226607 | Zhang et al. | Sep 2010 | A1 |
20100234736 | Corl | Sep 2010 | A1 |
20100249601 | Courtney | Sep 2010 | A1 |
20100256616 | Katoh | Oct 2010 | A1 |
20100272432 | Johnson | Oct 2010 | A1 |
20100284590 | Peng et al. | Nov 2010 | A1 |
20100290693 | Cohen et al. | Nov 2010 | A1 |
20100331950 | Strommer | Dec 2010 | A1 |
20110010925 | Nix et al. | Jan 2011 | A1 |
20110021926 | Spencer et al. | Jan 2011 | A1 |
20110025853 | Richardson | Feb 2011 | A1 |
20110026797 | Declerck et al. | Feb 2011 | A1 |
20110032533 | Izatt et al. | Feb 2011 | A1 |
20110034801 | Baumgart | Feb 2011 | A1 |
20110044546 | Pan et al. | Feb 2011 | A1 |
20110066073 | Kuiper et al. | Mar 2011 | A1 |
20110071401 | Hastings et al. | Mar 2011 | A1 |
20110072405 | Chen et al. | Mar 2011 | A1 |
20110077528 | Kemp et al. | Mar 2011 | A1 |
20110080591 | Johnson et al. | Apr 2011 | A1 |
20110087104 | Moore et al. | Apr 2011 | A1 |
20110137140 | Tearney et al. | Jun 2011 | A1 |
20110144502 | Zhou et al. | Jun 2011 | A1 |
20110152771 | Milner et al. | Jun 2011 | A1 |
20110157597 | Lu et al. | Jun 2011 | A1 |
20110160586 | Li et al. | Jun 2011 | A1 |
20110178413 | Schmitt et al. | Jul 2011 | A1 |
20110190586 | Kemp | Aug 2011 | A1 |
20110216378 | Poon et al. | Sep 2011 | A1 |
20110220985 | Son et al. | Sep 2011 | A1 |
20110238061 | van der Weide et al. | Sep 2011 | A1 |
20110238083 | Moll et al. | Sep 2011 | A1 |
20110245669 | Zhang | Oct 2011 | A1 |
20110249094 | Wang et al. | Oct 2011 | A1 |
20110257545 | Suri | Oct 2011 | A1 |
20110264125 | Wilson et al. | Oct 2011 | A1 |
20110274329 | Mathew et al. | Nov 2011 | A1 |
20110282334 | Groenhoff | Nov 2011 | A1 |
20110301684 | Fischell et al. | Dec 2011 | A1 |
20110306995 | Moberg | Dec 2011 | A1 |
20110319752 | Steinberg et al. | Dec 2011 | A1 |
20120004529 | Tolkowsky et al. | Jan 2012 | A1 |
20120004668 | Wallace et al. | Jan 2012 | A1 |
20120013914 | Kemp et al. | Jan 2012 | A1 |
20120016344 | Kusakabe | Jan 2012 | A1 |
20120016395 | Olson | Jan 2012 | A1 |
20120022360 | Kemp | Jan 2012 | A1 |
20120026503 | Lewandowski et al. | Feb 2012 | A1 |
20120029007 | Graham et al. | Feb 2012 | A1 |
20120059253 | Wang et al. | Mar 2012 | A1 |
20120059368 | Takaoka et al. | Mar 2012 | A1 |
20120062843 | Ferguson et al. | Mar 2012 | A1 |
20120065481 | Hunter et al. | Mar 2012 | A1 |
20120071823 | Chen | Mar 2012 | A1 |
20120071838 | Fojtik | Mar 2012 | A1 |
20120075638 | Rollins et al. | Mar 2012 | A1 |
20120083696 | Kitamura | Apr 2012 | A1 |
20120095340 | Smith | Apr 2012 | A1 |
20120095372 | Sverdlik et al. | Apr 2012 | A1 |
20120108943 | Bates et al. | May 2012 | A1 |
20120113108 | Dala-Krishna | May 2012 | A1 |
20120116353 | Arnold et al. | May 2012 | A1 |
20120130243 | Balocco et al. | May 2012 | A1 |
20120130247 | Waters et al. | May 2012 | A1 |
20120136259 | Milner et al. | May 2012 | A1 |
20120136427 | Palmaz et al. | May 2012 | A1 |
20120137075 | Vorbach | May 2012 | A1 |
20120155734 | Barratt et al. | Jun 2012 | A1 |
20120158101 | Stone et al. | Jun 2012 | A1 |
20120162660 | Kemp | Jun 2012 | A1 |
20120165661 | Kemp et al. | Jun 2012 | A1 |
20120170848 | Kemp et al. | Jul 2012 | A1 |
20120172698 | Teo et al. | Jul 2012 | A1 |
20120176607 | Ott | Jul 2012 | A1 |
20120184853 | Waters | Jul 2012 | A1 |
20120184859 | Shah et al. | Jul 2012 | A1 |
20120184977 | Wolf | Jul 2012 | A1 |
20120215094 | Rahimian et al. | Aug 2012 | A1 |
20120220836 | Alpert et al. | Aug 2012 | A1 |
20120220851 | Razansky et al. | Aug 2012 | A1 |
20120220865 | Brown et al. | Aug 2012 | A1 |
20120220874 | Hancock et al. | Aug 2012 | A1 |
20120220883 | Manstrom et al. | Aug 2012 | A1 |
20120224751 | Kemp et al. | Sep 2012 | A1 |
20120226153 | Brown et al. | Sep 2012 | A1 |
20120230565 | Steinberg et al. | Sep 2012 | A1 |
20120232400 | Dickinson et al. | Sep 2012 | A1 |
20120238869 | Schmitt et al. | Sep 2012 | A1 |
20120238956 | Yamada et al. | Sep 2012 | A1 |
20120244043 | Leblanc et al. | Sep 2012 | A1 |
20120250028 | Schmitt et al. | Oct 2012 | A1 |
20120253186 | Simpson et al. | Oct 2012 | A1 |
20120253192 | Cressman | Oct 2012 | A1 |
20120253276 | Govari et al. | Oct 2012 | A1 |
20120257210 | Whitney et al. | Oct 2012 | A1 |
20120262720 | Brown et al. | Oct 2012 | A1 |
20120265077 | Gille et al. | Oct 2012 | A1 |
20120265268 | Blum et al. | Oct 2012 | A1 |
20120265296 | McNamara et al. | Oct 2012 | A1 |
20120271170 | Emelianov et al. | Oct 2012 | A1 |
20120271175 | Moore et al. | Oct 2012 | A1 |
20120271339 | O'Beirne et al. | Oct 2012 | A1 |
20120274338 | Baks et al. | Nov 2012 | A1 |
20120276390 | Ji et al. | Nov 2012 | A1 |
20120277722 | Gerber et al. | Nov 2012 | A1 |
20120279764 | Jiang et al. | Nov 2012 | A1 |
20120283758 | Miller et al. | Nov 2012 | A1 |
20120289987 | Wilson et al. | Nov 2012 | A1 |
20120299439 | Huang | Nov 2012 | A1 |
20120310081 | Adler et al. | Dec 2012 | A1 |
20120310332 | Murray et al. | Dec 2012 | A1 |
20120319535 | Dausch | Dec 2012 | A1 |
20120323075 | Younge et al. | Dec 2012 | A1 |
20120323127 | Boyden et al. | Dec 2012 | A1 |
20120330141 | Brown et al. | Dec 2012 | A1 |
20130015975 | Huennekens et al. | Jan 2013 | A1 |
20130023762 | Huennekens et al. | Jan 2013 | A1 |
20130023763 | Huennekens et al. | Jan 2013 | A1 |
20130026655 | Lee et al. | Jan 2013 | A1 |
20130030295 | Huennekens et al. | Jan 2013 | A1 |
20130030303 | Ahmed et al. | Jan 2013 | A1 |
20130030410 | Drasler et al. | Jan 2013 | A1 |
20130053949 | Pintor et al. | Feb 2013 | A1 |
20130109958 | Baumgart et al. | May 2013 | A1 |
20130109959 | Baumgart et al. | May 2013 | A1 |
20130137980 | Waters et al. | May 2013 | A1 |
20130150716 | Stigall et al. | Jun 2013 | A1 |
20130158594 | Carrison et al. | Jun 2013 | A1 |
20130218201 | Obermiller et al. | Aug 2013 | A1 |
20130218267 | Braido et al. | Aug 2013 | A1 |
20130223789 | Lee et al. | Aug 2013 | A1 |
20130223798 | Jenner et al. | Aug 2013 | A1 |
20130296704 | Magnin et al. | Nov 2013 | A1 |
20130303907 | Corl | Nov 2013 | A1 |
20130303920 | Corl | Nov 2013 | A1 |
20130310698 | Judell et al. | Nov 2013 | A1 |
20130331820 | Itou et al. | Dec 2013 | A1 |
20130338766 | Hastings et al. | Dec 2013 | A1 |
20130339958 | Droste et al. | Dec 2013 | A1 |
20140039294 | Jiang | Feb 2014 | A1 |
20140180067 | Stigall et al. | Jun 2014 | A1 |
20140180128 | Corl | Jun 2014 | A1 |
20140200438 | Millett et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
1041373 | Oct 2000 | EP |
01172637 | Jan 2002 | EP |
2438877 | Apr 2012 | EP |
2280261 | Jan 1995 | GB |
2000-262461 | Sep 2000 | JP |
2000-292260 | Oct 2000 | JP |
2001-125009 | May 2001 | JP |
2001-272331 | Oct 2001 | JP |
2002-374034 | Dec 2002 | JP |
2003-143783 | May 2003 | JP |
2003-172690 | Jun 2003 | JP |
2003-256876 | Sep 2003 | JP |
2003-287534 | Oct 2003 | JP |
2005-274380 | Oct 2005 | JP |
2006-184284 | Jul 2006 | JP |
2006-266797 | Oct 2006 | JP |
2006-313158 | Nov 2006 | JP |
2007-024677 | Feb 2007 | JP |
2009-233001 | Oct 2009 | JP |
2011-56786 | Mar 2011 | JP |
9101156 | Feb 1991 | WO |
9216865 | Oct 1992 | WO |
9306213 | Apr 1993 | WO |
9308829 | May 1993 | WO |
9838907 | Sep 1998 | WO |
9857583 | Dec 1998 | WO |
0011511 | Mar 2000 | WO |
00044296 | Aug 2000 | WO |
0111409 | Feb 2001 | WO |
03062802 | Jul 2003 | WO |
03073950 | Sep 2003 | WO |
2004010856 | Feb 2004 | WO |
2004023992 | Mar 2004 | WO |
2004096049 | Nov 2004 | WO |
2005047813 | May 2005 | WO |
2005106695 | Nov 2005 | WO |
2006029634 | Mar 2006 | WO |
2006037132 | Apr 2006 | WO |
2006039091 | Apr 2006 | WO |
2006061829 | Jun 2006 | WO |
2006068875 | Jun 2006 | WO |
2006111704 | Oct 2006 | WO |
2006119416 | Nov 2006 | WO |
2006121851 | Nov 2006 | WO |
2006130802 | Dec 2006 | WO |
2007002685 | Jan 2007 | WO |
2007025230 | Mar 2007 | WO |
2007045690 | Apr 2007 | WO |
2007058895 | May 2007 | WO |
2007067323 | Jun 2007 | WO |
2007084995 | Jul 2007 | WO |
2008058084 | May 2008 | WO |
2008069991 | Jun 2008 | WO |
2008107905 | Sep 2008 | WO |
2009009799 | Jan 2009 | WO |
2009009801 | Jan 2009 | WO |
2009046431 | Apr 2009 | WO |
2009121067 | Oct 2009 | WO |
2009137704 | Nov 2009 | WO |
201106886 | Jan 2011 | WO |
2011038048 | Mar 2011 | WO |
2011081688 | Jul 2011 | WO |
2012003369 | Jan 2012 | WO |
2012061935 | May 2012 | WO |
2012071388 | May 2012 | WO |
2012087818 | Jun 2012 | WO |
2012098194 | Jul 2012 | WO |
2012109676 | Aug 2012 | WO |
2012130289 | Oct 2012 | WO |
2012154767 | Nov 2012 | WO |
2012155040 | Nov 2012 | WO |
2013033414 | Mar 2013 | WO |
2013033415 | Mar 2013 | WO |
2013033418 | Mar 2013 | WO |
2013033489 | Mar 2013 | WO |
2013033490 | Mar 2013 | WO |
2013033592 | Mar 2013 | WO |
2013126390 | Aug 2013 | WO |
2014109879 | Jul 2014 | WO |
Entry |
---|
International Search Report and Written Opinion dated Nov. 2, 2012, for International Patent Application No. PCT/US12/53168, filed Aug. 30, 2013 (8 pages). |
International Search Report and Written Opinion dated Apr. 14, 2014, for International Patent Application No. PCT/US2013/076148, filed Dec. 18, 2013 (8 pages). |
International Search Report and Written Opinion dated Apr. 21, 2014, for International Patent Application No. PCT/US2013/076015, filed Dec. 18, 2013 (7 pages). |
International Search Report and Written Opinion dated Apr. 23, 2014, for International Patent Application No. PCT/US2013/075328, filed Dec. 16, 2013 (8 pages). |
International Search Report and Written Opinion dated Apr. 29, 2014, for International Patent Application No. PCT/US13/76093, filed Dec. 18, 2013 (6 pages). |
International Search Report and Written Opinion dated Apr. 9, 2014, for International Patent Application No. PCT/US13/75089, filed Dec. 13, 2013 (7 pages). |
International Search Report and Written Opinion dated Feb. 21, 2014, for International Patent Application No. PCT/US13/76053, filed Dec. 18, 2013 (9 pages). |
International Search Report and Written Opinion dated Feb. 21, 2014, for International Patent Application No. PCT/US2013/076965, filed Dec. 20, 2013 (6 pages). |
International Search Report and Written Opinion dated Feb. 27, 2014, for International Patent Application No. PCT/US13/75416, filed Dec. 16, 2013 (7 pages). |
International Search Report and Written Opinion dated Feb. 28, 2014, for International Patent Application No. PCT/US13/75653, filed Dec. 17, 2013 (7 pages). |
International Search Report and Written Opinion dated Feb. 28, 2014, for International Patent Application No. PCT/US13/75990, filed Dec. 18, 2013 (7 pages). |
International Search Report and Written Opinion dated Jan. 16, 2009, for International Patent Application No. PCT/US08/78963 filed on Oct. 6, 2008 (7 pages). |
International Search Report and Written Opinion dated Jul. 30, 2014, for International Patent Application No. PCT/US14/21659, filed Mar. 7, 2014 (15 pages). |
International Search Report and Written Opinion dated Mar. 10, 2014, for International Patent Application No. PCT/US2013/076212, filed Dec. 18, 2013 (8 pages). |
International Search Report and Written Opinion dated Mar. 11, 2014, for International Patent Application No. PCT/US13/76173, filed Dec. 16, 2013 (9 pages). |
International Search Report and Written Opinion dated Mar. 11, 2014, for International Patent Application No. PCT/US13/76449, filed Dec. 19, 2013 (9 pages). |
International Search Report and Written Opinion dated Mar. 18, 2014, for International Patent Application No. PCT/US2013/076502, filed Dec. 19, 2013 (7 pages). |
International Search Report and Written Opinion dated Mar. 18, 2014, for International Patent Application No. PCT/US2013/076788, filed Dec. 20, 2013 (7 pages). |
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US13/75349, filed Dec. 16, 2013 (10 pages). |
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US2013/076587, filed Dec. 19, 2013 (10 pages). |
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US2013/076909, filed Dec. 20, 2013 (7 pages). |
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076304, filed Dec. 18, 2013 (9 pages). |
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076480, filed Dec. 19, 2013 (8 pages). |
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076512, filed Dec. 19, 2013 (8 pages). |
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076531, filed Dec. 19, 2013 (10 pages). |
Jakobovits et al., 1993, Analysis of homozygous mutant chimeric mice:deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production, PNAS USA 90:2551-255. |
Jakobovits et al., 1993, Germ-line transmission and expression of a human-derived yeast artificial chromosome, Nature 362:255-258. |
Jang et al., 2002, Visualization of Coronary Atherosclerotic Plaques in Patients Using Optical Coherence Tomography: Comparison With Intravascular Ultrasound, Journal of the American College of Cardiology 39:604-609. |
Jiang et al., 1992, Image registration of multimodality 3-D medical images by chamfer matching, Proc. SPIE 1660, Biomedical Image Processing and Three-Dimensional Microscopy, 356-366. |
Johnson et al., 1993, Human antibody engineering: Current Opinion in Structural Biology, 3:564-571. |
Jones et al., 1986, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature, 321:522-525. |
Juviler et al., 2008, Anorectal sepsis and fistula-in-ano, Surgical Technology International, 17:139-149. |
Karapatis et al., 1998, Direct rapid tooling:a review of current research, Rapid Prototyping Journal, 4(2):77-89. |
Karp et al., 2009, The benefit of time-of-flight in PET imaging, J Nucl Med 49:462-470. |
Kelly et al. 2005, Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle, Circulation Research 96:327-336. |
Kemp et al., 2005, Depth Resolved Optic Axis Orientation in Multiple Layered Anisotropic Tissues Measured with Enhanced Polarization Sensitive Optical Coherence Tomography, Optics Express 13(12):4507-4518. |
Kersey et al., 1991, Polarization insensitive fiber optic Michelson interferometer, Electron. Lett. 27:518-520. |
Kheir et al., 2012, Oxygen Gas-Filled Microparticles Provide Intravenous Oxygen Delivery, Science Translational Medicine 4(140):140ra88 (10 pages). |
Khuri-Yakub et al., 2011, Capacitive micromachined ultrasonic transducers for medical imaging and therapy, J Micromech Microeng. 21(5):054004-054014. |
Kirkman, 1991, Technique for flow reduction in dialysis access fistulas, Surg Gyn Obstet, 172(3):231-3. |
Kohler et al., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256:495-7. |
Koo et al., 2011, Diagnosis of IschemiaCausing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms, J Am Coll Cardiol 58(19):1989-1997. |
Kozbor et al., 1984, A human hybrid myeloma for production of human monoclonal antibodies, J. Immunol., 133:3001-3005. |
Kruth et al., 2003, Lasers and materials in selective laser sintering, Assembly Automation, 23(4):357-371. |
Kumagai et al., 1994, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm, Applied Physics Letters, 65(14):1850-1852. |
Larin et al., 2002, Noninvasive Blood Glucose Monitoring with Optical Coherence Tomography: a pilot study in human subjects, Diabetes Care, 25(12):2263-7. |
Larin et al., 2004, Measurement of Refractive Index Variation of Physiological Analytes using Differential Phase OCT, Proc of SPIE 5325:31-34. |
Laufer, 1996, Introduction to Optics and Lasers in Engineering, Cambridge University Press, Cambridge UK:156-162. |
Lefevre et al., 2001, Stenting of bifurcation lesions:a rational approach, J. Interv. Cardiol., 14(6):573-585. |
Li et al., 2000, Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus, Endoscopy, 32(12):921-930. |
Sihan et al., 2008, A novel approach to quantitative analysis of intraluminal optical coherence tomography imaging, Comput. Cardiol:1089-1092 |
Siwy et al., 2003, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal, Applied Physics A: Materials Science & Processing 76:781-785. |
Smith et al., 1989, Absolute displacement measurements using modulation of the spectrum of white light in a Michelson interferometer, Applied Optics, 28(16):3339-3342. |
Smith, 1997, The Scientist and Engineer's Guide to Digital Signal Processing, California Technical Publishing, San Diego, CA:432-436. |
Soller, 2003, Polarization diverse optical frequency domain interferometry:All coupler implementation, Bragg Grating, Photosensitivity, and Poling in Glass Waveguides Conference MB4:30-32. |
Song et al., 2012, Active tremor cancellation by a “Smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography, Optics Express, 20(21):23414-23421. |
Stenqvist et al., 1983, Stiffness of central venous catheters, Acta Anaesthesiol Scand., 2:153-157. |
Strickland, 1970, Time-Domain Reflectometer Measurements, Tektronix, Beaverton, OR, (107 pages). |
Strobl et al., 2009, An Introduction to Recursive Partitioning:Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests, Psychol Methods., 14(4):323-348. |
Sutcliffe et al., 1986, Dynamics of UV laser ablation of organic polymer surfaces, Journal of Applied Physics, 60(9):3315-3322. |
Suzuki, 2013, A novel guidewire approach for handling acute-angle bifurcations, J Inv Cardiol 25(1):48-54. |
Tanimoto et al., 2008, A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection, Cathet Cardiovascular Intervent., 72(2):228-235. |
Tearney et al., 1997, In vivo Endoscopic Optical Biopsy with Optical Coherence Tomography, Science, 276:2037-2039. |
Tonino et al., 2009, Fractional flow reserve versus angiography for guiding percutaneous coronary intervention, The New England Journal of Medicine, 360:213-224. |
Toregeani et al., 2008, Evaluation of hemodialysis arteriovenous fistula maturation by color-flow Doppler ultrasound, J Vasc. Bras. 7(3):203-213. |
Translation of Notice of Reason(s) for Refusal dated Apr. 30, 2014, for Japanese Patent Application No. 2011-508677, (5 pages). |
Translation of Notice of Reason(s) for Refusal dated May 25, 2012, for Japanese Patent Application No. 2009-536425, (3 pages). |
Translation of Notice of Reason(s) for Refusal dated Nov. 22, 2012, for Japanese Patent Application No. 2010-516304, (6 pages). |
Traunecker et al., 1991, Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells, EMBO J., 10:3655-3659. |
Trolier-McKinstry et. al., 2004, Thin Film Piezoelectric for MEMS, Journal of Electroceramics 12:7-17. |
Tuniz et al., 2010, Weaving the invisible thread: design of an optically invisible metamaterial fibre, Optics Express 18(17):18095-18105. |
Turk et al., 1991, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3(1):71-86. |
Tuzel et al., 2006, Region Covariance: A Fast Descriptor for Detection and Classification, European Conference on Computer Vision (ECCV). |
Urban et al., 2010, Design of a Pressure Sensor Based on Optical Bragg Grating Lateral Deformation, Sensors (Basel), 10(12):11212-11225. |
Vakhtin et al., 2003, Common-path interferometer for frequency-domain optical coherence tomography, Applied Optics, 42(34):6953-6958. |
Vakoc et al., 2005, Phase-Resolved Optical Frequency Domain Imaging, Optics Express 13(14):5483-5493. |
Verhoeyen et al., 1988, Reshaping human antibodies: grafting an antilysozyme activity, Science, 239:1534-1536. |
Villard et al., 2002, Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography, Circulation, 105:1843-1849. |
Wang et al., 2002, Optimizing the Beam Patten of a Forward-Viewing Ring-Annular Ultrasound Array for Intravascular Imaging, Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(12). |
Wang et al., 2006, Multiple biomarkers for the prediction of first major cardiovascular events and death, The New England Journal of Medicine, 355(25):2631-2639. |
Wang et al., 2009, Robust Guidewire Tracking in Fluoroscopy, IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2009:691-698. |
Wang et al., 2011, In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation, J. Biomed. Opt. 0001 16(11):110505-1 (3 pages). |
Waterhouse et. al., 1993, Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires, Nucleic Acids Res., 21:2265-2266. |
Wegener, 2011, 3D Photonic Metamaterials and Invisibility Cloaks: The Method of Making, MEMS 2011, Cancun, Mexico, Jan. 23-27, 2011. |
West et al., 1991, Arterial insufficiency in hemodialysis access procedures: correction by banding technique, Transpl Proc 23(2):1838-40. |
Wyawahare et al., 2009, Image registration techniques: an overview, International Journal of Signal Processing, Image Processing and Pattern Recognition, 2(3):11-28. |
Yaqoob et al., 2006, Methods and application areas of endoscopic optical coherence tomography, J. Biomed. Opt., 11, 063001-1-063001-19. |
Yasuno et al., 2004, Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples, Applied Physics Letters 85(15):3023-3025. |
Zhang et al., 2004, Full range polarization-sensitive Fourier domain optical coherence tomography, Optics Express, 12 (24):6033-6039. |
Zitova et al., 2003, Image registration methods: A survey. Image and Vision Computing, 21(11):977-1000. |
Abdi et al., 2010, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2:433-459. |
Adler et al., 2007, Phase-Sensitive Optical Coherence Tomography at up to 370,000 Lines Per Second Using Buffered Fourier Domain Mode-Locked Lasers, Optics Letters, 32(6):626-628. |
Agresti, 1996, Models for Matched Pairs, Chapter 8, An Introduction to Categorical Data Analysis, Wiley-Interscience A John Wiley & Sons, Inc., Publication, Hoboken, New Jersey. |
Akasheh et al., 2004, Development of piezoelectric micromachined ultrasonic transducers, Sensors and Actuators A Physical, 111:275-287. |
Amini et al., 1990, Using dynamic programming for solving variational problems in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):855-867. |
Bail et al., 1996, Optical coherence tomography with the “Spectral Radar”—Fast optical analysis in volume scatterers by short coherence interferometry, Optics Letters 21(14):1087-1089. |
Bain, 2011, Privacy protection and face recognition, Chapter 3, Handbook of Face Recognition, Stan et al., Springer-Verlag. |
Barnea et al., 1972, A class of algorithms for fast digital image registration, IEEE Trans. Computers, 21(2):179-186. |
Blanchet et al., 1993, Laser Ablation and the Production of Polymer Films, Science, 262(5134):719-721. |
Bonnema, 2008, Imaging Tissue Engineered Blood Vessel Mimics with Optical Tomography, College of Optical Sciences dissertation, University of Arizona (252 pages). |
Bouma et al., 1999, Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography, Optics Letters, 24(8):531-533. |
Breiman, 2001, Random forests, Machine Learning 45:5-32. |
Brown, 1992, A survey of image registration techniques, ACM Computing Surveys 24(4):325-376. |
Bruining et al., 2009, Intravascular Ultrasound Registration/Integration with Coronary Angiography, Cardiology Clinics, 27(3):531-540. |
Brummer, 1997, An euclidean distance measure between covariance matrices of speechcepstra for text-independent speaker recognition, in Proc. South African Symp. Communications and Signal Processing:167-172. |
Burr et al., 2005, Searching for the Center of an Ellipse in Proceedings of the 17th Canadian Conference on Computational Geometry:260-263. |
Canny, 1986, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. 8:679-698. |
Cavalli et al., 2010, Nanosponge formulations as oxygen delivery systems, International Journal of Pharmaceutics 402:254-257. |
Choma et al., 2003, Sensitivity Advantage of Swept Source and Fourier Domain Optical Coherence Tomography, Optics Express 11(18):2183-2189. |
Clarke et al., 1995, Hypoxia and myocardial ischaemia during peripheral angioplasty, Clinical Radiology, 50(5):301-303. |
Collins, 1993, Coronary flow reserve, British Heart Journal 69:279-281. |
Communication Mechanisms for Distributed Real-Time Applications, NI Developer Zone, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007. |
Cook, 2007, Use and misuse of receiver operating characteristic curve in risk prediction, Circulation 115(7):928-35. |
D'Agostino et al., 2001, Validation of the Framingham coronary heart disease prediction score: results of a multiple ethnic group investigation, JAMA 286:180-187. |
David et al., 1974, Protein iodination with solid-state lactoperoxidase, Biochemistry 13:1014-1021. |
Davies et al., 1985, Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina, British Heart Journal 53:363-373. |
Davies et al., 1993, Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content, British Heart Journal 69:377-381. |
Deterministic Data Streaming in Distributed Data Acquisition Systems, NI Developer Zone, “What is Developer Zone?”, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007. |
Eigenwillig, 2008, K-Space Linear Fourier Domain Mode Locked Laser and Applications for Optical Coherence Tomography, Optics Express 16(12):8916-8937. |
Elghanian et al., 1997, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277(5329):1078-1080. |
Ergun et al., 2003, Capacitive Micromachined Ultrasonic Transducers:Theory and Technology, Journal of Aerospace Engineering, 16(2):76-84. |
Evans et al., 2006, Optical coherence tomography to identify intramucosa carcinoma and high-grade dysplasia in Barrett's esophagus, Clin Gast Hepat 4(1):38-43. |
Fatemi et al., 1999, Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission, PNAS U.S.A., 96(12):6603-6608. |
Felzenszwalb et al., 2005, Pictorial Structures for Object Recognition, International Journal of Computer Vision, 61(1):55-79. |
Ferring et al., 2008, Vasculature ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence, Nephrol. Dial. Transplant. 23(6):1809-1815. |
Fischler et al., 1973, The representation and matching of pictorial structures, IEEE Transactions on Computer 22:67-92. |
Fleming et al., 2010, Real-time monitoring of cardiac radio-frequency ablation lesion formation using an optical coherence tomography forward-imaging catheter, Journal of Biomedical Optics 15 (3):030516-1 (3 pages). |
Fookes et al., 2002, Rigid and non-rigid image registration and its association with mutual information:A review, Technical Report ISBN:1 86435 569 7, RCCVA, QUT. |
Forstner & Moonen, 1999, A metric for covariance matrices, In Technical Report of the Dpt of Geodesy and Geoinformatics, Stuttgart University, 113-128. |
Goel et al., 2006, Minimally Invasive Limited Ligation Endoluminal-assisted Revision (MILLER) for treatment of dialysis access-associated steal syndrome, Kidney Int 70(4):765-70. |
Gotzinger et al., 2005, High speed spectral domain polarization sensitive optical coherence tomography of the human retina, Optics Express 13(25):10217-10229. |
Gould et al., 1974, Physiologic basis for assessing critical coronary stenosis, American Journal of Cardiology, 33:87-94. |
Griffiths et al., 1993, Human anti-self antibodies with high specificity from phage display libraries, The EMBO Journal, 12:725-734. |
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires, The EMBO Journal, 13(14):3245-3260. |
Grund et al., 2010, Analysis of biomarker data:logs, odds, ratios and ROC curves, Curr Opin HIV AIDS 5(6):473-479. |
Harrison et al., 2011, Guidewire Stiffness: What's in a name?, J Endovasc Ther, 18(6):797-801. |
Huber et al., 2005, Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles, Optics Express 13(9):3513-3528. |
Huber et al., 2006, Fourier Domain Mode Locking (FDML): A New Laser Operating Regime and Applications for Optical Coherence Tomography, Optics Express 14(8):3225-3237. |
International Search Report and Written Opinion dated Mar. 11, 2014, for International Patent Application No. PCT/US13/75675, filed Dec. 17, 2013 (7 pages). |
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US13/075353, filed Dec. 16, 2013 (8 pages). |
Little et al., 1991, The underlying coronary lesion in myocardial infarction:implications for coronary angiography, Clinical Cardiology, 14(11):868-874. |
Loo, 2004, Nanoshell Enabled Photonics-Based Imaging and Therapy of Cancer, Technology in Cancer Research & Treatment 3(1):33-40. |
Machine translation of JP 2000-097846. |
Machine translation of JP 2000-321034. |
Machine translation of JP 2000-329534. |
Machine translation of JP 2004-004080. |
Maintz et al., 1998, An Overview of Medical Image Registration Methods, Technical Report UU-CS, (22 pages). |
Mamas et al., 2010, Resting Pd/Pa measured with intracoronary pressure wire strongly predicts fractional flow reserve, Journal of Invasive Cardiology 22(6):260-265. |
Marks et al., 1991, By-passing Immunization Human Antibodies from V-gene Libraries Displayed on Phage, J. Mol. Biol. 222:581-597. |
Marks et al., 1992, By-Passing Immunization:Building High Affinity Human Antibodies by Chain Shuffling, BioTechnol., 10:779-783. |
Maruno et al., 1991, Fluorine containing optical adhesives for optical communications systems, J. Appl. Polymer. Sci. 42:2141-2148. |
McCafferty et al., 1990, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348:552-554. |
Mendieta et al., 1996, Complementary sequence correlations with applications to reflectometry studies, Instrumentation and Development 3(6):37-46. |
Mickley, 2008, Steal Syndrome-strategies to preserve vascular access and extremity, Nephrol Dial Transplant 23:19-24. |
Miller et al., 2010, The MILLER banding procedure is an effective method for treating dialysis-associated steal syndrome, Kidney International 77:359-366. |
Milstein et al., 1983, Hybrid hybridomas and their use in immunohistochemistry, Nature 305:537-540. |
Mindlin et al., 1936, A force at a point of a semi-infinite solid, Physics, 7:195-202. |
Morrison et al., 1984, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, PNAS 81:6851-6855. |
Munson et al., 1980, Ligand: a versatile computerized approach for characterization of ligand-binding systems, Analytical Biochemistry, 107:220-239. |
Nezam, 2008, High Speed Polygon-Scanner-Based Wavelength-Swept Laser Sources in the Telescope-Less Configuration with Application in Optical Coherence Tomography, Optics Letters 33(15):1741-1743. |
Nissen, 2001, Coronary Angiography and Untravascular Ultrasound, American Journal of Cardiology, 87(suppl):15A-20A. |
Nitenberg et al., 1995, Coronary vascular reserve in humans: a critical review of methods of evaluation and of interpretation of the results, Eur Heart J. 16(Suppl 1):7-21. |
Notice of Reason(s) for Refusal dated Apr. 30, 2013, for Japanese Patent Application No. 2011-508677 for Optical Imaging Catheter for Aberation Balancing to Volcano Corporation, which application is a Japanese national stage entry of PCT/US2009/043181 with international filing date May 7, 2009, of the same title, published on Nov. 12, 2009, as WO 2009/137704, and accompanying English translation of the Notice of Reason(s) for Refusal and machine translations of JP11-56786 and JP2004-290548 (56 pages). |
Nygren, 1982, Conjugation of horseradish peroxidase to Fab fragments with different homobifunctional and heterobifunctional cross-linking reagents. A comparative study, J. Histochem. and Cytochem. 30:407-412. |
Oesterle et al., 1986, Angioplasty at coronary bifurcations: single-guide, two-wire technique, Cathet Cardiovasc Diagn., 12:57-63. |
Okuno et al., 2003, Recent Advances in Optical Switches Using Silica-based PLC Technology, NTT Technical Review 1(7):20-30. |
Oldenburg et al., 1998, Nanoengineering of Optical Resonances, Chemical Physics Letters 288:243-247. |
Oldenburg et al., 2003, Fast-Fourier-Domain Delay Line for In Vivo Optical Coherence Tomography with a Polygonal Scanner, Applied Optics, 42(22):4606-4611. |
Othonos, 1997, Fiber Bragg gratings, Review of Scientific Instruments 68(12):4309-4341. |
Owens et al., 2007, A Survey of General-Purpose Computation on Graphics Hardware, Computer Graphics Forum 26(1):80-113. |
Pain et al., 1981, Preparation of protein A-peroxidase mono conjugate using a heterobifunctional reagent, and its use in enzyme immunoassays, J Immunol Methods, 40:219-30. |
Park et al., 2005, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 um., Optics Express 13(11):3931-3944. |
Pasquesi et al., 2006, In vivo detection of exercise induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography, Optics Express 14(4):1547-1556. |
Pepe et al., 2004, Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker, American Journal of Epidemiology 159(9):882-890. |
Persson et al., 1985, Acoustic impedance matching of medical ultrasound transducers, Ultrasonics, 23(2):83-89. |
Placht et al., 2012, Fast time-of-flight camera based surface registration for radiotherapy patient positioning, Medical Physics 39(1):4-17. |
Rabbani et al., 1999, Review: Strategies to achieve coronary arterial plaque stabilization, Cardiovascular Research 41:402-417. |
Radvany et al., 2008, Plaque Excision in Management of Lower Extremity Peripheral Arterial Disease with the SilverHawk Atherectomy Catheter, Seminars in Interventional Radiology, 25(1):11-19. |
Reddy et al., 1996, An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration, IEEE Transaction on Image Processing 5(8):1266-1271. |
Riechmann et al., 1988, Reshaping human antibodies for therapy, Nature, 332:323-327. |
Rivers et al., 1992, Correction of steal syndrome secondary to hemodialysis access fistulas: a simplified quantitative technique, Surgery, 112(3):593-7. |
Robbin et al., 2002, Hemodialysis Arteriovenous Fistula Maturity: US Evaluation, Radiology 225:59-64. |
Rollins et al., 1998, In vivo video rate optical coherence tomography, Optics Express 3:219-229. |
Sarunic et al., 2005, Instantaneous Complex Conjugate Resolved Spectral Domain and Swept-Source OCT Using 3×3 Fiber Couplers, Optics Express 13(3):957-967. |
Satiani et al., 2009, Predicted Shortage of Vascular Surgeons in the United States, J. Vascular Surgery 50:946-952. |
Schneider et al., 2006, T-banding: A technique for flow reduction of a hyper-functioning arteriovenous fistula, J Vase Surg. 43(2):402-405. |
Sen et al., 2012, Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis, Journal of the American College of Cardiology 59(15):1392-1402. |
Setta et al., 2005, Soft versus firm embryo transfer catheters for assisted reproduction: a systematic review and meta-analysis, Human Reproduction, 20(11):3114-3121. |
Seward et al., 1996, Ultrasound Cardioscopy: Embarking on New Journey, Mayo Clinic Proceedings 71(7):629-635. |
Shen et al., 2006, Eigengene-based linear discriminant model for tumor classification using gene expression microarray data, Bioinformatics 22(21):2635-2642. |
Number | Date | Country | |
---|---|---|---|
20140180034 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61745119 | Dec 2012 | US |