The present disclosure relates generally to hinge and slide devices, and more particularly, to such a packaging efficient device for vehicle doors.
Sliding door structures are generally implemented on vehicles to reduce the door swing distance from the vehicle body; to allow for better ingress and egress into or from a vehicle; and to improve the package (or layout) of a vehicle. This type of design is particularly helpful when a user is parking a vehicle in a confined area where there is little available room for door swing.
In the sliding door structure, guide rails are generally included at the roof rail/cant rail and rocker sill, as well as adjacent to a vehicle body class A surface (the exterior sheet metal of the vehicle). The guide rail on the class A surface is generally configured as a linear track just below the side window. In addition, such vehicles generally also implement a curved guide track on the vehicle body at the sill and/or side rail/cant rail to guide the sliding door into the closed position against the vehicle body. To open the sliding door, the sliding door is projected in a vehicle exterior direction along a curved guide rail, and then the sliding door is moved along a separate linear guide rail to a fully opened position. To close the traditional sliding door, the sliding door is moved from the linear guide rail to the curved guide rail such that the as the door travels along the curved guide rail, the door is pulled inward against the vehicle to a closed position.
However, a traditional sliding door movement does coincide with the curved shape of the guide rail once it transitions from the linear track to the curved track resulting in a two step operation for opening and closing the sliding door, thereby resulting in disrupted motion as the vehicle door is opened and closed
A simultaneous movement system for a vehicle door is provided according to embodiments disclosed herein. The system includes first and second primary hinge arms, first and second secondary hinge arms, in addition to primary and secondary rails. The second primary hinge arm and the second secondary hinge arm are pivotally mounted to a vehicle body structure on one end and are pivotally mounted to a primary slide and a secondary slide at the other ends respectively. The first primary hinge arm includes a guide track region and a rail region. The guide track receives the guide track region of the primary hinge arm thereby allowing the primary hinge arm to travel along both the guide track and the primary rail simultaneously through the guide track region and the rail region of the primary hinge arm.
Features and advantages of embodiments of the present disclosure will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to similar, though perhaps not identical, components. For the sake of brevity, reference numerals or features having a previously described function may or may not be described in connection with other drawings in which they appear.
The present disclosure provides a simultaneous movement system 10 for a sliding and articulating vehicle door 12 wherein the class A surface of the vehicle is not disrupted with a door track for the sliding door system. The present disclosure allows for stable, yet simultaneous sliding and articulating of a vehicle door 12 and also provides a door system 10 that requires minimal package space on the vehicle body.
The simultaneous movement system 10 of the present disclosure is particularly beneficial with vehicles where there is minimal space to mount a sliding door system, such as a pick-up truck where in the vehicle cab terminates proximate to the pick-up truck box, or a sedan vehicle structure. In one non-limiting example, a pick up truck and a sedan structure are in contrast to a van structure in that a pick-up truck or sedan B or C pillar provide a much smaller mounting surface for a sliding door system than a van structure due to the fundamental differences in vehicle architecture. Accordingly, the simultaneous movement system 10 disclosed herein substantially and advantageously overcomes at least the potential drawbacks noted in the background above.
Referring now to the non-limiting examples shown in
Referring again to the drawings wherein like reference numerals are used to identify identical components in the various views,
The first primary hinge arm 16 includes a guide track region 24 and a rail region 26. (shown in
It is to be understood that the aforementioned terms “region(s)” and “point(s)” are being used alternatively in that both terms (points and regions) are to be understood to be small, discrete areas on a member intended for a particular use.
Similar to the first primary hinge arm 16, the first secondary hinge arm 14 the second primary hinge arm 44, and the second secondary hinge arm 42 each includes a door end 23 and a body end 20. The first primary hinge arm 16, the first secondary hinge arm 14 the second primary hinge arm 44, and the second secondary hinge arm 42 are each pivotally mounted to a vehicle body structure 70 (such as a C-pillar) at the body ends 20 thereof and are pivotally mounted to either the primary slide 28 or the secondary slide 36 as shown at the door end 23 of each hinge arm.
The first primary hinge arm 16, the first secondary hinge arm 14, the second primary hinge arm 44, and the second secondary hinge arm 42 may be mounted to the vehicle body structure 70 through the use of a mounting bracket 98 (shown in
The first secondary hinge arm 14 is pivotally mounted to vehicle body structure 70 or C-pillar 18 at pivot joint 80. The second secondary hinge arm 42 is pivotally attached to vehicle body structure 70 or C-pillar 18 at pivot joint 82. The first secondary hinge arm 14 is pivotally attached to the secondary slide 36 at pivot joint 48. The second secondary hinge arm 42 is pivotally attached to the secondary slide 36 at pivot joint 46.
It is to be understood that the arrangement of
An example of a secondary slide 36 and a primary slide 28 is shown in
With respect to the primary slide 28, first recess 54 of primary slide 28 receives first primary hinge arm 16 and second primary hinge arm 44. The first primary hinge arm 16 and the second primary hinge arm 44 attach to the primary slide 28 through pivot joints 58, 60. The first primary hinge arm 16 and second secondary hinge arm 44 attach to the primary slide 28 via the first recess 54 of primary slide 28. A second recess 56 of the primary slide 28 may partially surround the primary rail 34. Primary slide 28 may further include rollers 62 as shown in
The first primary hinge arm 16 and the second primary hinge arm 44 cooperate with a primary rail 34 which is mounted to an inner panel 76 of a vehicle door 12 and operatively configured to receive a primary slide 28. As indicated, the primary slide 28 is pivotally attached to the door end of the second primary hinge arm 44. With respect to the first primary hinge arm 16, the primary slide 28 is pivotally attached to the rail region 26 of the first primary hinge arm 16. In addition to the primary rail 34, a secondary rail 32 is mounted to the vehicle door 12 to provide stability to large vehicle door systems. The secondary rail 32 is operatively configured to receive a second slide 36. The second slide 36 is pivotally mounted on a door end 23 of the first secondary hinge arm 14 and a door end 23 of the second secondary hinge arm 42 as shown in
It is to be understood that the arrangement shown in
A guide track 30 is also provided in order to facilitate continuous smooth movement of the door 12 between the open and closed door 12 positions. As shown in
The guide track region 24 of the first primary hinge arm 16 may further include a projection 25 consisting of at least one roller, a tab or the like which is operatively configured to move along the guide track 30 (shown in
The guide track 30 may be affixed to the door inner panel 76 or the guide track 30 may be affixed to the door hardware system (latches and/or handle systems not shown). Guide track 30 may also be integral with the primary rail 34 as shown in
Referring now to
As shown in
Referring back to
Referring now to a second embodiment shown in
The upper rail 34 may be operatively configured to receive an upper slide 28. The upper slide 28 being pivotally mounted on the door end of the second upper hinge arm 44′ and the rail region 26 of the first upper hinge arm 16′. A lower rail 32 may be mounted to the vehicle door inner panel 76 and/or vehicle door hardware structures (such as door latch and/or door handle) and operatively configured to receive a lower slide 36, the lower slide 36 being pivotally mounted on a door end 23 (shown in
The guide track region 24 of the first upper hinge arm 16′ may further include a projection 25 consisting of at least one roller operatively configured to move along the guide track 30. It is also to be understood that in one non-limiting example, the primary rail 34 and the secondary rail 32 may each be an extruded member. It is also to be understood that the primary rail (34 in
The guide track 30 may affixed to the door inner panel 76 or the guide track 30 may be affixed to the door hardware system (latches and/or handle systems not shown). As shown in
Lower slide 36 may further include rollers 50 as shown in
Referring now
Referring now to
Referring now to
With reference to
While multiple embodiments have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified. Therefore, the foregoing description is to be considered exemplary rather than limiting.
Number | Name | Date | Kind |
---|---|---|---|
3051999 | Schimek | Sep 1962 | A |
3075803 | Wilfert | Jan 1963 | A |
3313063 | Patin | Apr 1967 | A |
3619853 | Merrill | Nov 1971 | A |
3628216 | Savell | Dec 1971 | A |
3935674 | Williams et al. | Feb 1976 | A |
4025104 | Grossbach et al. | May 1977 | A |
4135760 | Grossbach | Jan 1979 | A |
4945677 | Kramer | Aug 1990 | A |
5139307 | Koops et al. | Aug 1992 | A |
5251953 | Willey | Oct 1993 | A |
5398988 | DeRees et al. | Mar 1995 | A |
5507119 | Sumiya et al. | Apr 1996 | A |
5561887 | Neag et al. | Oct 1996 | A |
5812684 | Mark | Sep 1998 | A |
5846463 | Keeney et al. | Dec 1998 | A |
5896704 | Neag et al. | Apr 1999 | A |
5921613 | Breunig et al. | Jul 1999 | A |
6030025 | Kanerva | Feb 2000 | A |
6036257 | Manuel | Mar 2000 | A |
6183039 | Kohut et al. | Feb 2001 | B1 |
6196618 | Pietryga et al. | Mar 2001 | B1 |
6213535 | Landmesser et al. | Apr 2001 | B1 |
6299235 | Davis et al. | Oct 2001 | B1 |
6382705 | Lang et al. | May 2002 | B1 |
6394529 | Davis et al. | May 2002 | B2 |
6447054 | Pietryga et al. | Sep 2002 | B1 |
6572176 | Davis et al. | Jun 2003 | B2 |
6629337 | Nania | Oct 2003 | B2 |
6793268 | Faubert et al. | Sep 2004 | B1 |
6802154 | Holt et al. | Oct 2004 | B1 |
6817651 | Carvalho et al. | Nov 2004 | B2 |
6826869 | Oberheide | Dec 2004 | B2 |
6860543 | George et al. | Mar 2005 | B2 |
6896315 | Batanli et al. | May 2005 | B2 |
6926342 | Pommeret et al. | Aug 2005 | B2 |
6942277 | Rangnekar et al. | Sep 2005 | B2 |
6997504 | Lang et al. | Feb 2006 | B1 |
7000977 | Anders | Feb 2006 | B2 |
7032953 | Rangnekar et al. | Apr 2006 | B2 |
7104588 | George et al. | Sep 2006 | B2 |
7168753 | Faubert et al. | Jan 2007 | B1 |
7178853 | Oxley et al. | Feb 2007 | B2 |
7219948 | Curtis, Jr. et al. | May 2007 | B2 |
7243978 | Mather et al. | Jul 2007 | B2 |
7393044 | Enomoto | Jul 2008 | B2 |
7438346 | Breed | Oct 2008 | B1 |
7469944 | Kitayama et al. | Dec 2008 | B2 |
7552953 | Schmoll et al. | Jun 2009 | B2 |
7611190 | Elliott et al. | Nov 2009 | B1 |
7640627 | Lowen et al. | Jan 2010 | B2 |
7658438 | Elliott et al. | Feb 2010 | B1 |
7765740 | Heuel et al. | Aug 2010 | B2 |
20020096800 | Keeney et al. | Jul 2002 | A1 |
20030218358 | Hahn | Nov 2003 | A1 |
20050093337 | Herrmann et al. | May 2005 | A1 |
20050116496 | Lowson et al. | Jun 2005 | A1 |
20050146159 | Shen et al. | Jul 2005 | A1 |
20060059799 | Zimmer et al. | Mar 2006 | A1 |
20060103047 | Zwolinski | May 2006 | A1 |
20060267375 | Enomoto | Nov 2006 | A1 |
20070075565 | Magsaam | Apr 2007 | A1 |
20070085374 | Mather et al. | Apr 2007 | A1 |
20070214606 | Hoffman | Sep 2007 | A1 |
20080224501 | Zimmer et al. | Sep 2008 | A1 |
20090051194 | Elliott et al. | Feb 2009 | A1 |
20090070960 | Elliott et al. | Mar 2009 | A1 |
20090072582 | Elliott et al. | Mar 2009 | A1 |
20090072583 | Elliott et al. | Mar 2009 | A1 |
20100095595 | Hanaki et al. | Apr 2010 | A1 |
20100154313 | Elliott et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
0012511 | Jun 1980 | EP |
0875434 | Nov 1998 | EP |
0957019 | Nov 1999 | EP |
389061 | May 1931 | GB |
WO2006005572 | Jan 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20110010998 A1 | Jan 2011 | US |