Winders are machines that roll lengths of paper, such as tissue webs, into rolls. These machines are capable of rolling lengths of web into rolls at high speeds through an automated process. Turret winders are well known in the art. Conventional turret winders comprise a rotating turret assembly which support a plurality of mandrels for rotation about a turret axis. The mandrels travel in a circular path at a fixed distance from the turret axis. The mandrels engage hollow cores upon which a paper web can be wound. Typically, the paper web is unwound from a parent roll in a continuous fashion, and the turret winder rewinds the paper web onto the cores supported on the mandrels to provide individual, relatively small diameter logs. The rolled product log is then cut to designated lengths into the final product. Final products typically created by these machines and processes are toilet tissue rolls, paper toweling rolls, and the like.
The winding technique used in turret winders is known as center winding. A center winding apparatus, for instance, is disclosed in U.S. Pat. Reissue No. 28,353 to Nystrand, which is incorporated herein by reference. In center winding, a mandrel is rotated in order to wind a web into a roll/log, either with or without a core. Typically, the core is mounted on a mandrel that rotates at high speeds at the beginning of a winding cycle and then slows down as the size of the rolled product being wound increases, in order to maintain a constant surface speed, approximately matching web speed.
A second type of winding is known in the art as surface winding. Typically, in surface winding, the web is wound onto the core via contact and friction developed with rotating rollers. A nip is typically formed between two or more co-acting roller systems. In surface winding, the core and the web that is wound around the core are usually driven by rotating rollers that operate at approximately the same speed as the web speed.
Recently, a winding system was developed that can use both center winding and surface winding either alone or in combination. Such a winding system, for instance, is disclosed in U.S. Patent Application Publication No. 2011/0057068; U.S. Patent Application Publication No. 2008/0105776; U.S. Patent Application Publication No. 2003/0160127; and U.S. Pat. No. 7,909,282; which are incorporated herein by reference. The winding systems described in the above references have provided many advancements in the art. The above winding systems, for instance, can operate at very fast speeds and are capable of quickly reacting to unintended web breaks or faults.
A need still remains, however, for further improvements and advancements in the art for increasing winding speeds and/or increasing throughput.
The present disclosure is generally directed to an improved method and system for producing spirally wound products. The wound products may comprise, for instance, tissue products, such as bath tissue and paper towels. In general, the present disclosure is directed to simultaneously winding multiple tissue sheets for increasing productivity.
In one embodiment, for instance, the present disclosure is directed to a method for forming spirally wound rolls. The method includes placing a first tissue web on top of a second tissue web. The first tissue web and the second tissue web are conveyed downstream in a superimposed relationship. The first tissue web is then separated from the second tissue web and fed to a first winding device while the second tissue web is simultaneously fed to a second winding device. The first tissue web is wound on the first winding device and the second tissue web is wound on the second winding device simultaneously to form respective spirally wound rolls.
In the embodiment described above, two tissue webs are conveyed downstream in a superimposed relationship. In other embodiments, however, more than two webs may be conveyed simultaneously. For example, in an alternative embodiment, a third tissue web may be placed on top of the first tissue web and on top of the second tissue web. The three tissue webs can then be conveyed downstream in a superimposed relationship. The third tissue web may be separated from the other two webs and fed to a third winding device. In this manner, three spirally wound rolls may be formed simultaneously.
Although optional, in one embodiment, especially when conveying the tissue webs at higher speeds, it may be advantageous to hold the tissue webs together in a removable manner. Holding the tissue webs together as they are conveyed in a superimposed relationship, however, may prevent one or more of the tissue webs from separating during the process.
In one embodiment, for instance, an electrostatic force can be induced in one or both of the webs for causing the webs to bond together prior to separating and forming the spirally wound rolls. In an alternative embodiment, the first tissue web and the second tissue web can be conveyed downstream by a conveying device that applies a suction force to the tissue webs. The first tissue web can be positioned offset with respect to the second tissue web on the conveying device such that a leading edge of the first tissue web overlaps and extends beyond a leading edge of the second tissue web. In this manner, the suction force being applied by the conveying device holds both webs against the conveying device as the webs are conveyed at high speeds.
While the first tissue web and the second tissue web are being wound into rolls, various converting operations can be carried out on the webs. For instance, in one embodiment, each tissue web can be periodically perforated to form cross-directional perforation lines on each web. The tissue webs can also be calendered and can be periodically cut as the spirally wound rolls are formed so as to begin a new roll. All of these operations can occur separately on each web or can occur simultaneously to both webs when the webs are in a superimposed relationship.
The present disclosure is also directed to a system for forming spirally wound rolls. The system includes a first unwind device for unwinding a first tissue web and a second unwind device for unwinding a second tissue web. The system further includes a web transport apparatus for conveying the first tissue web and the second tissue web downstream from the unwind stations. The web transport apparatus is configured to receive the first tissue web and the second tissue web simultaneously in a superimposed relationship.
The system includes a plurality of winding modules positioned along the web transport apparatus. In particular, the system includes at least a first winding module for receiving the first tissue web and a second winding module for receiving the second tissue web. The winding modules simultaneously form spirally wound rolls from their respective tissue webs.
Optionally, the system can include at least one perforation station for forming cross-directional perforation lines at periodic intervals on the tissue webs. The system can include at least one cutting device positioned upstream from the winding modules for cutting the tissue webs periodically as the spirally wound rolls are formed.
Other features and aspects of the present disclosure are discussed in greater detail below.
A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present disclosure.
The present disclosure is generally directed to a process and system for forming spirally wound products, such as bath tissue and paper towels. In accordance with the present disclosure, two sheet products are superimposed on one another and fed simultaneously to two winding devices for forming the products.
In the past, those skilled in the art have continually attempted to increase process line speeds of winding operations without adversely interfering with the product. Typically, when wind speeds are increased, however, other issues arise that relate to the handling of the sheet and/or other process consequences. Thus, in the past in order to allow for an incremental improvement in productivity by increasing wind speeds, a significant amount of engineering time and investment was required so that the product was not adversely impacted.
According to the present disclosure, however, productivity is greatly increased without having to increase line or machine speeds. In this regard, the present disclosure is directed to producing spirally wound products by processing multiple sheets together. For example, two sheet products, such as two tissue products, can be placed in a superimposed relationship and threaded through a winding process utilizing separate winding modules. Each sheet product is fed to a separate winding module allowing for both sheets to be wound simultaneously. Operating two sheets together effectively doubles the throughput capability of a processing line.
In addition to threading two tissue sheets together through the winding process, in other embodiments, more than two tissue sheets may be processed simultaneously. For example, the teachings of the present disclosure can also be directed to simultaneously winding more than two tissue sheets at the same time. For instance, in one embodiment, at least three tissue webs, such as at least four tissue webs, such as even at least five tissue webs may be placed in a superimposed relationship and conveyed through the winding process and then fed to separate winding modules for producing wound products.
While the multiple sheet products are being wound into spirally wound rolls, the sheet products can undergo various converting operations. For instance, the system can include a perforation station for perforating the sheets periodically, can include cutting devices for cutting the sheets once a rolled product is formed, can include calendering stations, and the like. The above stations and devices can be designed to process the sheet products simultaneously or to process the sheet products individually.
When producing rolled products in accordance with the present disclosure, the two or more superimposed sheet products are conveyed on a conveying device and then fed to different winding modules. For example, when conveying two sheets together, the top sheet can be transferred to a first winding module while the bottom sheet is further conveyed downstream to a second winding module.
Referring to
As shown in
In the embodiment illustrated in the figures, a first tissue web and a second tissue web are simultaneously fed to the winder system in a superimposed relationship. It should be understood, however, that more than two webs can also be fed together through the winder system. When feeding more than two webs together into the winder system, each web will go to a separate and corresponding winding module as will be described in greater detail below.
As shown in
A frame 14 supports the plurality of independent winding modules 12. The web transport apparatus 34 transports the tissue webs 36 and 37 simultaneously in a superimposed relationship for eventual contact with respective winding modules for forming two rolled products at the same time. The frame 14 is composed of a plurality of posts 16 onto which the plurality of independent winding modules are engaged and supported. In the figure, the winding modules are slidably mounted onto the frame 14.
Situated adjacent to the frame 14 are a series of core supplying apparatuses 18. A plurality of cores 24 may be included within each core supplying apparatus 18. These cores 24 may be used by the plurality of independent winding modules 12 to form rolled products 22. In an alternative embodiment, however, the wound products being formed may be coreless. Once formed, the rolled products 22 may be removed from the plurality of independent winding modules 12 and placed onto a rolled product transport apparatus 20. The product transport apparatus 20 is located proximate to the frame 14 and the web transport apparatus 34.
As shown in
Once the first tissue web 36 and the second tissue web 37 are brought together, the tissue webs can undergo various converting processes. In the embodiment illustrated in
In addition to a perforation station, various other converting processes can also be placed within the processing line. For example, in other embodiments, a calendering device may calender the webs. In other embodiments, an additive composition may also be sprayed onto the webs during the process. The additive composition, for instance, may comprise a softener, an antiviral agent, or a friction reducing agent.
In the embodiment illustrated in
In the embodiment illustrated in
Once the tissue webs 36 and 37 are fed onto the web transport apparatus 34, the webs are engaged by respective winding modules. In the embodiment illustrated in
Referring now to
Referring to
In an alternative embodiment, the web 36 can be wound onto the mandrel 26 without the use of a core. In this embodiment, the mandrel 26 may be vacuum supplied. A vacuum mandrel pulls the web 36 onto the mandrel by means of a suction force. For example, the mandrel 26 may include a plurality of passageways by which the suction force is applied to the web.
The incoming tension of the tissue web 36 can also be controlled during the process in order to effect the winding of the web onto the core.
In one embodiment, prior to contacting the leading edge of the tissue web 36 with the core 24, the mandrel 26 may be rotated to a desired rotational speed while positioned adjacent to the web transport apparatus for contact with the tissue web. The rotational speed of the mandrel and the position of the winding module with respect to the tissue web may be controlled so that the web winds on the core in a uniform manner. In one embodiment, for instance, the mandrel 26 may be rotated to a speed that substantially matches the speed at which the tissue web 36 is moving on the web transport apparatus.
Once winding is initiated on the core 24, further winding can occur by center winding (i.e. rotating the mandrel 26), surface winding (by forming a nip between the web transport apparatus and the roll being formed) or through a combination of center and surface winding.
When winding includes center winding, the torque of the driven mandrel 26 can be controlled and varied in order to control various properties of the wound product. In fact, during winding, the nip magnitude, the tension of the web, and the torque differential can all be adjusted to produce a product with the desired characteristics.
Once a rolled product is formed having a desired length, the tissue web 36 is then cut using a cutting device, such as the cutting device 44 illustrated in
Once a spirally wound product 22 is formed on the mandrel, the product is stripped from the mandrel. For instance, as shown in
Referring to
Referring to
Having a greater number of winding modules may be advantageous. For instance, while two winding modules are winding webs, two other winding modules can be loaded with cores for winding the next products. Two other winding modules may have finished winding and are in the process of stripping wound products. Having multiple pairs of winding modules allows for the production of wound products in a continuous process without halting the unwinding of the webs from the parent rolls 11 and 13.
Referring to
The second tissue web 37 is also similarly fed through draw rolls 115 and a perforation station 140 prior to being contacted with a vacuum roll 142. The vacuum roll 142 is placed in communication with a cutting device 144. From the vacuum roll 142, the second tissue web 37 is placed on the web transport apparatus 34. Once placed on the web transport apparatus, the second tissue web is placed in a superimposed relationship with the first tissue web 36 prior to being fed to a mandrel 126. The mandrel 26 and the mandrel 126 simultaneously form spirally wound products as the tissue webs 36 and 37 are fed to the process.
In the embodiment illustrated in
In conveying two or more tissue webs in a superimposed relationship on the web transport apparatus, problems may arise with respect to proper sheet handling of the leading edges of the tissue web after the webs have been cut. For instance, due to the speed of the process, the top tissue web may have a tendency to fly back due to air disturbances. In particular, as the plurality of webs are conveyed down the web transport apparatus, air may tend to separate the webs causing the top tissue web to fly backwards. Thus, in one embodiment, if necessary, the first tissue web 36 and the second tissue web 37 can be removably bonded together as the webs are conveyed down the web transport apparatus 34. Referring to
Referring now to
Referring to
As shown in
There are various methods and techniques that may be used in order to cause the tissue webs to be offset from one another as shown in
In the embodiment illustrated in
In an alternative embodiment, an offset can be created between the first web and the second web using the arrangement illustrated in
In addition to offsetting the webs and/or creating a static charge between the webs, there are other various ways in order to removably bond the webs together. For instance, in one embodiment, the perforation station may create enough web bonding to prevent any fly back problems. In another embodiment, a light adhesive may be applied between the webs at strategic locations, such as adjacent to the leading edge of each web. In still another embodiment, embossments near the leading edge of each tissue web may create sufficient bonding to prevent the webs from separating as they are conveyed on the web transport apparatus.
These and other modifications and variations to the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention, which is more particularly set forth in the appended claims. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention so further described in such appended claims.