The present development relates to an improved latch for an electronics module, and to an electronics module including the improved latch. In one application, the electronics module is an input/output (i/o) module or a controller module or the like provided as part of an industrial automation control system, but other types of electronics modules are contemplated and are within the scope of the present development. In one application, the latch is particularly adapted to selectively and releasably mate with a 35 mm×7.5 mm top hat DIN rail, i.e., a rail provided in accordance with EN 50022, BS 5584, DIN 46277-3 (referred to herein as a “DIN rail”), but the latch can be alternatively configured to mate with any other rail or structure including first and second edges or flanges to be engaged be the latch.
The subject matter disclosed herein relates to Industrial automation and other types of electronics modules often include a latch or latch system for selectively and releasably connecting the electronics module to an associated mounting structure such as a DIN rail. While known latches of this type are generally suitable and effective, a need has been identified for a new and improved latch assembly or latching system that is more convenient and effective than known latch assemblies.
In accordance with one aspect of the present development, an electronics module includes a housing with a rear face comprising a recess adapted to receive an associated mounting rail. The recess comprises first and second opposite edges. A latch assembly is connected to the housing and is adapted for selectively releasably securing the housing an associated mounting rail located in the recess. The latch assembly comprises: a first latch portion movably connected to the housing and comprising a locking tab adapted to capture a first associated DIN rail flange in said recess; a second latch portion movably connected to the housing adjacent the first latch portion and comprising a second locking tab adapted to capture a second associated DIN rail flange in the recess. The first and second latch portions are movable relative to each other to and between: (i) a latched configuration where the first and second latch portions are located in respective latched positions in which the first and second locking tabs project respectively beyond the first and second opposite edges of the recess and partially obstruct the recess; and (ii) an unlatched configuration where the first and second latch portions are located in respective unlatched positions in which the first and second locking tabs are spaced farther apart from each other as compared to the latched configuration. The latch assembly further includes first and second springs, wherein the first spring exerts a biasing force on said first latch portion that urges both the first and second latch portions in a first direction relative to the housing when the first and second latch portions are located in the unlatched configuration, and wherein the second spring exerts a biasing force that urges said first latch portion in said first direction and urges said second latch portion in a second direction that is opposite said first direction.
In accordance with another aspect of the present development, an electronics module comprises a housing including a rear face comprising a recess comprising first and second opposite edges and an inner region. A latch assembly is connected to the housing and is adapted for selectively releasably securing the housing an associated mounting rail located in the recess. The latch assembly comprises: a first latch portion movably connected to the housing and comprising a locking tab adapted to capture a first flange of the associated mounting rail in said recess; and a second latch portion movably connected to the housing and slidably abutted with the first latch portion. The second latch portion comprises a second locking tab adapted to capture a second flange of the associated mounting rail in the recess. The first and second latch portions movable relative to each other to and between: (i) a latched configuration of the latch assembly in which the first and second latch portions are located in respective latched positions and the first and second locking tabs are spaced apart from each other by a first distance Y1 and project respectively beyond the first and second opposite edges of said recess and partially obstruct the recess; and (ii) an unlatched configuration of the latch assembly in which the first and second latch portions are located in respective unlatched positions and the first and second locking tabs are spaced apart from each other by a second distance Y2, wherein Y2>Y1. The electronics module includes first and second springs. The first spring is operatively located between the housing and the latch assembly and biases the first latch portion in a first direction when the latch assembly is arranged in the unlatched configuration. The second spring is operatively located between the first and second latch portions and biases the first latch portion in the first direction and biases the second latch portion in a second direction opposite the first direction. The first latch portion includes an actuation portion that projects and is located externally from the housing and that is adapted to be manually engaged and moved linearly to move the first latch portion from its latched position toward its unlatched position.
In accordance with a further aspect of the present development, an electronics module includes a housing with a rear face comprising a recess with first and second opposite edges and an inner region. A latch assembly is connected to the housing and is adapted for selectively releasably securing the housing to an associated mounting rail located in the recess. The latch assembly comprises: a first latch portion comprising a locking tab adapted to capture a first flange of the associated mounting rail in the recess; and a second latch portion slidably abutted with the first latch portion, the second latch portion comprising a second locking tab adapted to capture a second flange of the associated mounting rail in the recess. The first and second latch portions are movable relative to each other between: (i) a latched configuration of the latch assembly in which the first and second latch portions are located in respective latched positions and the first and second locking tabs are spaced apart from each other by a first distance Y1 and project respectively beyond said first and second opposite edges of said recess and partially obstruct said recess; and (ii) an unlatched configuration of the latch assembly in which the first and second latch portions are located in respective unlatched positions and the first and second locking tabs are spaced apart from each other by a second distance Y2, wherein Y2>Y1. A spring is operatively located between the first and second latch portions and biases the first latch portion in a first direction and biases the second latch portion in a second direction opposite the first direction. The first latch portion comprises an actuation portion located externally from the housing and that is adapted to be manually engaged and moved linearly in the second direction to move the first latch portion from its latched position toward its unlatched position.
With continuing reference to
The latch system L of the module M comprises a latch assembly LA comprising first and second latch members or latch portions LP1,LP2 that selectively engage the first and second DIN rail flanges DF1,DF2, respectively, for capturing and retaining the DIN rail flanges in the recess R for operative connection of the module M to the DIN rail D.
Referring now particularly to
With reference now also to
The second latch portion LP2 also preferably comprises a one-piece molded polymeric construction that comprises a main portion LP2a and an inner end LP2b located adjacent the second edge R2 of the recess R. The inner end LP2b of the second latch portion LP2 comprises a second locking tab T2 adapted to engage and retain the second DIN rail flange DF2 in the recess R. The main portion LP2a of the second latch portion LP2 lies adjacent and preferably slidably abuts the main portion LP1a of the first latch portion LP1. The second latch portion LP2 further comprises a flexible, resilient tail portion LP2t connected to the main portion LP2a and that extends to an outer end LP2c located external to the housing 10 and adjacent the outer end LP1c and actuator portion/tab AT of the first lock portion LP1. The resilient tail portion LP2t normally lies adjacent and abuts the first lock portion LP1, but the resilient tail portion LP2t is selectively deflectable away from the first lock portion LP1 in a deflection direction XD (see
The first and second locking tabs T1,T2 are located in respective extended positions and project into the recess R beyond the first and second recess edges R1,R2, respectively, when the latch assembly LA is located in its latched configuration as shown in
The first spring S1 is operatively located between the inner end LP1b of the first lock portion LP1 and the housing 10. In the illustrated embodiment, the spring is maintained in a free or unloaded state when the latch assembly LA is arranged in its latched configuration or state, but it can also be partially compressed/loaded in this position of the latch assembly. In the illustrated example, the first spring S1 becomes loaded/compressed and biases the first latch portion LP1 (and also the second latch portion LP2 as described below) in the first direction X1 when the latch assembly LA is arranged in its unlatched configuration or state to ensure that the first and second latch portions LP1,LP2 are properly positioned relative to the housing 10 when the latch assembly LA is configured in its unlatched state. The second spring S2 is operatively located between the first and second latch portions LP1,LP2 and biases the second latch portion LP2 in a second direction X2 relative to the first latch portion toward its latched position such that the second locking tab T2 is biased toward its extended (latched) position, and the second spring S2 also biases the first latch portion LP1 in the first direction X1 relative to the second latch portion LP2.
As shown in
When the locator tab LT is seated in the second receiving locations RL2 as shown in
When the locator tab LT is seated in the first receiving location RL1 (latch assembly LA latched), the locator tab LT prevents movement of the first and second latch portions LP1,LP2 relative to each other in respective first and second directions X1,X2 as would decrease the distance Y1, and the latch portions LP1,LP2 are properly located in their latched positions relative to the housing 10 by engagement of the first and/or second latch portions LP1,LP2 with the housing 10.
The first and second locking tabs T1,T2 each comprise a tapered outer surface T1a,T2a (
In use, the latch assembly LA is moved from its latched configuration (
The present development thus provides and electronics module including a latch system that allows for one-handed operation/single-point actuation, does not require a screwdriver or other tool to operate, utilizes linear movement for latching rather than pivoting or rotational movement, provides positive tactile feedback when moving between its latched and unlatched configurations, is able to be locked in an open or unlatched configuration, and that is more convenient and effective that known latch assemblies.
In the preceding specification, various embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various modifications and changes may be made thereto, and additional embodiments may be implemented, without departing from the broader scope of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.
This application is a continuation of U.S. application Ser. No. 14/640,537 filed Mar. 6, 2015, and the entire disclosure of said prior application is hereby expressly incorporated by reference into the present specification.
Number | Name | Date | Kind |
---|---|---|---|
5362259 | Bolliger | Nov 1994 | A |
5392196 | Kinner | Feb 1995 | A |
5904592 | Baran et al. | May 1999 | A |
6224429 | Bernhards | May 2001 | B1 |
6418027 | Suzuki et al. | Jul 2002 | B1 |
6431909 | Nolden et al. | Aug 2002 | B1 |
6454614 | Bechaz | Sep 2002 | B1 |
7059898 | Barile | Jun 2006 | B2 |
7980891 | Molnar | Jul 2011 | B2 |
8066239 | Molnar et al. | Nov 2011 | B2 |
20020037670 | Wilmes | Mar 2002 | A1 |
20020072256 | Lostoski | Jun 2002 | A1 |
20020136599 | Comtois | Sep 2002 | A1 |
20040043671 | Brasse | Mar 2004 | A1 |
20080108248 | Lim | May 2008 | A1 |
20080186657 | Weber | Aug 2008 | A1 |
20080299820 | Schelonka | Dec 2008 | A1 |
20090125156 | Killian et al. | May 2009 | A1 |
20100255713 | Peng | Oct 2010 | A1 |
20100320342 | Moore | Dec 2010 | A1 |
20110261549 | Chao | Oct 2011 | A1 |
20120028483 | Gassaur | Feb 2012 | A1 |
20120138759 | Takaya | Jun 2012 | A1 |
20120264339 | Brand | Oct 2012 | A1 |
20120298490 | Buttner | Nov 2012 | A1 |
20130214109 | Yu | Aug 2013 | A1 |
20130216304 | Schumacher | Aug 2013 | A1 |
20140017917 | Molnar | Jan 2014 | A1 |
20140139976 | Santoni | May 2014 | A1 |
20140226287 | V | Aug 2014 | A1 |
20140357117 | Deshpande | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
0 437 124 | Jul 1991 | EP |
WO 2013054873 | Apr 2013 | WO |
Entry |
---|
Beckhoff Fieldbus Components—Documentation for Terminal Modules (KM10X2), Ver. 2.0.0 dated Mar. 21, 2012 (3 pages). |
Beckhoff Fieldbus Components—Documentation for Terminal Modules (KM10X4 / KM10X8), Ver. 2.0.0 dated Mar. 21, 2012 (3 pages). |
X20 System User's Manual (B & R), Ver. 3.00 dated Oct. 2014, pp. 62, 2326-2328. |
Extended European Search Report dated Jun. 6, 2016 for Application No. EP 16 15 8875. |
Number | Date | Country | |
---|---|---|---|
20170049001 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14640537 | Mar 2015 | US |
Child | 15336227 | US |