This invention relates to a horizontal sliding door having a vertically retractable latch bolt associated therewith and, more specifically, to an improved handle-lock assembly associated with the door and connected to the latch bolt to enable the sliding door to be manually unlocked and slidingly moved into an open position by application of a manually-applied single-directed force and motion to the handle to facilitate egress through the doorway.
Sliding doors supported solely for substantially horizontal sliding movement are conventionally utilized within building interiors, such as office buildings, to separate various areas of the building. Such sliding doors are particularly desirable in commercial environments since the door does not protrude into adjacent hallways or workspaces, and hence permits more efficient utilization of adjacent spaces. A disadvantage associated with such sliding doors, however, is encountered when locking of the door, such as for privacy purposes, is desired. The force and motion required for opening and closing a sliding door is horizontally directed, in contrast to the typical rotary force and motion utilized with door handles mounted on swinging doors. When it is desired to permit selective locking of a sliding door for privacy purposes, the door is typically provided with a separate mechanism which requires separate manual manipulations. This is further complicated when the sliding door is provided with a latching bolt which moves vertically and protrudes outwardly from an upper or lower edge of the door, although this latter type of latching bolt is typically preferred since it provides greater flexibility in most use environments.
Pending U.S. application Ser. No. 10/424,260 illustrates therein a handle-latch assembly for a horizontal sliding door which addresses the above concerns by permitting sequential unlocking and opening of a horizontal sliding door by application of a single-direction force and motion to the door handle to facilitate egress. While the mechanism disclosed in this application represents a desirable approach with respect to improving on latching arrangements for sliding doors, nevertheless the aforementioned mechanism is not believed to provide a comprehensive overall solution, and the present invention is believed to provide additional improvements with respect thereto.
More specifically, this invention relates to an improved handle-latch assembly which mounts on a horizontal sliding door and couples to a vertically movable latch bolt which protrudes outwardly from one of the top or bottom edges of the door, and which enables the inside and outside handles of the door to be respectively used for moving the door in closing and opening directions, with the door also having a manual lock actuator on the inside of the door and an optional key-lock actuator on the outside of the door, whereby latching of the door in the closed position requires a deliberate manual manipulation of either the inner lock actuator or the outer key actuator. The mechanism, however, permits sequential unlocking and opening of the door from the inside thereof solely by application of a generally single horizontally-directed force to the inner handle, whereas when the door is in the closed and latched position it can be opened from the outside thereof only by first manually releasing the lock through utilization of the separate key actuator. The handle-latch mechanism includes cooperating linkages which facilitate the above functions, and which ensure that these linkages and specifically the locking linkage is automatically reset into its unlocked position whenever the locked door is opened from the inside thereof due to manipulation of the inner handle.
Other objects and purposes of the invention will be apparent to persons familiar with constructions of this general type upon reading the following specification and inspecting the accompanying drawings.
Certain terminology will be used in the following description for convenience in reference only, and will not be limiting. For example, the words “upwardly”, “downwardly”, “rightwardly” and “leftwardly” will refer to directions in the drawings to which reference is made. The words “inwardly” and “outwardly” will refer to directions toward and away from, respectively, the geometric center of the door or designated parts of the door handle and locking mechanism. The words “inside” and “outside” will refer to opposite sides of the door, although it will be appreciated that these terms as they are used in relationship to the invention and its orientation with respect to the door can obviously be reversed. Said terminology will include the words specifically mentioned, derivatives thereof, and words of similar import.
Referring to
The sliding door 12, as is conventional, is supported in the illustrated arrangement on a support track 27 which is stationarily supported and extends horizontally along one of the upper or lower edges of the sliding door, the track 27 in the illustrated embodiment being disposed adjacent the upper edge of the door so as to permit the door to be movably supported on and suspended from the track, such as by rollers, as is conventional. The door projects upwardly from and has a lower edge thereof in close proximity to a horizontal surface such as a floor.
According to the present invention, the sliding door 12 has a first handle 16 mounted on the door adjacent a first or inside surface 14 thereof. The handle 16 is preferably defined by a vertically elongate actuating lever which is oriented so as to always be dominantly vertically oriented, with the handle lever having a substantial length, such as at least several inches in length. The handle 16 is preferably supported at one end thereof, such as the upper end in the illustrated embodiment, for swinging movement relative to the sliding door about a substantially horizontal pivot axis which transversely intersects the door. The handle 16 due to its cooperation with a latching arrangement or mechanism 22 provided interiorly of the door, is limited for vertical swinging movement through only a small arcuate extent, as discussed hereinafter.
The sliding door 12 also preferably mounts thereon an outer handle or grip 18 which is disposed adjacent the other or outer surface 15 of the sliding door. The outer handle 18 in the illustrated embodiment is also a vertically elongate lever which is pivotally supported adjacent one end, the upper end in the illustrated embodiment, although it will be appreciated that other variations of the outer handle 18 can be provided.
The inner handle 16 is positioned in close proximity to but is independent of a rotatable thumb turn 17 which is manually accessible adjacent the inside surface 14 of the door, and in similar fashion a key-activated lock cylinder 19 having a key-accessible slot 21 is associated with the outside surface 15 of the door in the vicinity of the outer handle 18. The manually accessible thumb turn 17, and the manually accessible key cylinder 19, both cooperate with the latching arrangement 22 as described hereinafter.
The latching arrangement 22 is associated with and protrudes inwardly from one of the upright edges 23 of the sliding door, namely the leading edge of the door when the door is moving in a closing direction. The latching arrangement 22 connects to and controls the movement and position of an elongate latch bolt 24 which moves and projects vertically of the door and, in the illustrated embodiment, projects upwardly and has an end part 25 which protrudes outwardly beyond the top edge of the door for engagement with a retainer 26 which is fixed to the header or track 27 when the latch bolt 24 is in its latching (i.e. locking) position. The door 12 can also be provided with a downwardly-projecting latch bolt 28 which can be vertically displaced for engaging a floor or threshold, if desired. Such additional latch bolt 28 would be controlled by the latching arrangement 22 and simultaneously activated with the upper latch bolt 24.
In the present invention and as diagrammatically illustrated by
The latching arrangement 22, as shown in
The latching arrangement 22, as illustrated by
The parallel slide members 33 and 34 are movably interconnected through a control mechanism 37 which provides that slides 33 and 34 always move synchronously but in opposite vertical directions. This control mechanism 37 includes a control lever 38 centrally supported on a pivot axle 39 which is supported on the housing and defines a generally horizontal pivot axis extending transversely relative to the door. The control lever 38 has elongated slots 41 which project radially outwardly from opposite sides of the pivot 39 in generally aligned relation, which slots respectively slidably receive therein guide pins 42 and 44 respectively. The pin 42 is carried on a lug or projection 43 which is fixed to and projects sidewardly from the slide member 34, and in similar fashion the other pin 44 is carried on a lug or projection 46 which is fixed to and projects sidewardly from the other slide member 33.
The slide member 34, and the upper latching bolt 24 carried thereon, are normally urged vertically upwardly toward a latching (i.e. locking) position by means of an elongate coil spring 47 which has the lower end thereof seated against a tab 48 fixed to the housing 22, and the upper end of spring 47 bears against a tab 49 which is fixed to the slide member 34. An elongate guide rod 50 has its lower end fixed to the tab 48 and projects coaxially through the spring 47 for guiding purposes. The spring 47 hence always exerts a force against the tab 49 tending to urge the slide member 34 and the bolt 24 in an upward (i.e. a latching) direction.
A further spring 47A reacts at one end against a fixed housing tab 48A, and at the other end, against a further tab 49A fixed to the other slide member 33, whereby spring 47A always exerts a biasing force urging the slide member 33 in a downward direction. The springs 47 and 47A, acting through the control mechanism 37, hence always exert a force tending to urge the bolt 24 towards its upper latching position, (as shown in
It will be appreciated that, in situations where the door is provided with a bottom latching bolt 28 (
As illustrated by
Each of the rotary hubs 61 and 62 has a generally identical pair of cam arms 58 and 59 protruding radially outwardly in circumferentially spaced relationship, the cam arms protruding generally downwardly so as to define an angular space or gap therebetween.
The outer rotary hub 62 also has a locking lug 60 which projects radially upwardly therefrom, generally diametrically opposite from the pair of cam lugs 58-59. This locking lug 60 has a small slot 64 opening radially inwardly from the outer edge thereof, which slot 64 opens inwardly generally along a radial line which intersects the rotational axis 63.
The rotary hubs 61 and 62, when the latching arrangement is in a position wherein the handles 16 and 18 are in their normal neutral end positions (i.e., not displaced by an operator), are coaxially aligned one behind the other as illustrated in
The cam arms 58-59 associated with the rotary hubs 61 and 62 cooperate with an activating linkage which includes an actuator lever 67 disposed adjacent the bottom of the housing 31 and which, at one end, is pivotally supported by a pivot axis 68 which extends transversely relative to the door. This actuator lever 67, spaced from the hinge 68, has a cam follower 71 thereon which is of a width such that it can simultaneously cooperate with the cam legs 58-59 associated with each of the rotary hubs 61 and 62, whereby clockwise rotation of hub 61 or 62 in
Actuator lever 67 is provided with a finger part 72 at the outer free end thereof, which finger part protrudes into a vertically elongate slot 69 formed in the control slide 34. The lower end of this slot 69 defines a shoulder 73 which reacts with the finger part 72, when the mechanism is in the latching position shown in
The actuator lever 67 is normally urged upwardly into a position wherein the cam follower 71 is engaged in the angular recess between the cam arms 58 and 59, as shown in
The latching arrangement 22, as illustrated by
The rotary lock activator member 77, as illustrated in
The rotary lock activator member 77 includes an arm 85 protruding radially outwardly therefrom, the latter having a slot 86 opening generally radially inwardly from the free end thereof, whereby the arm has a generally bifurcated or fork-like construction as it protrudes radially outwardly. This arm 85 is configured and positioned so as to cooperate with an eccentric or crank 87 associated with the lock cylinder 19. The eccentric 87 is generally rotatable about an axis 89 defined by the lock cylinder 19 so that when the lock cylinder is manually activated by a key in a conventional manner in either the locking or unlocking direction, this causes a swinging movement of the lock eccentric 87 so that it moves into the slot 86 for engagement with the arm 85 to effect swinging of the rotary lock activator member 77 between the positions indicated in
The lock activator is also drivingly connected to the rotatable thumb turn 17. In the preferred embodiment the thumb turn 17 has a hub or shaft which protrudes into the opening 82 of hub 79 so as to directly nonrotatably couple thumb turn 47 to the member 77.
Considering now the latch member 78 (
Latch member 78 also includes a second elongated arm 95 which protrudes away from axis 91 in a direction generally toward the rotary activator member 77, whereby arms 92 and 95 in the illustrated embodiment define a generally L-shaped configuration. The protruding arm 95, adjacent the free end thereof, defines a generally flat cam part 96 which is adapted to react with a cam ramp or profile 88 defined on the exterior of the rotary hub 79. A spring 98, which at one end bears against an anchor pin 99, acts against a third arm or protrusion 97 associated with the latch member 78 so that the spring 98 normally urges the latch member 77 toward a position where cam flat 96 engages the cam 88 on hub 79, and latch part 93 protrudes into slot 94. This urging of the latch member 78 by the spring 98 is clockwise in
When the latching arrangement is in the unlatched position illustrated by
The latching arrangement 22 also includes a locking linkage 101 (
Lastly, the latching arrangement 22 also includes a motion transmitting linkage 113 (
More specifically, the motion transmitting linkage 113 includes a coupling member 114 which is rotatably mounted coaxially with the rotary activator member 77 on the axis 81, with this coupling member 114 being nonrotatable relative to the activator member 77 so that the members 77 and 114 always rotate synchronously. The coupling member 114 has an arm part 115 protruding radially outwardly therefrom, the latter having a slot 116 opening radially inwardly thereof so that the arm 115 has a bifurcated or fork-like configuration as it protrudes radially outwardly.
The motion transmitting linkage 113 also includes a coupling member 117, specifically a rotary toothed (i.e. gear) member 117 which is supported for rotation on a generally center pivot 118 which defines a pivot axis extending transversely in generally parallel relationship to the pivot axis 81. The coupling member 117 also has a bifurcated or fork-shaped arm 119 projecting radially outwardly therefrom and defining an inwardly opening slot 121 therein. Coupling member 117 also has a plurality of circumferentially spaced teeth 122, three such teeth in the illustrated embodiment, the latter being disposed generally on a side of the coupling member which is diametrically opposite from that of the fork-shaped arm 119.
The coupling member 117, as illustrated by
The motion transmitting linkage 113 has a generally V-shaped over-center spring 126 so as to urge the motion transmitting linkage 113 into the end positions illustrated by
The spring 127 exerts a biasing force for maintaining the rotary lock activator member 77 in the unlatched position shown in
During movement of the rotary activator 77 between the unlatched and latching positions shown by
For return movement, however, when slide 34 is moved or retracted inwardly toward the unlatched position shown by
With respect to the interior handle 16, it normally will include a spring connection cooperating between the handle and the door, such as a conventional torsion spring, whereby the inner handle 16 is hence always urged generally into the position shown by solid lines in
The outer handle 18 is preferably of identical construction in that it will swing away from the normal position, such as only in an opening direction away from the door edge 23, as indicated by dotted lines in
Handles having internal springs for connection to the door for assisting automatic return of the handle to a predefined position are well known, whereby further description thereof is believed unnecessary.
The operation of the sliding door 12 incorporating thereon the improved latching arrangement 22 of this invention will now be briefly described to ensure a more complete understanding thereof.
Whenever the door 12 is in a nonlatched position, whether the door is opened or closed, the latch mechanism 22 is maintained in the position illustrated by
Assuming the door is in an open position, then a person can close the door by engaging either inner handle 16 or outer handle 18, both of which are in the upright end position, and by exerting a horizontal pulling force on the handle in the direction of the door edge 23, the door can be moved into a closed position. During this closing movement, the handle does not pivot relative to the door, and the latching mechanism remains in the unlatched position shown in
With the door closed, if a person wishes to engage the latch from adjacent the inside of the door, this engagement can be accomplished only by manually engaging and rotating the thumb turn 17, the hub of which is engaged in the opening 82 of the rotary lock activator member 77. Rotation of thumb turn 17 causes the cluster of rotary elements on axis 81, namely rotary lock activator member 77, cam 102 and coupling member 114, to all rotate through a small angle (approximately 90°) from the unlatching position of
Simultaneous with the above, the rotation of the cam 102 causes the slide 105 to be moved downwardly so that locking projection 107 enters into slot 64, thereby locking the outer rotary hub 62 so that the latter can not rotate. This hence also effectively locks the outer handle 18 so that the door can not be unlocked or opened from the outer side.
With the closed door having been locked from the inside thereof, the unlocking of the door from the inside now occurs solely through movement of the inner handle 16. This latter handle will normally be maintained in the neutral end position indicated by solid lines in
When desired, the closed door can also be locked from the outside by inserting a key 21A into the lock cylinder 19 and effecting rotation thereof, which in turn causes the eccentric 87 to rotate and engage the rotary lock activator 77 so as to move the latter from the unlatched position of
To unlock the closed door from the outside, the key is inserted into the lock cylinder 19 and rotated, whereby eccentric 87 rotates the lock activator 77 from the latched position of
It will be appreciated that when the door is in a closed but nonlatched position, the door can be opened by manually engaging the exterior handle 18 and applying a horizontal force thereto in the opening direction. This will cause the handle 18 to angularly move through a small extent (as indicated by dotted lines in
In the description of the mechanism presented above, the reference to the various pivot shafts or axes extending transverse to the door, such as the pivots 63, 81, 91, 39, 68 and 118, will be understood to mean that these pivot axes are generally parallel and horizontal, and extend generally perpendicular with respect to the side faces of the door.
With the present invention, the positioning of the handles, and particularly the inner handle 16, and their cooperation with the latching mechanism, is such that the angular movement of the handle between the extreme or end positions is preferably a small angle, preferably less than 45°, and more preferably in the neighborhood of about 30°. In addition, the handle is oriented so that the elongate direction thereof is dominantly vertical, such as the vertical orientation of the handles in the normal end positions illustrated by
While the present invention utilizes in a preferred embodiment thereof a handle having the properties as described above, it will also be recognized that other variations can be utilized, and in this regard reference is made to numerous other variations as disclosed in aforementioned copending application Ser. No. 10/424,260, the entire disclosure of which is incorporated herein by reference.
Although a particular preferred embodiment of the invention has been disclosed in detail for illustrative purposes, it will be recognized that variations or modifications of the disclosed apparatus, including the rearrangement of parts, lie within the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1940971 | Schwartz et al. | Dec 1933 | A |
2212707 | Daum | Aug 1940 | A |
2969666 | Muessel | Jan 1961 | A |
4154070 | Bahry et al. | May 1979 | A |
4691543 | Watts | Sep 1987 | A |
4962653 | Kaup | Oct 1990 | A |
5290077 | Fleming | Mar 1994 | A |
5495731 | Riznik | Mar 1996 | A |
5561994 | Smith et al. | Oct 1996 | A |
5896763 | Dinkelborg et al. | Apr 1999 | A |
6050115 | Schroter et al. | Apr 2000 | A |
6209931 | Von Stoutenborough et al. | Apr 2001 | B1 |
6289704 | Collet et al. | Sep 2001 | B1 |
7013687 | Shedd et al. | Mar 2006 | B2 |
7032417 | Toulis et al. | Apr 2006 | B2 |
20020104339 | Saner | Aug 2002 | A1 |
20050144848 | Harger et al. | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060080912 A1 | Apr 2006 | US |