1. Field of Invention
The invention relates to methods and apparatuses for manufacturing hard book cases and, in particular, to machines for tucking and folding book cases.
2. Discussion of Related Art
Cases for hard cover books are typically produced by printing a rectangular sheet of paper, cloth or leather, known as the cover material, and subsequently gluing the cover material to a pair of panels and a spine. The panels and spine (the rigid component) provide rigidity for the case, with one of the panels forming the front of the finished book and the second forming the back. The spine provides rigidity to the spine portion of the book. The spine and panels are typically made of chipboard or other stiff material. In some cases, the spine is of a more flexible material. A space is usually left between the spine and the panels so that the cover may be opened and closed in hinge-like fashion. Manufacturing techniques typically include a step of placing the panels and spine on a glued cover material and then folding the edges of the cover material up and onto the inside edges of the panels (and the ends of the spine). Together, the spine, panels, and cover material are known as a hard book cover assembly or a hard book case.
In an unfinished hard book case, the cover material is sized and placed to extend outwardly past the periphery of the spine and the panels to be later folded back over the edges of the spine and panels to produce an attractive cover. The overlapping edges of the cover material are glued on the inside of the panels and spine, and these edges are generally hidden later in the book making process when paper or other material is glued over the interior of the hard book cover in a manner that overlaps, and thus hides, the edge of the cover material from a reader.
There are two main types of corner folding used to make hard cover books. One type of corner fold is known as an “edition corner” (also cut corner, standard corner, tucked corner or square corner). The second type is known as a “library corner.”
For edition corners, the cover material is typically cut into a rectangular shape that is about 1½ inches larger in each of the X and Y dimension than the desired finished (open and flat) book cover (case) size. When the cover material is affixed to the rigid components of the hard book case (for example, 2 panels and 1 spine) there typically is a cover material overhang of about ¾ inch around the outer edges of the rigid components. To remove excess cover material, the corners of the cover material typically are trimmed prior to affixing the cover material to the panels and spine. By eliminating this corner material, multiple layers of bunched cover material do not develop at the corners of the finished hard book case.
Cover material is often cut in a stack so that multiple pieces can be cut simultaneously in preparation for a run of many copies of the same hard book case. This is typically performed at a cutting station separate from the hard book case making apparatus.
An identically sized triangular piece is cut from each of the four corners as the spine and panel will be placed square and centered on the cover material. Preferably, these cuts are made at a 45 degree angle to the longitudinal edges of the panels leaving an amount of cover material extending outwardly from each of the outer four corners (in a direction bisecting the 90 degree corner of the panel) of each panel a distance that will be equivalent to approximately 2 times the thickness of the panel material in the finished product.
After the corners have been cut and an adhesive has been applied to the cover material, the spine and panels are placed on the cover material with the outer edges of the panels in parallel with the adjacent (closest) outer edges of the cover material. Each edge can be longitudinally folded over the panel to produce an edition corner that has only a small area of glued, overlapping cover material on the inside surface of each panel at the corner.
For a library corner, the corner of the cover material is not cut off, but is instead folded back over the corner of the panel prior to folding back the longitudinal edges of the cover material. This results in an extra layer of cover material on the inside of the panel.
Due to the ease with which books and manuscripts can be printed using modern technologies, such as digital printing, a need has developed for hard cover book making machines that can produce small numbers (tens or hundreds, for example) of hard covers for authors and publishers desiring hard covers for their works. Furthermore, as digital printing becomes available in numerous outlets, including copy shops, work places, internet sites and even homes, there has developed a need for hard cover book making machines that can be operated in these areas. In addition to being inexpensive, it may be desired that the book cover making machines require as small an amount of space as possible, are easy to set up, and require minimal skill and training for operation. Space considerations may be of particular interest in those locations with higher real estate expense than traditional publishing companies.
While apparatuses exist that can quickly fold edges of cover material over the rigid panels it is much more difficult to provide tucked corners on short run machines that are designed to produce a variety of different sized cases.
The subject matter of this application may involve, in some cases, interrelated products, alternative solutions to a particular problem, and/or a plurality of different uses of a single system or article.
In one aspect a method of forming a case for a book using a case making machine is provided, the method comprising placing a cover material and a pair of rigid panels together to produce an unfinished case, determining at least one outer dimension of the pair of rigid panels, transporting the assembly along a first axis to a first indexed location, stopping the assembly at the first indexed location where at least one edge of the cover material is folded over a corresponding edge of a rigid panel, feeding the assembly along the first axis to a second indexed location for corner tucking, stopping the assembly at the second indexed location, tucking at least a first corner of the cover material, and folding a second edge of the cover material over a corresponding edge of a rigid panel to form a finished corner and a finished case.
In another aspect, an apparatus for producing a hard case for a book is provided, the apparatus comprising a feed table mounted to a framework, the feed table slideable along at least a first axis, a drive system for advancing and retracting the hard book case, two pairs of press rollers mounted to the framework and positioned transversely to the first axis, a corner tucker mounted to the framework and constructed and arranged to tuck one or more corners when the one or more corners are located between the two pairs of press rollers, and a controller in communication with the corner tucker and with the drive system wherein the controller can position the hard case in relation to the corner tucker based on at least one dimension of the hard case.
In another aspect, a method of forming a case for a book using a case making machine is provided, the method comprising placing a cover material and a pair of rigid panels together to form an unfinished case, determining at least one outer dimension of the pair of rigid panels, transporting the assembly along a first axis to a first location where a leading edge of the pair of rigid panels is aligned with a folding bar, stopping the transport of the assembly at the first location, folding one edge of the cover material over a corresponding edge of a rigid panel, transporting the assembly along the first axis to a second location where a trailing edge of the pair of rigid panels is aligned with a folding bar, stopping the transport of the cover material at the second location, and folding a second edge of the cover material over the trailing edge of the pair of rigid panels.
In another aspect, an apparatus for producing cases for hard cover books is provided, the apparatus comprising a feed table for transporting an unfinished hard book case along a first horizontal axis, a swing gate including a forward stop for positioning the leading edge of a case panel, a pair of press rolls for transporting the case along the first horizontal axis, a fold bar constructed and arranged to fold both a leading edge and a trailing edge of the case, and a controller in communication with the feed table, the press rolls and the fold bar wherein the controller can track the position of the assembly along the first horizontal axis.
In the drawings,
When cover material is attached to a rigid panel to produce a hard cover, the corners of the material may be folded and “tucked” to produce a pleasing, functional cover. Tucking is known to those skilled in the art and typically occurs after a first edge of cover material is folded and before an adjoining edge is folded. Tucking involves flattening the angled portion of the folded cover material that extends beyond the panel of the folded edge so that the subsequent fold results in a tighter, neater corner. In production, boards that provide stiffness to the back cover, front cover, and spine are typically first laid in position on a piece of cover material (typically printed on one side and glued on the other). Opposing edges of the cover material may then be folded over and secured to the board. Then, before folding over the remaining two opposing edges, the cover material may be tucked to provide a cleaner, more professional looking corner when the final edges are folded over to complete the case. Corner folding and tucking is described in more detail in U.S. Pat. No. 6,379,094, titled APPARATUS FOR TUCKING HARD BOOK COVERS and in U.S. patent application Ser. No. 11/078,860, titled APPARATUS AND METHOD FOR MANUFACTURING HARD BOOK COVER ASSEMBLIES, both of which are hereby incorporated herein by reference.
Corner tucking of cover material may require more precision than does the folding of cover material onto a rigid panel. In addition, many edge folding techniques may not tightly wrap the cover material against the edge of the panel and can leave an air space between the cover material and the edge of the panel. This may occur, for example, due to a lack of force pushing the cover material against the edge of the panel as it is wrapped around the panel end. For instance, edges may be folded onto a panel by feeding the unfinished book case past a counter rotating brush bar such as described in U.S. Pat. No. 5,230,687. For this brush bar type of folding, the position of the case during the manufacturing process may not need to be tracked, however the edge is not folded tightly over the panel and different sized covers may be difficult to produce. Corner tucking typically requires that a small piece of cover material be compressed onto an adjacent piece of cover material and against the edge of the rigid panel. If the positioning of the tucking device in relation to the unfinished case is not precise enough, a proper tuck may not be completed. A tightly folded edge may also require more precision positioning so that a force can be applied to the edge of the panel.
In one aspect, an apparatus is provided that can track the movement of an unfinished cover assembly (unfinished case) through the production process. By tracking the movement of the case, the position of one or more edges of the assembly can be determined at all times during the process. By knowing where an edge of the assembly is and by being able to position that edge, the edge can be precisely placed for folding and/or corner tucking. Either the edge can be moved to the tucking or folding device and/or the tucking or folding device can be moved to the edge. The relative position of the trailing edge and/or the leading edge in reference to the folding device can be determined and the relative position of the corners can be determined in reference to the corner tucking device.
In some embodiments, a properly positioned leading or trailing edge of an unfinished assembly can be achieved by knowing at least one dimension of the finished assembly (length or width for example) and then by advancing the unfinished assembly a corresponding distance from a fixed starting point to a folding and/or corner tucking device. A leading edge can be positioned properly for folding or corner tucking by, for example, positioning the leading edge at a known starting location and then advancing it a predetermined distance to the tucking device. The trailing edge can be positioned accurately, for example, by knowing its initial starting position or by knowing the starting position of the leading edge and knowing the distance between the leading and trailing edges. For instance, if the width of the finished assembly (essentially identical to the distance from the outside edge of one panel to the opposing outside edge of the other panel) is 16 inches, then after tucking the leading edge, the assembly can be advanced 16 inches to tuck the trailing edge. Thus, the combination of awareness of the width of the case and the ability to track the assembly's movement through the manufacturing process can provide for precise positioning for corner tucking.
In one set of embodiments cover material (typically with the corners cut) and panels may be positioned using stops at the top and/or sides of the feed table. The stops may be attached to the feed table or may be separately associated with the framework of the apparatus. Different stops or guides may be used for proper registration of the cover material and the panels. The glued cover material may be placed on the feed table first and followed by placement of the panels on the glued cover material to form an unfinished case. The feed table may be any device that can function by advancing the unfinished assembly and by indexing the position of the unfinished assembly so that the unfinished assembly can be accurately positioned for downstream operations. The unfinished assembly can be advanced by the feed table and handed off to a second part of the drive mechanism such as a pair of press rollers. The procedure may be initiated by a controller that can coordinate the hand off between the feed table and the press rollers and keep track of the position of the unfinished assembly throughout the process. The leading edge may be advanced to a folding bar that folds the leading edge of the cover material back over the leading edge of the panels. The folding bar may also press the cover material into the edge of the rigid panel as the material is folded over the panel. The assembly may then be advanced to a point where the trailing edge of the cover material is aligned with a folding device and the same or similar steps may be repeated to fold the trailing edge. The unfinished assembly may then be returned to the feed table where it may be rotated 90 degrees by, for example, the operator of the machine. The rotated assembly may then be re-fed to the rollers so that the two unfinished edges are completed in a manner similar to that used with the first two edges. The rotated assembly may be aligned against a front and/or side stop to help index the initial position of the rotated assembly. Before each of the last two edges is folded, the cover material may be corner tucked. To do so, the apparatus can track the progress of the assembly along the drive system and, in combination with a determined length of the assembly (the width that has been rotated 90 degrees), can align each of the remaining edges in the proper position for corner tucking. After each corner along an unfolded edge has been tucked, the edge can be folded over and pressed to produce finished edges and corners.
One or more outer dimensions of a finished assembly may be determined in a number of ways. In most cases the outer dimensions of a finished assembly are essentially the same as the outer dimensions of the pair of rigid panels when they are laid in position on the cover material. Although the wrapping of the cover material around the panel edges may add to this dimension, the amount is usually negligible or can be compensated for. Typically, the initial position of the leading edge is known because it can be placed against a stop at a fixed location. The trailing edge, however, may be more difficult to locate as cases of different sizes may be produced by the same apparatus. In some embodiments, the width and/or length of the assembly can be measured and input to the controller by the operator through a user interface. In other embodiments a measuring device may be used to measure one or more of these dimensions and the measuring device may communicate these dimensions to the controller. Such a device may be, for example, a pair of measuring arms that can be swung into contact with the edges of the panels. Each measuring arm may be connected to a rotary encoder that is in communication with a controller. In other embodiments, a photo cell may be used to detect when the leading edge of the cover material passes by and when the trailing edge passes by. While this photo cell method may provide the dimensions of the cover material and not the dimensions of the finished assembly, the amount of overhang may be known and can be subtracted to provide the dimension of the finished assembly.
In another embodiment, one or more components of the drive mechanism may be monitored to determine one or more dimensions of the unfinished assembly. For instance, a servo motor can be monitored to reveal a positional error or an increase in motor torque when an edge of the unfinished assembly first encounters an obstacle such as a folding bar. As an unfinished assembly contacts a folding bar or other obstacle, the advancement of the assembly will be slowed due to the resistance of the obstacle. This slow down may result in a positional error as the assembly will not be advanced to its expected position. This positional error can be monitored and can be used to determine the length and/or width of the unfinished assembly. A positional error may initiate an increase in motor torque in order to compensate for the slow down in the advancement of the assembly. The resulting increase in motor torque can be detected, and because the assembly can be tracked throughout its transport, the position of a panel edge and therefore a dimension of the unfinished assembly can be determined. In some embodiments, the assembly is moved in reverse to determine the position of the trailing edge. Once a dimension is determined by any means, it may be retained for any additional runs of the same case. A positional error or torque change may detect the edge of the rigid panel rather than an edge of the cover material as the cover material may not provide sufficient resistance to bending when it encounters an obstacle. In many cases this is preferred as the dimensions of the rigid panels are typically used to determine where to fold and/or tuck the cover material.
Another method of determining the dimensions of a finished or unfinished case includes detecting the position of the edges of the cover material of the unfinished case. The location of the edges of the cover material can be accurately determined using optical detectors. For example, a vertical beam of light can be interrupted as a leading edge passes through the beam and uninterrupted after a trailing edge passes by the beam. By knowing the amount of travel during the period of light beam interruption, the distance from the leading edge of the cover material to the trailing edge of the cover material can be calculated. This distance, however, varies from the corresponding dimension of the finished assembly by the amount equal to the sum of the amount of cover material overhang on the leading edge of the unfinished assembly and the amount of cover material overhang on the trailing edge of the unfinished assembly. If the amount of overhang from the edge of the panel to the edge of the cover material is known, this quantity can be subtracted from the detected dimension to arrive at the panel dimension. If the position of the panel can be tracked through the construction process, then the calculated panel dimension can be used to position the edges of the panels accurately and precisely for tucking and/or folding.
Another technique for determining dimensions includes the use of distance measuring laser sensors that may be capable of measuring the ‘step’ of the panel edge that rises above the cover material. These sensors, such as the OBDM 12P6910/S35A difference diffuse sensor available from Baumer Electric Ltd., Southington, Conn., may be capable of accurately measuring the length and/or width of the panels mounted on cover material. By analyzing the sensor's analog output, an algorithm can be used to distinguish the panel's edge while ignoring the edge of the cover material. For instance, the sensor may detect the step up to a leading edge and then detect the step down at the trailing edge. By knowing the rate of transport and amount of time between these two events, the length and/or width of the panel may be accurately calculated.
Often, there may be variation in the amount of cover material overhang that exists between the edge of a panel and the edge of the cover material. In these cases, and various others, a combination of techniques may be useful in positioning the unfinished assembly for folding and/or tucking. For instance, an optical detection technique can be used to determine the dimensions of the cover material and to provide an approximate dimension for the finished case. This may provide, within a few millimeters for example, an estimation of the position of the edges of the rigid panels. In operation, the cover material dimension may be used to advance the unfinished assembly at full production speed to a position that is close, but short of, contacting the rigid panel with the fold bar. At this point, the speed of advancement can be slowed and the error position or torque detection method can be implemented. When a rigid edge touches the fold bar, the change in error position or torque is detected and the total distance traveled (and thus the dimension of the unfinished assembly) can be calculated. In this manner, the unfinished assembly is not jammed against the fold bar before the machine is given time to react to the change in error position or torque. Once the dimensions of a particular case are determined, identical copies of the same case can be run at full speed as the dimensions are known and can be stored on board the controller. When a differently dimensioned assembly is to be produced, one or more of the detection methods may be repeated to determine one or more dimensions of the new assembly.
Different sized cases may be made on a single apparatus, and the operator may be able to switch from one size to another size without changing components or without making adjustments to the apparatus. In some cases a tucking assembly may be manually aligned by the operator but in other embodiments this may be done automatically through the controller. The operator may simply place the cover material and rigid component(s) on the feed table, and the apparatus can detect the size of the unfinished assembly and complete the construction of the case using this determination. In other embodiments the operator may need to only supply measurements to the controller. For example, the operator may input actual dimensions to a touch screen or other user interface or may move an arm on a rotary measuring device to contact an edge of the rigid panel. The operator need not be concerned with the order in which different sized cases are made. Rigid panels as small as 3.75 inches by 3.75 inches square may be used, and the same apparatus may use panels up to as large as 18 inches by 18 inches. This would typically mean finished case sizes ranging from 3.75 by 8 inches up to 18 inches by 36 inches.
One embodiment is illustrated in
Framework 102 can be used to support the components of the apparatus including feed table 104, folding device 106, tucking device 108 and press roll pairs 110 and 112. Feed table 104 and press roll pairs 110 and 112 together form a drive mechanism. For transporting the assembly, controller 120 may be used to control all axes of motion and may include a user interface such as touch screen 122.
Feed table 104 is supported by shaft(s) 130 and is driven by servo motor 132 which is connected to gear 134 that interfaces with a rack (not shown) underneath feed table 104 in the direction of axis L, the direction of travel. Thus, activation of servo motor 132 results in lateral motion of feed table 104.
Gauge blocks 140 and 142 can help provide for proper positioning of panels. The gauge blocks can be adjusted laterally to accommodate zero, one, two or more spines of different widths. Gauge block lips 152 and 154 provide a backstop for aid in aligning the top edge of spines and panels when they are laid on the feed table. Gauge blocks may be sized so that cover material slips under the blocks while rigid panels are retained by, for example, lips 152 and 154. The gauge blocks may be rotated upwardly around shaft 156 to allow advancement of the unfinished assembly to press rollers 110.
Swing gate 148 may extend the full width of the assembly area and can include raised lip 150 for aligning and/or retaining cover material when it is laid on feed table 104. As shown, swing gate 148 is level with feed table 104. Swing gate 148 is supported on the framework by swing gate brackets 146 that can pivot around shaft 144. Pivoting allows swing gate 148 to be moved out of the way to allow for the advancement of the hard case on the feed table to press rolls 110.
The apparatus may include one or more corner tucking assemblies.
Folding device 106 includes base 182 and bar 184. Base 182 and bar 184 may move together or independently. Motor 186 can be used to raise and lower the folding device through a gear and rack system. A gap between base 182 and bar 184 may be sized to allow the passage of an unfinished assembly there between. The gap may be raised to a position where it is level with the pathway of the unfinished assembly. This pathway typically passes through the point of contact of a first pair of rollers 110 and a second pair of rollers 112.
Press roller pairs 110 and 112 may be driven together or independently. As shown in the figures, each pair of rollers is driven by motor 114. Each roller may be comprised of a steel core, a urethane layer and a PTFE coating. The rollers in each pair may be biased toward each other by, for example, springs or pneumatic cylinders. As an unfinished hard book case passes between the rollers, the rollers separate enough to allow passage of the assembly but retain enough pressure between them to securely press the cover material against the rigid panel. Motor 114 may be a servo motor so that controller 120 can control exactly how far the assembly is carried by the press rolls. The direction of travel may also be stopped or reversed by the controller.
The following describes how the system may be operated to produce a hard book case with tucked corners. The procedure may be automated or semi-automated.
Cover material 210 includes trimmed corners (see
Once panels 212 and 214 and spine 216 have been placed on the glued surface of cover material 210, gauge blocks 140 and 142 as well as swing gate 148 may be pivoted upwardly so that they are removed from the path of travel of the unfinished hard book case. See
In
The unfinished assembly may now be available on the feed table where it can be rotated 90 degrees to prepare for tucking and/or folding of the two unfinished edges. The assembly may be rotated by hand or by machine. As illustrated herein, the assembly can be rotated by hand and placed back on feed table 104 as shown in
The leading edge of leading panel 212 can be butted up against swing arm 148 for accurate initial positioning along the axis of travel. Controller 120 can use this position as a starting point and can track the position of the leading edge throughout the rest of the process.
For tucking (from the position shown in
As shown in
The controller can predetermine the width of the finished assembly (from leading edge of panel 212 to trailing edge of panel 214) using any of the techniques described herein. For example, the width may be input by the operator, may be determined by a measuring device, may be detected by a photo cell or may be determined by detecting a change in the positional error or the torque of servo motor 114 when the edge of a panel contacts bar 184. The width may also be recalled from a previously run process producing a case of the same dimensions.
Using the predetermined width of the finished hard book case, controller 120 instructs roll pair 112 to transport the unfinished assembly from left to right along axis L, stopping after the assembly is past bar 184. See
The trailing edge can be tucked and/or folded in a manner similar to that used for the leading edge and the final fold of the assembly is made by passing the assembly back through the gap between bar 184 and base 182 (
While corners are being tucked and the final two edges being folded, the operator can be placing the next cover material and rigid panels on the feed table in preparation for the next cycle, assuming the finished assembly is not being ejected back onto feed table 104. In this manner, differently dimensioned custom finished hard book cases with or without tucked corners can be produced at rates greater than about 3 per minute. During the procedure, the case need only be transported along a single axis L and the entire apparatus may consume a footprint of less than 20 square feet.
While several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present invention is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present invention.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified, unless clearly indicated to the contrary.
All references, patents and patent applications and publications that are cited or referred to in this application are incorporated in their entirety herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2556787 | Bach et al. | Jun 1951 | A |
2769187 | D'Huy | Nov 1956 | A |
4111739 | De Bin et al. | Sep 1978 | A |
4889461 | Kampen et al. | Dec 1989 | A |
4975010 | Karolyi | Dec 1990 | A |
5230687 | Lombardo et al. | Jul 1993 | A |
5259825 | De Angelis et al. | Nov 1993 | A |
5364215 | Snellman et al. | Nov 1994 | A |
5413446 | Rathert et al. | May 1995 | A |
5827033 | Feldman | Oct 1998 | A |
6193458 | Marsh | Feb 2001 | B1 |
6338603 | Cerruti | Jan 2002 | B1 |
6352252 | Schmucker et al. | Mar 2002 | B1 |
6379094 | Porat | Apr 2002 | B1 |
6447230 | Takai et al. | Sep 2002 | B1 |
6843473 | Bohn et al. | Jan 2005 | B2 |
7210887 | Engert et al. | May 2007 | B2 |
20050180843 | Porat | Aug 2005 | A1 |
20060210378 | Geldmeier et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
2087657 | Jul 1993 | CA |
0461083 | Dec 1991 | EP |
1380537 | Jan 1975 | GB |
Number | Date | Country | |
---|---|---|---|
20090116935 A1 | May 2009 | US |