An area of ongoing research and development is network devices and antenna designs. In particular, access points are being developed with two radios that can operate in the same frequency band. One issue is that interference caused by two radios operating in the same frequency band concurrently makes concurrent operation difficult. One solution is to make access points larger in order to physically isolate the antennas of the two radios. This is impractical as access points typically are of a compact size. Another solution is to dynamically switch operation of the two radios. This is problematic in that the access point does not actually have two radios that are actually operating in the same frequency band simultaneously.
There therefore exists a need for network devices of a practical size with radios that can operate in the same frequency band concurrently.
The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the relevant art will become apparent to those of skill in the art upon reading the specification and studying of the drawings.
The following implementations and aspects thereof are described and illustrated in conjunction with systems, tools, and methods that are meant to be exemplary and illustrative, not necessarily limiting in scope. In various implementations one or more of the above-described problems have been addressed, while other implementations are directed to other improvements.
Various implementations include network devices and antenna designs for network devices with radios that can operate in the same frequency band concurrently.
In various implementations, a first radio module is configured to transmit and receive first radio signals in a first frequency band, a first antenna array comprised of a first plurality of polarized antennas is configured to transmit and receive the first radio signals for the first radio module in the first frequency band, a second radio module is configured to transmit and receive second radio signals in the first frequency band, a second antenna array comprised of a second plurality of polarized antennas is configured to transmit and receive the second radio signals for the second radio module in the first frequency band, wherein, in operation, the first radio module and the second radio modules function concurrently using the first frequency band while at least 40 dB of antenna isolation is maintained between the first antenna array and the second antenna array.
These and other advantages will become apparent to those skilled in the relevant art upon a reading of the following descriptions and a study of the several examples of the drawings.
In a specific implementation, the polarized antenna is wirelessly coupled through a Wi-Fi connection to an end user device, which acts as or includes a station. A station, as used in this paper, can be referred to as a device with a media access control (MAC) address and a physical layer (PHY) interface to a wireless medium that complies with the IEEE 802.11 standard. Thus, for example, the end user devices can be referred to as stations, if applicable. IEEE 802.11a-1999, IEEE 802.11b-1999, IEEE 802.11g-2003, IEEE 802.11-2007, and IEEE 802.11n TGn Draft 8.0 (2009) are incorporated by reference. As used in this paper, a system that is 802.11 standards-compatible or 802.11 standards-compliant complies with at least some of one or more of the incorporated documents' requirements and/or recommendations, or requirements and/or recommendations from earlier drafts of the documents, and includes Wi-Fi systems. Wi-Fi is a non-technical description that is generally correlated with the IEEE 802.11 standards, as well as Wi-Fi Protected Access (WPA) and WPA2 security standards, and the Extensible Authentication Protocol (EAP) standard. In alternative embodiments, a station may comply with a different standard than Wi-Fi or IEEE 802.11, may be referred to as something other than a “station,” and may have different interfaces to a wireless or other medium.
In a specific implementation, the polarized antenna is part of a network device which is compliant with IEEE 802.3. IEEE 802.3 is a working group and a collection of IEEE standards produced by the working group defining the physical layer and data link layer's MAC of wired Ethernet. This is generally a local area network technology with some wide area network applications. Physical connections are typically made between nodes and/or infrastructure devices (hubs, switches, routers) by various types of copper or fiber cable. IEEE 802.3 is a technology that supports the IEEE 802.1 network architecture. As is well-known in the relevant art, IEEE 802.11 is a working group and collection of standards for implementing wireless local area network (WLAN) computer communication in the 2.4, 3.6 and 5 GHz frequency bands. The base version of the standard IEEE 802.11-2007 has had subsequent amendments. These standards provide the basis for wireless network products using the Wi-Fi brand. IEEE 802.1 and 802.3 are incorporated by reference.
In a specific implementation, the polarized antenna is coupled to a radio. Depending upon implementation-specific or other considerations, a radio can be a 2.4 GHz to 5 GHz dual band radio or a 5 GHz only radio. Further depending upon implementation-specific or other considerations, the polarized antenna can be included as part of a network device that includes radios operating in the same frequency band concurrently. For example, the polarized antenna can be included as part of a network device including a first radio operating the 5 GHz band concurrently with a second radio operating in the 5 GHz band. In another example, the polarized antenna can be included as part of a network device including a 2.4 GHz to 5 GHz dual band radio operating in the 5 GHz band concurrently with a 5 GHz only radio operating in the 5 GHz band.
The polarized antenna includes a first conductive plate 102 in a first antenna plane and a second conductive plate 104 in a second antenna plane. The first conductive plate 102 and the second conductive plate 104 are mounted together about a central joint 106. The joint can be fixed such that the first antenna plane and the second antenna plane are parallel to each other or flexible such that the first antenna plane and the second antenna plane intersect each other at a line of intersection. In various implementations, the first conductive plate 102, the second conductive plate 104, and the central joint are comprised of, at least in part, an electrically conductive material.
The first conductive plate 102 includes a first antenna blade 108, a second antenna blade 110, and a third antenna blade 112. Each of the first antenna blade 108, the second antenna blade 110, and the third antenna blade 112, include a corresponding arm 116 and wing 118. Corresponding arms of the first antenna blade 108, the second antenna blade 110, and the third antenna blade 112 are angularly spaced from each other around the central joint 106. For example, the arms can be spaced 120° apart from each other about the central joint 106. Each corresponding wing of the first antenna blade 108, the second antenna blade 110, and the third antenna blade 112 extend out from each corresponding arm along a counter clockwise direction. As a result, the first conductive plate 102 can exhibit rotational symmetry about the central joint 106.
The second conductive plate 104 includes a first antenna blade 120, a second antenna blade 122, and a third antenna blade 124. Each of the first antenna blade 120, the second antenna blade 122, and the third antenna blade 124 of the second conductive plate include a corresponding arm 126 and wing 128. Corresponding arms of the first antenna blade 120, the second antenna blade 122, and the third antenna blade 124 of the second conductive plate are angularly spaced from each other around the central joint 106. For example, the arms can be spaced 120° apart from each other about the central joint 106. Each corresponding wing of the first antenna blade 120, the second antenna blade 122, and the third antenna blade 124 of the second conductive plate 104 extend out from each corresponding arm along a clockwise direction. As a result, the second conductive plate 104 can exhibit rotational symmetry about the central joint 106.
In a specific implementation, corresponding arms of the first blades 108 and 120 of the first and second conductive plates 102 and 104, corresponding arms of the second blades 110 and 122 of the first and second conductive plates 102 and 104, and/or corresponding arms of the third blades 112 and 124 of the first and second conductive plates 102 and 104 overlay each other such that they exhibit mirror symmetry about an axis along the center of the corresponding arms of the blades when viewed from a top view or a bottom view of the antenna. For example, the arms and wings of the third blade 112 of the first second conductive plate 102 and the arms and wings of the third blade 124 of the second conductive plate 104 can be of the same size and extend along apposing clockwise and counter clockwise directions such that the arms and wings exhibit mirror symmetry about an axis along the center of the arms when viewed from a top view or a bottom view of the antenna. In a specific implementation, arms of corresponding blades are 12 mm long with each wing being 4 mm by 8 mm.
In a specific implementation, the polarized antenna is wirelessly coupled through a Wi-Fi connection to an end user device, which acts as or includes a station. A station, as used in this paper, can be referred to as a device with a media access control (MAC) address and a physical layer (PHY) interface to a wireless medium that complies with the IEEE 802.11 standard. Thus, for example, the end user devices can be referred to as stations, if applicable.
In a specific implementation, the polarized antenna is part of a network device which is compliant with IEEE 802.3. IEEE 802.3 is a working group and a collection of IEEE standards produced by the working group defining the physical layer and data link layer's MAC of wired Ethernet. This is generally a local area network technology with some wide area network applications. Physical connections are typically made between nodes and/or infrastructure devices (hubs, switches, routers) by various types of copper or fiber cable. IEEE 802.3 is a technology that supports the IEEE 802.1 network architecture. As is well-known in the relevant art, IEEE 802.11 is a working group and collection of standards for implementing wireless local area network (WLAN) computer communication in the 2.4, 3.6 and 5 GHz frequency bands. The base version of the standard IEEE 802.11-2007 has had subsequent amendments. These standards provide the basis for wireless network products using the Wi-Fi brand.
In a specific implementation, the polarized antenna is coupled to a radio. Depending upon implementation-specific or other considerations, a radio can be a 2.4 GHz to 5 GHz dual band radio or a 5 GHz only radio. Further depending upon implementation-specific or other considerations, the polarized antenna can be included as part of a network device that includes radios operating in the same frequency band concurrently. For example, the polarized antenna can be included as part of a network device including a first radio operating the 5 GHz band concurrently with a second radio operating in the 5 GHz band. In another example, the polarized antenna can be included as part of a network device including a 2.4 GHz to 5 GHz dual band radio operating in the 5 GHz band concurrently with a 5 GHz only radio operating in the 5 GHz band.
The polarized antenna includes a first conductive plate 502 and a second conductive plate 504. In various implementations, the first conductive plate 502 and the second conductive plate 504 are comprised of, at least in part, an electrically conductive material. The first conductive plate 502 linearly increases in width along an edge 506 from a first width 508 to a second width 510. In a specific implementation, the edge 506 has a length of 8 mm, the first width 508 is 4 mm and the second width 510 is 6 mm. The second conductive plate 504 linearly increases in width along an edge 512 from a first width 514 to a second width 516. In a specific implementation, the edge 512 has a length of 8 mm, the first width 514 is 4 mm and the second width 516 is 6 mm.
The first conductive plate 502 includes a protrusion 518. The second conductive plate 504 includes a protrusion 520. The protrusion 518 and the protrusion 520 have sides that face each other to form a channel. In a specific implementation, the protrusion 518 is of a smaller size than the protrusion 520. The protrusions 518 and 520 extend out from the first conductive plate 502 and the second conductive plate 504 to form a channel between the first conductive plate 502 and the second conductive plate 504.
Conventional network devices must be of a suitable size for consumer adoption. Because a typical size of a network device, such as a wireless access point, is small enough to be mounted on a ceiling (typically less than a foot in any horizontal direction and typically no thicker than 2 inches), simultaneous radio operation is considered difficult or impossible. Advantageously, by utilizing polarized antennas, examples of which are discussed above with reference to
As used in this paper, the network device is single band and dual concurrent in that it includes two radio modules capable of operating within the same frequency band simultaneously with non-debilitating mutual interference between signals transmitted by the two radio modules. Depending upon implementation-specific or other considerations, respective antennas utilized by the radios to transmit signals within the same frequency band simultaneously have at least 40 dB or greater of antenna isolation. For example, first one or a plurality of antennas transmitting signals within the 5 GHz frequency band from a first radio module operating concurrently with second one or a plurality of antennas transmitting signals concurrently within the 5 GHz frequency band have 45 dB of antenna isolation with the second one or a plurality of antennas.
The single band dual concurrent network device shown in
In a specific implementation, either or both the first radio module 1002 and the second radio module 1004 are dual band radios that are capable of dynamically switching operation in different frequency bands. For example, either or both the first radio module 1002 and the second radio module 1004 can be capable of transmitting signals in the 2.4 GHz and the 5 GHz frequency bands. In another example, only one of the first radio module 1002 or the second radio module 1004 is capable of transmitting signals in the 2.4 GHz and the 5 GHz frequency bands, while the other of the first radio module 1002 or the second radio module 1004 is only capable of transmitting signals in the 5 GHz frequency band. In various implementations, the first radio module 1002 and the second radio module 1004 are capable of operating simultaneously within the same frequency band. For example, both the first radio module 1002 and the second radio module 1004 can transmit and receive signals in the 5 GHz frequency band simultaneously.
The single band dual concurrent network device shown in
In a specific implementation, antennas forming the first antenna array 1006 are of the same polarization and antennas forming the second antenna array 1008 are of the same polarization. For example, antennas forming the first antenna array 1006 can all be either vertically polarized or horizontally polarized with respect to the single band dual concurrent network device. In another example, antennas forming the second antenna array 1008 can all be either vertically polarized or horizontally polarized with respect to the single band dual concurrent network device. Depending upon implementation-specific or other considerations, antennas forming the first antenna array 1006 can be of the same design as the polarized antenna shown in
In a specific implementation, antennas forming the first antenna array 1006 are orthogonally polarized with respect to the antennas forming the second antenna array 1008. As a result, the first radio module 1002 and the second radio module 1004 utilize corresponding polarized antennas that have a 90° phase offset from each other. For example, the first antenna array 1006 can be formed by vertically polarized antennas that are positioned to have a +45° phase offset with respect to a center of the single band dual concurrent network device, while the second antenna array 1008 can be formed by horizontally polarized antennas that are positioned to have a −45° phase offset with respect to the center of single band dual concurrent network device, thereby leading to a 90° phase offset between the antennas forming the first antenna array 1006 and the antennas forming the second antenna array 1008. While in the previous example, antenna position and phase offset is discussed with respect to a center of the single band dual concurrent network device, positions and phase offsets of antennas forming the first antenna array 1006 and antennas forming the second antenna array 1008 can be with reference to an applicable point, axis, or plane within or in an environment surrounding the single band dual concurrent network device as long as the antennas forming the first antenna array 1006 and the antennas forming the second antenna array 1008 are orthogonally polarized with respect to each other. Due to orthogonal polarization between antennas forming the first antenna array 1006 and antennas forming the second antenna array 1008, at least 40 dB of antenna isolation can be achieved between the antennas forming the first antenna array 1006 and the antennas forming the second antenna array 1008.
In a specific implementation, the first antenna array 1006 and the second antenna array 1008 are mounted about a main PCB of the single band dual concurrent network device. Antennas of the first antenna array 1006 and the second antenna array can be mounted at positions at least 5 mm away from edges of a main PCB. Depending upon implementation-specific or other considerations, the first antenna array 1006 and the second antenna array 1008 are mounted about a main PCB based on a polarization direction of antennas forming the first antenna array 1006 and the second antenna array 1008. For example, if antennas forming the first antenna array 1006 are vertically polarized with respect to a center of the single band dual concurrent network device, then the antennas can be positioned at positions 30 mm out from edges of a main PCB along a plane that extends out from the edges of the main PCB. In another example, if antennas forming the second antenna array 1008 are horizontally polarized with respect to a center of the single band dual concurrent network device, then the antennas can be positioned at positions 5 mm out from edges of a main PCB along a plane that extends out from the edges of the main PCB and 5 mm below or beneath the plane. In mounting antennas of the first antenna array 1006 and the second array at positions away from a main PCB of the single band dual concurrent network device, antenna coupling through the main PCB between the first antenna array 1006 and the second antenna array 1008 is reduced, thereby leading to at least 40 dB of antenna isolation between the antennas forming the first antenna array 1006 and the antennas forming the second antenna array 1008.
In a specific implementation, the first antenna array 1006 and the second antenna array 1008 are mounted onto an antenna plate. Antennas of the first antenna array 1006 and the second antenna array can be mounted to an antenna plate such that the antenna are at least 5 mm away from edges of the antenna plate. Depending upon implementation-specific or other considerations, the first antenna array 1006 and the second antenna array 1008 are mounted to an antenna plate based on a polarization direction of antennas forming the first antenna array 1006 and the second antenna array 1008. For example, if antennas forming the first antenna array 1006 are vertically polarized with respect to a center of the single band dual concurrent network device, then the antennas can be mounted to an antenna plate at positions 30 mm from edges of the antenna plate. In mounting antennas of the first antenna array 1006 and the second array to an antenna plate at positions away from edges of the antenna plate, antenna coupling through the antenna plate between the first antenna array 1006 and the second antenna array 1008 is reduced, thereby leading to at least 40 dB of antenna isolation between the antennas forming the first antenna array 1006 and the antennas forming the second antenna array 1008. Depending upon implementation-specific or other considerations, an antenna plate to which antennas of the first antenna array 1006 and the second antenna array 1008 are mounted can be positioned within the single band dual concurrent network device such that spacing between the antennas of the first antenna array 1006 and the second antenna array 1008 and edges of a main PCB or other applicable common metal structure is at least 5 mm. For example, an antenna plate can be mounted at a position on top of, on bottom of, or on side of a main PCB, such that spacing between antennas of the first antenna array 1006 and the second antenna array 1008 and edges of the main PCB is at least 5 mm.
The single band dual concurrent network device includes a housing 1010. While antennas of the first antenna array 1006 and antennas of the second antenna array 1008 are shown to extend out of the housing 1010 in
In a specific implementation, the single band dual concurrent network device includes low noise amplifiers (hereinafter referred to as “LNAs”) coupled to the antennas. Gain of the LNAs can be adjusted in order to increase the dynamic range of the first radio module 1002 and the second radio module 1004. In increasing the dynamic range of the first radio module 1002 and the second radio module 1004, the first radio module 1002 and the second radio module 1004 are capable of receiving signals at larger strengths and weaker strengths resulting from interference caused by concurrent operation of the first radio module 1002 and the second module within the same frequency band. Depending upon implementation-specific or other considerations, gain of the LNAs can be adjusted using either or both a bypass circuit or post LNA attenuation. For example signals amplified by the LNA can be attenuated in order for the radio modules to process signals with larger strength caused through mutual interference.
In an example of operation of the example single band dual concurrent network device shown in
The example antenna system shown in
The example antenna system shown in
The example antenna system shown in
These and other examples provided in this paper are intended to illustrate but not necessarily to limit the described implementation. As used herein, the term “implementation” means an implementation that serves to illustrate by way of example but not limitation. The techniques described in the preceding text and figures can be mixed and matched as circumstances demand to produce alternative implementations.
This application is a continuation of U.S. patent application Ser. No. 15/622,003, filed Jun. 13, 2017, which is a continuation of U.S. patent application Ser. No. 14/845,006, filed Sep. 3, 2015, now U.S. Pat. No. 9,705,207, which claims priority to U.S. Provisional Patent Application Nos. 62/131,769, filed Mar. 11, 2015, entitled “Antenna Isolation and Radio Design,” and 62/144,280, filed Apr. 7, 2015, entitled, “Antenna Design,” all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2480186 | Gilbert | Aug 1949 | A |
2639382 | Jarvis | May 1953 | A |
3348228 | Melancon L | Oct 1967 | A |
D363935 | McGreevy | Nov 1995 | S |
5583524 | Milroy | Dec 1996 | A |
6967625 | Honda | Nov 2005 | B1 |
7123207 | Yazdandoost | Oct 2006 | B2 |
D550633 | Gupta | Sep 2007 | S |
D558189 | Inoue | Dec 2007 | S |
7388553 | Yuanzhu | Jun 2008 | B2 |
7486249 | Fujita | Feb 2009 | B2 |
7564423 | Ke | Jul 2009 | B2 |
D608769 | Bufe | Jan 2010 | S |
D695279 | Yang | Dec 2013 | S |
D695280 | Yang | Dec 2013 | S |
D695725 | Taeger | Dec 2013 | S |
D708602 | Gosalia | Jul 2014 | S |
D764447 | Yang | Aug 2016 | S |
D766884 | Zheng | Sep 2016 | S |
D767544 | Yang | Sep 2016 | S |
D782448 | Gosalia | Mar 2017 | S |
D784965 | Chang | Apr 2017 | S |
D788082 | Zheng | May 2017 | S |
D788083 | Zheng | May 2017 | S |
D795228 | He | Aug 2017 | S |
D795847 | He | Aug 2017 | S |
D797708 | Yang | Sep 2017 | S |
D801956 | He | Nov 2017 | S |
D803200 | Manivannan | Nov 2017 | S |
20020173337 | Hajimiri | Nov 2002 | A1 |
20030193923 | Abdelgany | Oct 2003 | A1 |
20030206076 | Hashemi | Nov 2003 | A1 |
20040183726 | Theobold | Sep 2004 | A1 |
20050062649 | Chiang | Mar 2005 | A1 |
20050243007 | Ke | Nov 2005 | A1 |
20060281488 | Chang | Dec 2006 | A1 |
20070069968 | Moller | Mar 2007 | A1 |
20070097012 | Sanelli | May 2007 | A1 |
20070241986 | Lee | Oct 2007 | A1 |
20080205509 | Le Naour | Aug 2008 | A1 |
20080225758 | Proctor | Sep 2008 | A1 |
20090289867 | Chen | Nov 2009 | A1 |
20110149164 | Goldberg et al. | Jun 2011 | A1 |
20110241953 | Su | Oct 2011 | A1 |
20120164948 | Narasimha | Jun 2012 | A1 |
20120250666 | Bhukania | Oct 2012 | A1 |
20120314626 | Alapuranen | Dec 2012 | A1 |
20130134471 | Lee | May 2013 | A1 |
20130181878 | Petros | Jul 2013 | A1 |
20130300502 | Li | Nov 2013 | A1 |
20130315141 | Homchaudhuri | Nov 2013 | A1 |
20140062812 | Smith | Mar 2014 | A1 |
20140119245 | Desjardins | May 2014 | A1 |
20140313093 | Smith | Oct 2014 | A1 |
20150036656 | McCarthy | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
101453304 | Jun 2009 | CN |
102217211 | Oct 2011 | CN |
202997053 | Jun 2013 | CN |
103268980 | Aug 2013 | CN |
104052529 | Sep 2014 | CN |
2007076105 | Jul 2007 | WO |
Entry |
---|
International Application No. PCT/US2015/048396, International Search Report and Written Opinion dated Nov. 27, 2015. |
International Application No. PCT/US2016/022206, International Search Report and Written Opinion dated Jun. 3, 2016. |
Xirrus, Inc., “Solutions Brief: Migrating to 802.11ac Wireless LANs,” white paper, Mar. 10, 2014. |
European Patent Application No. 15884897.8, Search Report dated Sep. 10, 2018. |
European Patent Application No. 16762678.7, Search Report dated Sep. 10, 2018. |
Office Action and Search Report for Chinese Patent Application No. 201580079831.5, Chinese Patent Office, Beijing, China, dated Jan. 20, 2020. |
Number | Date | Country | |
---|---|---|---|
20180287267 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62144280 | Apr 2015 | US | |
62131769 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15622003 | Jun 2017 | US |
Child | 16001200 | US | |
Parent | 14845006 | Sep 2015 | US |
Child | 15622003 | US |