1. Field of the Invention
The present invention relates to a treadmill that can be walked on in any direction without physically moving from one small area. The treadmill of the present invention will be able to greatly enhance the immerging technology of immersive virtual reality along with many other technologies.
2. Description of Related Art
Several types of omni-directional treadmills or similar functioning devices are known. One such treadmill is disclosed in U.S. Pat. No. 7,780,573 and employs a plurality of high aspect ratio endless unpowered treadmills fixed together transverse to the plane of belt rotation enabling them to move together like the treads of a tank. The plurality of treadmills is then powered by having them pass over several omni-directional wheels that power the multitude of treadmills while allowing them to pass across the omni-directional wheels.
Another larger omni-directional treadmill is disclosed in United States Patent Publication number 20100022358 and uses the same concept of attaching a plurality of endless treadmills together and again move them like the treads of a tank.
Unlike the prior art as exemplified by U.S. Pat. No. 7,780,573 which requires multiple belts, the present invention is an omni-directional treadmill that employs only one conveyor belt and is much simpler in nature and simpler to build. Instead of having a separate conveyer belt for each treadmill segment, the omni-directional treadmill of the present invention employs a single conveyer belt. Instead of having a separate conveyor belt for each treadmill segment, the omni-directional treadmill of the present invention employs a single conveyor belt. The present invention thereby provides the advantages of not needing an elaborate method to connect end rollers to transfer movement of one belt to the next, thus eliminating the need to individually adjust tensions on a multitude of belts. This single belt is fed from one high aspect ratio cross beam to the next. All cross beams are attached to two common roller chains positioned underneath and near the end of each beam. These common roller chains then move a flat track with sprockets at each end.
The cross beams attached to the roller chains are driven by a motor connected to the sprockets the chains go around. This will be referred to herein as the X direction. Y directional movement is produced via omnidirectional wheels placed adjacent to and touching the conveyor belt as it travels around the rollers attached to the cross beam ends.
Control for the motors that power the omni-directional treadmill may be accomplished in several ways. One means would be to incorporate an infrared sensing device like an Xbox Kinect to keep track of the user's direction, speed and acceleration on the treadmill and using that information to keep the user balanced and mostly centered.
While this is most likely sufficient for movement, it deprives the user of the inertia the user would normally feel if actually moving. For instance, normally if one were to run at full speed than abruptly stop without attempting to slow down, one would naturally fall forward or if at full speed one were to quickly change directions without leaning into the turn, one again would fall over. Of course natural balance keeps a person's feet under their center of gravity so this usually doesn't happen.
On an omni-directional treadmill however, since there is relatively little actual movement, the user would never lean into a turn or have to lean back before stopping even if running fast. This most likely would give the user an inconsistent or slightly disconnected sensation.
According to another aspect of the present invention, the omni-directional treadmill is designed such that it can tilt in both the X and Y directions. Tilting control can be tied to the speed controller, enabling the omni-directional treadmill to be programmed to tilt in proportion to a user's small acceleration. The omni-directional treadmill can be programed to tilt up in the direction of that acceleration if the user was increasing speed and down if reducing speed, tilting as high or low and lasting as long as the controlling acceleration dictates. This tilting forces the user to work a little harder just as if she actually were accelerating her own weight in the direction she was running or turning, giving her the anticipated feeling associated with acceleration.
Another or additional way of controlling the treadmill of the present invention is to use a dynamic control interface. The illustrative control interface described here attaches the user to the machine via a swivel harness. The attachment allows the user to bend forward, sideways, jump up and pivot in any direction. It also allows her limited movement. This movement provides the controller with the user's position and acceleration. It also allows for a way of dampening her movement to simulate inertia. An additional feature of this system is that it provides a means to modify the user's apparent weight. She can weigh as much or as little as she desires via the harness interface. And still another feature is that it makes sure that the user cannot accidently run off the platform.
Persons of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons.
Construction and operation of an illustrative treadmill of the present invention is shown in the various views presented in
Cross beams 305 could easily be molded from a thermoplastic plastic material such as Nylon 6/6, and may be shaped as shown in the various views presented in
The description of movement of the conveyor belt 313 relative to the cross beams 305 will now be described. The conveyor belt 313 travels on the outside of the beam and moves towards the end roller 7. It then travels around that roller departing it on the inside. The belt 313 then starts a twisting motion while it passes between alignment rollers 318 then through a clip 309 that attaches to the cross beam 305 then on to one of the two roller chains 308 shown in
The roller 312 slightly redirects the conveyor belt. Roller 312 allows the belt to stay parallel to the cross beam 305 but held at about the same height as the sprocket teeth roller chain interface. The next roller 312 the belt encounters is parallel to the last one but is mounted on the next beam over. Upon encountering that roller the belt 313 is slightly redirected back down. The belt 313 continues twisting when it encounters another roller 310 that allows it to pivot parallel to longitudinal axis of the new beam. Persons of ordinary skill in the art will note that the conveyor belt has twisted 180° between the two rollers 310. It then continues with another 90° twist again passing through a clip 309 then alignment rollers 318 then encounters the end roller 307 of that beam. A bottom view of this conveyer belting assembly is shown in
When the cross beam/belt assembly is at the end of the flat part of its travel when traveling in the X direction and the roller chain 308 encounters the sprocket 204 it then must rotate. The belt 313 is able to accomplish this because when traveling between cross beams at a location between the pair of rollers 312 it is at the same radius 306 as the roller chain 308 and therefore will simply twist as the two cross beams that it is passing between twist relative to each other as shown in
The X directional movement is accomplished by powering the axle coupled to the sprockets 204 with an appropriately geared electric motor 104. Y directional movement is accomplished by omni-directional wheels 102 mounted on four drive shafts 101 geared together with each wheel 102 being pressed into the conveyor belt spinning around the end roller 7. Since each cross beam 305 has a roller 7 on each end, inward pressures on those wheels cancel each other out, therefore the amount of pressure exerted on each wheel could be quite substantial if desired, easily enough to produce enough friction to power the conveyor belt in the Y direction, even under high acceleration. The end roller/wheel interface is stabilized by the roller chain assembly on top and ball transfers 311 on the bottom.
For additional support, the cross beams are capable of being pinned together, this may be accomplished by attaching a tapered rod 314a on one side of the beam and a hole 314 on the other. This will allow each cross beam to provide and get support from the neighboring cross beams on either side, thus making the assembly behave more like a homogeneous structure when the user walks on it.
Each cross beam is also provided with a small flange 316 protruding next to the conveyer belt on one side as shown in
To help reduce noise and vibration, the interfacing sides of the cross beams with the locating pins may be fashioned to have a small gap between them. This gap is to allow for a layer of a resilient material 315 such as rubber to be attached as shown in
The omni-directional treadmill of the present invention can easily be mounted on a gimbal 416 or similar device and tilted in any direction using linear actuators 418 as shown in
Referring now generally to
Four bearing blocks 605 glide on the floating frame allowing a means of holding a hoop via four rods 603 or other mechanism such as four scissor connections 616 as shown in
The user wears a harness 618 which incorporates two side pivot points 611 at the hip locations. These pins attach the harness to the pivot harness assembly 617. The pivot harness attaches to two hoop roller attach points through front and back swiveling connections 612. This assembly allows the user to pivot both front and back and sideways.
Due to the nature of the dynamic control interface, when the user is connected in, she can be made to feel any weight sensation desirable by applying the appropriate force through the vertical actuator 606. This actuator could be a pneumatic or hydraulic piston connected to a plenum pressurized by a gas. By controlling the gas pressure, someone on the Earth could feel like they were on the Moon or someone on the Moon or in space could feel as if they weighed as much as they desired.
To connect to the dynamic control interface, the user first needs to be wearing the harness 616 then, with the swivel harness fixture lowered, simply step into it, pull it up and snap in to the side pivot points 611.
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
The present application claims priority to U.S. Provisional Application Ser. No. 61/400,535, filed on Jul. 29, 2010, the entirety of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61400535 | Jul 2010 | US |