Single-blade razor apparatus

Information

  • Patent Grant
  • 10538005
  • Patent Number
    10,538,005
  • Date Filed
    Tuesday, October 25, 2016
    8 years ago
  • Date Issued
    Tuesday, January 21, 2020
    4 years ago
Abstract
A single-blade razor apparatus and methods for manufacturing the same. A razor apparatus may include a handle and a head pivotably mounted on the handle. The head may include a rear side including an aperture for receiving a single blade, as well as a front side through which a cutting edge of the blade is exposed during use. An upper portion and a lower portion of the head may form the aperture. The lower portion may physically interface with the upper portion so that a front region of the upper portion is physically supported by the lower portion. In a particular implementation, the lower portion may include several protruding latches proximate the front side of the head, which may respectively mate with recesses formed in the upper portion. Alternatively, the latches may be formed in the upper portion and may respectively mate with recesses formed in the lower portion.
Description
INCORPORATION BY REFERENCE

The contents of U.S. Provisional Patent Application No. 62/060,410, filed Oct. 6, 2014 and entitled “SHAVING BLADE AND RAZOR APPARATUS,” U.S. Provisional Patent Application No. 62/135,592, filed Mar. 19, 2015 and entitled “SHAVING BLADE AND RAZOR APPARATUS,” U.S. Provisional Patent Application No. 62/174,067, filed Jun. 11, 2015 and entitled “SHAVING BLADE AND RAZOR APPARATUS,” and U.S. patent application Ser. No. 14/875,484, filed Oct. 5, 2015 and entitled “RAZOR APPARATUS AND SHAVING SYSTEM” are incorporated by reference herein in their entireties.


BACKGROUND
Technical Field

Embodiments described herein relate to the field of shaving tools, and more particularly, to a single-blade razor and methods of manufacturing the same.


Description of the Related Art

Since the latter part of the 20th century, the market for shaving tools has been dominated by the trend of including an ever-larger number of low-quality blades in a disposable cartridge. For example, whereas a two-blade cartridge was once considered revolutionary, currently five- and six-blade cartridges command increasing market share.


Evidence that such multi-blade cartridges actually improve shaving performance is scant, however. In fact, the present inventors have recognized a well-designed razor using a single, high quality blade can provide a shaving experience that is superior to that of multi-blade cartridges. These inventors' continuing research into the design of single-blade shaving systems has yielded additional discoveries that may further improve the quality of the single-blade shaving experience and the durability of the single-blade razor itself.


SUMMARY

Various embodiments of a razor apparatus and methods for manufacturing the same are disclosed. In an embodiment, a razor apparatus may include a handle and a head pivotably mounted on the handle. The head may include a rear side including an aperture for receiving a single blade, as well as a front side through which a cutting edge of the single blade is exposed during use. The head may further include an upper portion and a lower portion that form the aperture. The lower portion may physically interface with the upper portion so that a front region of the upper portion is physically supported by the lower portion.


In a particular implementation of the razor apparatus, to physically interface with the upper portion, the lower portion may include several protruding latches located in the area proximate the front side of the head. The protruding latches may respectively mate with a number of recesses formed in the upper portion. Alternatively, the latches may be formed in the upper portion and may respectively mate with recesses formed in the lower portion.


An embodiment of a method of manufacturing a razor apparatus may include fabricating a lower portion and an upper portion of a head of the razor apparatus, where the lower portion and the upper portion are fabricated to physically interface with each other, when assembled, at a front region and a rear region of the head. The method may further include assembling the lower portion and the upper portion of the head. When assembled, the lower and upper portions of the head may engage so that at the front region of the head, the upper portion is physically supported by the lower portion. Upon assembly, the lower and upper portions of the head may form an aperture for receiving a single blade. In a particular implementation, the fabricating may be performed using a metal injection molding process.


In another embodiment, a razor apparatus may include a handle and a head pivotably mounted on the handle, where the head may include an aperture for receiving a single blade. The head may further include a means for retaining the single blade, where the means for retaining the single blade is configured to retain the single blade during use while permitting the single blade to move in two or more dimensions within the means for retaining the single blade during use.


In a particular implementation, the means for retaining the single blade may include a number of retaining posts, each configured to mate with a respective recess in the single blade to retain the single blade within the head. In a further implementation, the retaining posts may be spaced to retain the single blade during use while permitting the single blade to move in at least two dimensions during use.


In another embodiment, a method of manufacturing a razor apparatus may include fabricating a lower portion and an upper portion of a head, where the lower portion includes a number of retaining posts. The method may further include assembling the lower portion and the upper portion of the head. When assembled, the lower and upper portions of the head may form an aperture for receiving a single blade. Each of the retaining posts may be configured to mate with a respective recess in the single blade to retain the single blade within the head upon insertion of the single blade. Further, the retaining posts may be spaced to retain the single blade during use while permitting the single blade to move in at least two dimensions during use. In a particular implementation, the fabricating may be performed using a metal injection molding process.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the methods and mechanisms may be better understood by referring to the following description in conjunction with the accompanying drawings, in which:



FIG. 1 illustrates an embodiment of a razor apparatus.



FIG. 2 illustrates a top view of a head of the razor apparatus of FIG. 1.



FIG. 3 illustrates a profile view of an embodiment of a razor head.



FIG. 4 is a cutaway view of the razor head profile view of FIG. 3 that shows certain internal structures of the head.



FIG. 5 presents a view of embodiments of a lower and upper portion of a razor head, oriented to show their internal surfaces.



FIG. 6 illustrates a view of a razor head in which the lower and upper portions have been assembled together, as viewed from a rear side of the head.



FIG. 7 shows an exploded view of an embodiment of a razor head in profile, further illustrating aspects of the lower and upper portions.



FIG. 8 is a schematic diagram illustrating an interaction between a razor apparatus and a skin surface, and illustrating several parameters that may characterize such interaction.



FIG. 9 illustrates an embodiment of a lower portion of a razor head that may be configured to permit blade movement in multiple dimensions during use.



FIG. 10 corresponds to the view of the lower portion of FIG. 9 with a single blade inserted.



FIG. 11 illustrates an embodiment of an upper portion of a razor head that may be configured to support a single blade from above.



FIGS. 12-13 present additional views of the upper and lower portions shown in FIGS. 9-11.



FIG. 14 is a flow chart illustrating an embodiment of a method of manufacturing a razor apparatus.



FIG. 15 is a flow chart illustrating a different embodiment of a method of manufacturing a razor apparatus.





DETAILED DESCRIPTION OF EMBODIMENTS
Introduction and Terminology

In the following description, numerous specific details are set forth to provide a thorough understanding of the methods and mechanisms presented herein. However, one having ordinary skill in the art should recognize that the various embodiments may be practiced without these specific details. In some instances, well-known structures, components, signals, computer program instructions, and techniques have not been shown in detail to avoid obscuring the approaches described here. It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements.


This specification includes references to “an embodiment.” The appearance of the phrase “in an embodiment” in different contexts does not necessarily refer to the same embodiment. Particular features, structures, or characteristics may be combined in any suitable manner consistent with this disclosure. Furthermore, as used throughout this application, the word “may” is used in a permissive sense (i.e., meaning “having the potential to”), rather than the mandatory sense (i.e., meaning “must”). Similarly, the words “include,” “including,” and “includes” mean including, but not limited to.


Terminology. The following paragraphs provide definitions and/or context for terms found in this disclosure (including the appended claims):


“Comprising.” This term is open-ended. As used in the appended claims, this term does not foreclose additional structure or steps. Consider a claim that recites: “A system comprising a processor . . . .” Such a claim does not foreclose the system from including additional components (e.g., a display, a memory controller).


“Configured To.” Within this disclosure, different entities (which may variously be referred to as “units,” “circuits,” other components, etc.) may be described or claimed as “configured” to perform one or more tasks or operations. This formulation—[entity] configured to [perform one or more tasks]—is used herein to refer to structure (i.e., something physical, such as an electronic circuit or mechanical apparatus). More specifically, this formulation is used to indicate that this structure is arranged to perform the one or more tasks during operation. A structure can be said to be “configured to” perform some task even if the structure is not currently being operated. A “temperature circuit configured to measure an internal operating temperature of a processing element” is intended to cover, for example, an integrated circuit that has circuitry that performs this function during operation, even if the integrated circuit in question is not currently being used (e.g., a power supply is not connected to it). Thus, an entity described or recited as “configured to” perform some task refers to something physical, such as a device, circuit, memory storing program instructions executable to implement the task, etc. This phrase is not used herein to refer to something intangible. Thus the “configured to” construct is not used herein to refer to a software construct such as an application programming interface (API).


“Based On.” As used herein, this term is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based, at least in part, on those factors. Consider the phrase “determine A based on B.” While B may be a factor that affects the determination of A, such a phrase does not foreclose the determination of A from also being based on C. In other instances, A may be determined based solely on B. “Dependent on” may be employed as a synonym for “based on.”


“In Response To.” As used herein, this term is used to describe causality of events or conditions. For example, in the phrase “B occurs in response to A,” there is a cause-and-effect relationship in which A causes B to occur. It is noted that this phrase does not entail that A is the only event that causes B to occur; B may also occur in response to other events or conditions that may be independent of or dependent on A. Moreover, this phrase does not foreclose the possibility that other events or conditions may also be required to cause B to occur. For example, in some instances, A alone may be sufficient to cause B to happen, whereas in other instances, A may be a necessary condition, but not a sufficient one (such as in the case that “B occurs in response to A and C”).


“Each.” With respect to a plurality or set of elements, the term “each” may be used to ascribe some characteristic to all the members of that plurality or set. But absent language to the contrary, use of “each” does not foreclose the possibility that other instances of the element might not include the characteristic. For example, in the phrase “a plurality of widgets, each of which exhibits property A,” there must be at least two (and possibly arbitrarily many) widgets that exhibit property A. But without more, this does not foreclose the possibility of an additional widget, not a member of the plurality, that does not exhibit property A. In other words, absent language to the contrary, the term “each” does not refer to every possible instance of an element, but rather every element in a particular plurality or set.


Overview of Razor Apparatus and Head Support Structures


Turning now to FIG. 1, an embodiment of a razor apparatus is shown. (Preliminarily, it is noted that while the drawings attempt to faithfully reproduce details of actual embodiments, none of the drawings provided here should be interpreted as precise scale drawings.) Razor apparatus 100 includes a handle 102 and a head 104 pivotably attached to handle 102. FIG. 2 illustrates a top view of head 104. In the illustrated embodiment, head 104 includes a rear side 110 that includes an aperture (not labeled in FIG. 2) for receiving a single blade 200. When inserted into head 104, a cutting edge 210 of blade 200 may be exposed through a front side 115 of head 104, and a rear edge 220 of blade 200 may face the rear side 110. Blade 200 includes blade face 250, which may include cutouts or recesses that are not employed by head 104 (e.g., recesses for mounting blade 200 in other types of razors). In some embodiments, blade 200 may be inserted so that blade face 250 faces either up or down, while in other embodiments, blade 200 may specify a particular orientation for blade face 250.


In an embodiment, blade 200 may have a length (denoted d1) of about 38.4 mm, and a width (denoted d2) of about 18.4 mm. All measurements stated herein are subject to ordinary manufacturing tolerances for the process used to manufacture the item in question. For example, a sampling of a particular model of blades 200 yielded d1 in the range of 38.396 mm-38.437 mm, and d2 in the range of 18.360 mm-18.397 mm. Additionally, blade 200 may include a number of recesses 215 which, as will be described below, may mate with retaining posts of head 104 in order to retain blade 200 within head 104 during use. In the illustrated embodiment, recesses 215 are approximately semicircular in shape, and may measure about 4.0 mm (e.g., 3.985 mm-3.998 mm) along dimension d3 and about 1.84 mm (e.g., 1.831 mm-1.842 mm) along dimension d4. Recesses 215 may be located about 1.85 mm from the rear edge of blade 200 along dimension d5 (e.g., 1.827 mm-1.873 mm).


It is noted that in other embodiments of blade 200 and razor apparatus 100, these dimensions may vary. In particular, recesses 215 may assume shapes other than semicircular. Additionally, different embodiments of blade 200 may employ similar shapes and dimensions for recesses 215, but may vary the location of recesses 215 within blade 200 (e.g., by varying dimension d5). The relative positioning of recesses 215 may affect the relative degree of exposure of cutting edge 210 upon insertion of blade 200, which may in turn alter the shaving characteristics of razor apparatus 100.



FIG. 3 illustrates a profile view of head 104. As shown, head 104 includes a lower portion 120 and an upper portion 130, as well as a pivot mount 140 through which head 104 may pivotably attach to handle 102. Upper portion 130 further includes a pair of side walls 135 (only one of which is shown in the view of FIG. 3) that form exterior side faces of head 104. In this view, rear side 110 of head 104 faces to the left, and front side 115 faces to the right.


In one design approach, the front region of upper portion 130 (i.e., the part of upper portion 130 that faces front side 115 of head 104) may effectively “float” over lower portion 120. That is, although the rear region of upper portion 130 may be attached to lower portion 120, the front region may extend over lower portion 120 without making physical contact with lower portion 120. In this approach, upper portion 130 may retain blade 200 from above, but there may be a gap between upper portion 130 and lower portion 120. Depending on the materials used to construct head 104, such a gap may affect the structural integrity of head 104. For example, without physical support, the front region of upper portion 130 may bend or break on impact, such as if razor apparatus 100 is dropped.


By contrast, in the embodiment of FIG. 3, lower portion 120 is designed to physically interface with upper portion 130 so that when head 104 is assembled, the front region of upper portion 130 is physically supported by lower portion 120. By permitting lower portion 120 and upper portion 130 to be secured to one another at multiple distinct points at both the front and rear regions of upper portion 130, the overall structural integrity of head 104 may be improved (e.g., with respect to impact).



FIG. 4 illustrates an embodiment of a particular mechanism through which the front region of upper portion 130 may be physically supported by lower portion 120. The view of FIG. 4 is a cutaway view of FIG. 3 that shows an example of the internal structure of head 104 behind side wall 135. Specifically, FIG. 4 shows that the visible end of upper portion 130 physically rests on lower portion 120. Moreover, lower portion 120 includes a protruding feature 145, also referred to herein as a “latch,” that mates with a corresponding recess within upper portion 130.


Further details regarding latch 145 and other elements of head 104 are shown in FIG. 5. In the view presented by FIG. 5, lower portion 120 and upper portion 130 are separated and partially pivoted away from the viewer in order to illustrate their interior surfaces as viewed from rear side 110 of head 104. In the illustrated embodiment, lower portion 120 is shown to include latches 145 within side walls 150 at both ends, where the latches are proximate front side 115 of head 104 (e.g., closer to front side 115 than to rear side 110). Moreover, upper portion 130 is shown to include recesses 155 within both of its side walls 135. As illustrated by the dotted lines, latches 145 are configured to mate with recesses 155 (e.g., in a tongue-and-groove fashion) when lower portion 120 and upper portion 130 are assembled. Retaining posts 180, which may be configured to engage with recesses 215 of blade 200, are also shown, and will be discussed in greater detail with respect to later drawings.


As shown in FIG. 5, the rear regions of lower portion 120 and upper portion 130 also include mounting points 160. Mounting points 160 may be, for example, holes through which a screw, pin, or other type of fastener may be inserted in order to fixedly secure lower portion 120 and upper portion 130 together. In some embodiments, mounting points 160 may correspond to spot welds or points of adhesion using a chemical adhesive. Moreover, in some embodiments, lower portion 120 may be secured to upper portion 130 along a continuous region (e.g., along a welded or adhered length) rather than at discrete points.


When the rear regions of lower portion 120 and upper portion 130 are secured at mounting points 160, the engagement of latches 145 with their corresponding recesses 155 may enable the front region of upper portion 130 to be securely attached to and physically supported by lower portion 120 through frictional engagement alone (e.g., without need for adhesives), although the attachment may be further enhanced with adhesives or welding if desired.


Latches 145 may be considered a means for physically supporting upper portion 130. However, it is noted that latches 145 need not be formed in lower portion 120. In an alternative embodiment, the orientation of latches 145 and recesses 155 may be reversed, such that latches 145 are formed within upper portion 130 and recesses 155 are formed within lower portion 120. This may (but need not) include relocating side walls 135 to lower portion 120. It is also noted that many equivalents to latches 145 exist. For example, recesses 155 may correspond to grooves within side walls 135 rather than notches, and latches 145 may correspondingly be relocated within side walls 150 to mate with such grooves. Generally speaking, latches 145 may encompass any type of protrusion in one portion of head 104 that is specifically formed to mate with a corresponding recess in the other portion of head 104 in order to physically support a front region of upper portion 130.



FIG. 6 illustrates a view of head 104 in which lower portion 120 and upper portion 130 have been assembled together, as viewed from rear side 110 of head 104. It can be seen that lower portion 120 and upper portion 130 form an aperture 185 into which blade 200 may be inserted, as mentioned above with respect to FIG. 2. FIG. 6 further illustrates that retaining posts 180 protrude at least partially through upper portion 130 into aperture 185. In some embodiments, the exposure of retaining posts 180 above the surface of upper portion 130 may be 0.8 mm with a manufacturing tolerance of +/−0.05 mm.



FIG. 7 illustrates an exploded view of head 104 in profile, in order to further illustrate the elements of head 104 and their interrelationship. For clarity of presentation, not every element appearing in FIG. 5 is labeled in FIG. 7. FIG. 7 does call out lower support elements 190 and upper support elements 195, which will be discussed in greater detail below.


Blade Movement Properties and Shaving Characteristics


The shaving performance of a single blade razor such as razor apparatus 100 may be characterized as a function of several mechanical parameters. One such characterization is schematically illustrated in FIG. 8. Specifically, head 104 is shown interacting with a skin surface 800. Blade angle 802 is defined as the angle between skin surface 800 and a plane 804 in which blade 200 resides. Blade gap 806 is defined as the gap between cutting edge 210 of blade 200 and lower portion 120 of head 104. Blade exposure 808 (shown in the inset of FIG. 8) is defined as the depth to which blade 200 protrudes away from lower portion 120 and into skin surface 800.


Empirical measurements conducted using embodiments of razor apparatus 100 suggest that some combinations of the foregoing parameters may yield superior shaving performance (e.g., in terms of shave closeness, effort, comfort, and/or other characteristics) relative to others. One such combination includes a blade angle 802 of 31.3 degrees, a blade gap 806 of 0.65 mm, and a blade exposure 808 of 0.15 mm, although other combinations are possible and contemplated.


It is noted, however, that skin surface 800 is rarely uniform. Its topography may vary according to factors such as anatomical features and local skin imperfections (e.g., moles, blemishes, scars, warts, and the like). Accordingly, a configuration in which the parameters described above are statically maintained—e.g., by rigidly maintaining the position of blade 200 within head 104—may not perform as well as a configuration in which blade 200 is permitted at least a small degree of movement in various dimensions within head 104 during use.



FIG. 9 illustrates an embodiment of lower portion 120 that may be configured to permit such movement of blade 200. In particular, FIG. 9 illustrates a top view of the interior face of lower portion 120. Two retaining posts 180 are shown, as are side walls 150 and lower support elements 190. (Although latches 145 are visible in FIG. 9, they are not necessary to this embodiment and may be omitted.)


The properties of the illustrated embodiment of lower portion 120 that give rise to blade movement may be primarily determined by the spacing and dimensions of retaining posts 180. In the illustrated embodiment, lower portion 120 itself may have a width (denoted d6) of 20.5 mm with a manufacturing tolerance of +/−0.15 mm (represented as 20.5+/−0.15 mm), and a length (denoted d7) of 44.7+/−0.15 mm. Retaining posts 180 may have a dimension d8 of 2.0+/−0.05 mm and a dimension d9 of 3.95+/−0.05 mm. The spacing between retaining posts 180 (denoted d10) may be 35.0+/−0.15 mm.


It is noted that the foregoing dimensions and tolerances are merely examples and that other configurations are possible and contemplated. For example, various ones of the foregoing dimensions may be altered in order to adjust the blade movement characteristics discussed below. Further, the specified manufacturing tolerances may differ for different manufacturing processes. Additionally, it is noted that the number and shape of retaining posts 180 may vary in different embodiments. It is not strictly necessary that the general shape of retaining posts 180 match that of recesses 215. That is, it may be possible to achieve the results described here with a shape of retaining posts 180 that provides fewer points of contact between retaining posts 180 and recesses 215 than the semicircular shape shown.



FIG. 10 corresponds to the view of lower portion 120 shown in FIG. 9 with blade 200 inserted. As shown in FIG. 10, recesses 215 of blade 200 mate respectively with retaining posts 180, which will retain blade 200 within head 104 during use. Additionally, blade 200 is supported from below by lower support elements 190 and side walls 150. With reference to FIG. 11, which illustrates a top view of the interior face of upper portion 130, blade 200 is also supported from above by upper support elements 195. (The number and arrangement of blade support points within lower portion 120 and upper portion 130 may vary in various embodiments.) Generally speaking, the dimensions of lower support elements 190 and upper support elements 195 will vary depending on the vertical depths of lower portion 120 and upper portion 130. These support elements should generally be sized so that they contact blade 200 and permit blade 200 to pivot around the contact point, without fitting so tightly that blade 200 cannot otherwise move within head 104. For completeness, additional views of upper portion 130 and lower portion 120 are shown in FIGS. 12-13, which illustrate these components from different angles.


As can be seen by comparing the dimensions and spacing of retaining posts 180 with the corresponding dimensions of blade 200 discussed above, retaining posts 180 are slightly smaller in diameter than recesses 215 of blade 200 (e.g., d9 of about 3.95 mm for retaining posts 180 versus d3 of about 4.0 mm for recesses 215). Additionally, the effective spacing between recesses 215 is about 34.7 mm (e.g., d1 of about 38.4 mm-2*d3 of about 1.84 mm), whereas the spacing of retaining posts 180 is slightly wider (e.g., d10 of about 35.0 mm).


Accordingly, the relative dimensions and spacing of retaining posts 180 in conjunction with recesses 215 of blade 200 may permit movement of blade 200 in multiple (e.g., at least two) dimensions during use. These additional degrees of movement may enable the position of blade 200 to more readily adapt to non-uniformities in skin surface 800 than a rigidly retained blade, which may in turn improve shaving performance. Through empirical testing of some embodiments of razor apparatus 100, improved performance may result when blade 200 is permitted to move along a dimension parallel to cutting edge 210 of blade 200 (e.g., dimension d1 of FIG. 2) in the range of 0.175-0.30 mm, with a possible optimum value within this range of 0.225 mm. Similarly, improved performance may result when blade 200 is permitted to move along a dimension perpendicular to cutting edge 210 of blade 200 (e.g., dimension d2 of FIG. 2) in the range of 0.20-0.45 mm, with a possible optimum value within this range of 0.30 mm.


As noted above, blade 200 may tend to pivot around the support points presented by lower support elements 190 and upper support elements 195. That is, in addition to movement within the plane of blade 200, blade 200 may also move in a direction perpendicular to this plane (e.g., perpendicular to face 250). For example, cutting edge 210 may be permitted to move along a dimension perpendicular to face 250 by 0.15-0.375 mm, with a possible optimum value within this range of 0.25 mm. Likewise, rear edge 220 may be permitted to move along a dimension perpendicular to face 250 by 0.45-1.0 mm, with a possible optimum value within this range of 0.85 mm.


It is noted that the foregoing ranges are merely examples, and that other suitable ranges may be determined for different configurations of blade 200 and head 104.


Materials and Fabrication


Generally speaking, the components of razor apparatus 100 may be manufactured according to any suitable method from any suitable material. In some embodiments, various elements of razor apparatus 100 (e.g., lower portion 120 and upper portion 130, but possibly including all elements) may be fabricated using a metal injection molding (MIM) process. In MIM, a powdered metal feedstock containing a binder may be injected into a mold in a manner similar to plastic injection molding (and possibly using the same equipment). Once the binder solidifies, the resulting “green” part may be further processed in one or more steps to remove the binder and densify the metal particles, often involving sintering the part in a high-heat environment (possibly high enough to partially melt the metal).


The finished MIM product may undergo other types of metal processing, such as plating, hardening, annealing, etc., similar to metalwork produced via machining, casting, forging or other conventional processes, and the resulting part may possess similar physical characteristics to parts produced using such conventional processes. Some machining steps may be necessary or desired before final assembly. (A typical manufacturing tolerance for a MIM may be +/−0.5% of the length in any direction, although tighter tolerances may be achieved through process refinements or post-MIM processing steps such as machining.) However, the MIM process may enable much faster manufacturing of complex metal parts than if such parts were machined from solid metal. That said, the components of razor apparatus 100 may also be fabricated using machining from a solid metal workpiece, liquid metal casting, or any other suitable technique.


If MIM is chosen, any suitable feedstock may be employed. A stainless steel powder feedstock may be preferable, given that razor apparatus 100 would routinely be exposed to moisture during use. One possible feedstock choice would be 316L stainless steel, which may have a post-sintering composition by weight of: ≤0.03% carbon, 16.0-18.0% chromium, 10.0-14.0% nickel, 2.0-3.0% molybdenum, <2.0% manganese, <1.0% silicon, balance iron.


Alternatively, a substantially nickel-free stainless steel powder feedstock may be employed. One example of such a feedstock is BASF™ Catamold™ PANACEA, which may have a post-sintering composition by weight of: ≤0.2% carbon, 0.75-0.90% nitrogen, 16.5-17.5% chromium, ≤0.1% nickel, 3.0-3.5% molybdenum, 10.0-12.0% manganese, ≤1.0% silicon, balance iron. The use of PANACEA, heretofore unknown to the inventors in the context of manufacturing a razor apparatus, may present several advantages over other types of stainless steel. For example, PANACEA may provide increased resistance to bending or breakage upon impact (e.g., in the event that razor apparatus 100 is dropped). Moreover, given that head 104 is designed for extensive skin contact, the substantially nickel-free composition of PANACEA may be beneficial for those with nickel allergies. It is noted that in some embodiments, the components of head 104 may be fabricated using one type of material, whereas other components of razor apparatus 100 may be fabricated using a different material.



FIG. 14 is a flow chart illustrating an embodiment of a method of manufacturing a razor apparatus. Operation begins in block 1400 with fabricating a lower portion and an upper portion of a head of a razor apparatus. Specifically, the lower portion and upper portion are fabricated to physically interface with each other, when assembled, at a front region and a rear region of the head. For example, the method may include fabricating lower portion 120 and upper portion 130 configured as described above, according to a MIM process, machining, or any other suitable fabrication process.


Operation continues in block 1402 with assembling the lower portion and the upper portion of the head. When assembled, the lower and upper portions of the head engage so that at the front region of the head, the upper portion is physically supported by the lower portion, and the lower and upper portions of the head form an aperture for receiving a single blade. For example, lower portion 120 and upper portion 130 may be assembled as shown in the preceding figures according to the discussion above.



FIG. 15 is a flow chart illustrating another embodiment of a method of manufacturing a razor apparatus. Operation begins in block 1500 with fabricating a lower portion and an upper portion of a head of a razor apparatus, where the lower portion includes a number of retaining posts. For example, lower portion 120 may include retaining posts 180 as described in detail above. As with the previously described method, this method may include fabricating lower portion 120 and upper portion 130 according to a MIM process, machining, or any other suitable fabrication process.


Operation continues in block 1502 with assembling the lower portion and the upper portion of the head. When assembled, the lower and upper portions of the head form an aperture for receiving a single blade. Moreover, each of the retaining posts is configured to mate with a respective recess in the single blade to retain the single blade within the head upon insertion of the single blade. Further, the retaining posts are spaced to retain the single blade during use while permitting the single blade to move in at least two dimensions during use. For example, lower portion 120 and upper portion 130 may be assembled to permit a small degree of movement of blade 200 as discussed above with respect to FIGS. 8-12.


Although the discussion above has been presented with respect to a single instance of razor apparatus 100 in order to facilitate discussion, it is noted that any of the features described above—specifically including the use of latches 145 and the configuration of retaining posts 180—may be used together or separately.


It should be emphasized that the above-described embodiments are only non-limiting examples of implementations. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.

Claims
  • 1. A razor apparatus, comprising: a handle; anda head pivotably mounted on the handle, the head having a rear side including an aperture for removably receiving a single blade, wherein the head is configured to receive the single blade upon insertion of the single blade into the rear side of the head via the aperture, the head further having a front side through which a cutting edge of the single blade is exposed during use;wherein the head comprises an upper portion and a lower portion that form the aperture; andwherein the head is configured to retain the single blade in a manner that, during shaving, permits the entirety of the single blade to move, free from biasing forces, in at least two dimensions relative to the head, wherein the at least two dimensions include a dimension perpendicular to a face of the single blade.
  • 2. The razor apparatus of claim 1, wherein the lower portion includes a plurality of protruding latches located proximate the front side of the head, wherein the plurality of protruding latches respectively mate with a plurality of recesses formed in the upper portion.
  • 3. The razor apparatus of claim 2, wherein the protruding latches are formed in a pair of side walls of the lower portion.
  • 4. The razor apparatus of claim 3, wherein the recesses are formed in a pair of side walls of the upper portion, wherein the pair of side walls of the upper portion form exterior side faces of the head.
  • 5. The razor apparatus of claim 1, wherein the lower portion includes a plurality of recesses located proximate the front side of the head, wherein the plurality of recesses respectively mate with a plurality of protruding latches formed in the upper portion.
  • 6. The razor apparatus of claim 1, wherein the upper portion and the lower portion are secured by one or more fasteners located proximate the rear side of the head.
  • 7. The razor apparatus of claim 1, wherein the lower portion comprises a plurality of retaining posts, each configured to mate with a respective recess in the single blade to removably retain the single blade within the head.
  • 8. The razor apparatus of claim 7, wherein the retaining posts are spaced to retain the single blade during shaving while permitting the single blade to move in at least two dimensions relative to the head during shaving.
  • 9. The razor apparatus of claim 1, wherein to move in at least two dimensions during use, the single blade is permitted to move according to one or more of the following: movement of the single blade along a dimension parallel to the exposed cutting edge of the single blade by 0.175-0.3 mm;movement of the single blade along a dimension perpendicular to the exposed cutting edge of the single blade and parallel to the face of the single blade by 0.2-0.45 mm;movement of the exposed cutting edge along a dimension perpendicular to the face of the single blade by 0.15-0.375 mm;movement of a rear edge of the single blade along a dimension perpendicular to a face of the single blade by 0.45-1.00 mm; orany combination of the foregoing.
  • 10. The razor apparatus of claim 1, wherein the upper and lower portions of the head are composed of a sintered, substantially nickel-free stainless steel powder feedstock.
  • 11. The razor apparatus of claim 10, wherein the substantially nickel-free stainless steel powder feedstock has a post-sintering composition by weight of: ≤0.2% carbon, 0.75-0.90% nitrogen, 16.5-17.5% chromium, ≤0.1% nickel, 3.0-3.5% molybdenum, 10.0-12.0% manganese, ≤1.0% silicon, balance iron.
  • 12. A method of manufacturing a razor apparatus, comprising: fabricating a lower portion and an upper portion of a head of the razor apparatus, wherein the lower portion and the upper portion are fabricated to physically interface with each other, when assembled, at a front region and a rear region of the head; andassembling the lower portion and the upper portion of the head, wherein when assembled, the lower and upper portions of the head form an aperture for receiving a single blade, wherein when assembled, the head is configured to removably receive the single blade upon insertion of the single blade into the rear region of the head via the aperture, and wherein when assembled, the head is configured to retain the single blade in a manner that, during shaving, permits the entirety of the single blade to move, free from biasing forces, in at least two dimensions relative to the head, wherein the at least two dimensions include a dimension perpendicular to a face of the single blade.
  • 13. The method of claim 12, wherein: fabricating the lower portion includes forming a plurality of retaining posts in the lower portion, wherein each of the plurality of retaining posts is configured to mate with a respective recess of the single blade to retain the single blade, when inserted, within the head; andthe retaining posts are spaced to retain the single blade during use while permitting the single blade to move in at least two dimensions during use.
  • 14. The method of claim 12, wherein fabricating the lower portion and the upper portion of the head is performed using a metal injection molding process.
  • 15. The method of claim 14, wherein the metal injection molding process employs a substantially nickel-free stainless steel powder feedstock.
  • 16. The method of claim 15, wherein the substantially nickel-free stainless steel powder feedstock has a post-sintering composition by weight of: ≤0.2% carbon, 0.75-0.90% nitrogen, 16.5-17.5% chromium, ≤0.1% nickel, 3.0-3.5% molybdenum, 10.0-12.0% manganese, ≤1.0% silicon, balance iron.
  • 17. The method of claim 16, wherein fabricating the lower portion and the upper portion of the head is performed using a machining process.
  • 18. A razor apparatus, comprising: a handle; anda head pivotably mounted on the handle, the head having a rear side including an aperture for removably receiving a single blade, the head further having a front side through which a cutting edge of the single blade is exposed during use, wherein the head is configured to receive the single blade upon insertion of the single blade into the rear side of the head via the aperture;wherein the head comprises an upper portion and a lower portion that form the aperture; andwherein the head includes means for retaining the single blade in a manner that, during shaving, permits the entirety of the single blade to move, free from biasing forces, in at least two dimensions relative to the head, wherein the at least two dimensions include a dimension perpendicular to a face of the single blade.
  • 19. The razor apparatus of claim 18, wherein the means for retaining the single blade comprises a plurality of retaining posts, each configured to mate with a respective recess in the single blade to removably retain the single blade within the head, wherein the retaining posts are spaced to retain the single blade during shaving while permitting the single blade to move in at least two dimensions relative to the head during shaving.
  • 20. The razor apparatus of claim 18, wherein the head further includes means for physically supporting a front region of the upper portion by the lower portion.
US Referenced Citations (157)
Number Name Date Kind
1053089 Holm Feb 1913 A
1057644 Hiener Apr 1913 A
1117953 Crandall Nov 1914 A
1169395 Greist et al. Jan 1916 A
1200426 King Oct 1916 A
1234834 Warren Jul 1917 A
1460139 Parker Jun 1923 A
1633139 Staats-oels Jun 1927 A
2018304 Hayhurst Oct 1935 A
2019957 England Nov 1935 A
2030833 Thompson Feb 1936 A
2077241 Karle Apr 1937 A
2108758 Thompson et al. Feb 1938 A
2161403 Ashworth Jun 1939 A
2168447 Patterson Aug 1939 A
2288302 Reyburn et al. Jun 1942 A
2335547 Smith Nov 1943 A
2386536 Bensel Oct 1945 A
D143326 Kempf Dec 1945 S
D146759 Brown May 1947 S
2545533 Stewart Mar 1951 A
2580058 Willhelm Dec 1951 A
2588211 Crowell Mar 1952 A
2682105 Randol Jun 1954 A
2715268 Randol Aug 1955 A
2744317 Borden May 1956 A
2744319 Cutler May 1956 A
2768436 Randol Oct 1956 A
2780866 Borden Feb 1957 A
2794246 Marsh et al. Jun 1957 A
2933808 Friel Apr 1960 A
3015159 Baun Jan 1962 A
3045342 Diehl Jul 1962 A
3067512 Randal Dec 1962 A
3078569 Sidney Feb 1963 A
3080651 Cas Mar 1963 A
3203093 Kuhnl Aug 1965 A
3488764 Welsh Jan 1970 A
3583262 Mullen Jun 1971 A
3605265 Iten Sep 1971 A
3775845 Kuhnl Dec 1973 A
3949470 Hall Apr 1976 A
D241080 Glaberson Aug 1976 S
4026016 Nissen May 1977 A
D248878 Halm Aug 1978 S
D249968 Kiraly Oct 1978 S
D250130 Douglas Oct 1978 S
D250547 Palmer Dec 1978 S
4152828 Lund May 1979 A
D253726 Schuman et al. Dec 1979 S
4180907 Iten Jan 1980 A
4184246 Trotta Jan 1980 A
4198745 Moehlenpah Apr 1980 A
4200976 Gooding May 1980 A
4212103 Schuman-Hoole Jul 1980 A
D259065 Byrne Apr 1981 S
4272886 Asano Jun 1981 A
4275498 Ciaffone Jun 1981 A
4328615 Bowman May 1982 A
4337575 Trotta Jul 1982 A
D268291 Jones Mar 1983 S
4392303 Ciaffone Jul 1983 A
4403412 Trotta Sep 1983 A
4446619 Jacobson May 1984 A
4476630 Byrne Oct 1984 A
4574476 Ortiz Mar 1986 A
4617736 McCrary Oct 1986 A
D293036 Iten et al. Dec 1987 S
4813131 Gruner Mar 1989 A
4833779 Iten May 1989 A
4852254 Duncan Aug 1989 A
4866844 Burout, III Sep 1989 A
D304773 Beuchat Nov 1989 S
4879811 Cooney Nov 1989 A
D310580 King Sep 1990 S
4970784 Althaus et al. Nov 1990 A
5012578 Siefer May 1991 A
5048184 Saxton Sep 1991 A
5070612 Abatemarco Dec 1991 A
5251376 Althaus et al. Oct 1993 A
5251752 Purohit Oct 1993 A
D345232 Gray Mar 1994 S
D354586 Grange Jan 1995 S
5402574 Milner Apr 1995 A
5412872 Iderosa May 1995 A
5416974 Wain May 1995 A
5461781 Pirc Oct 1995 A
5526567 Carson, III et al. Jun 1996 A
5526568 Copelan Jun 1996 A
5557851 Ortiz Sep 1996 A
D375408 Muller Nov 1996 S
5590468 Prochaska Jan 1997 A
5687485 Shurtleff et al. Nov 1997 A
5784790 Carson, III et al. Jul 1998 A
5953824 Ferraro et al. Sep 1999 A
D427376 Scott Jun 2000 S
6141875 Andrews Nov 2000 A
6266888 Zowaski Jul 2001 B1
D446884 Kohring et al. Aug 2001 S
6418623 Marcarelli Jul 2002 B1
6473971 Ordaz Nov 2002 B2
6530151 Kameka Mar 2003 B2
D476772 Wonderley Jul 2003 S
6655029 Saito Dec 2003 B2
6694626 Kludjian et al. Feb 2004 B2
D500888 Gray Jan 2005 S
D508586 Shurtleff Aug 2005 S
D512795 Carpenter Dec 2005 S
D513540 Wonderley Jan 2006 S
7028407 Ehrlich et al. Apr 2006 B2
7140115 Greene Nov 2006 B2
7155828 Guimont et al. Jan 2007 B2
7197827 Paquette Apr 2007 B2
D541987 Sugawara May 2007 S
D542468 Stiles May 2007 S
D558396 Sierra et al. Dec 2007 S
D560032 Lopez Jan 2008 S
D587846 Wonderley et al. Mar 2009 S
D599955 Provost Sep 2009 S
D603560 Micinilio Nov 2009 S
D612540 Joslin Mar 2010 S
D619763 Coresh Jul 2010 S
D621095 Cataudella Aug 2010 S
7802353 Gratsias Sep 2010 B2
D627929 Haba Nov 2010 S
7882610 Gratsias Feb 2011 B2
D635302 Psimadas et al. Mar 2011 S
D636938 White, Jr. et al. Apr 2011 S
7975389 Bozikis et al. Jul 2011 B2
D650527 Andersen et al. Dec 2011 S
D667168 Greene Sep 2012 S
8273205 Murgida Sep 2012 B2
D703377 Christie et al. Apr 2014 S
8720072 Bucco May 2014 B2
8739411 Kinghorn et al. Jun 2014 B2
9108329 Stiles Aug 2015 B2
9393708 Babaev Jul 2016 B2
D763506 Barrett Aug 2016 S
20020066186 White et al. Jun 2002 A1
20020116822 Coffin Aug 2002 A1
20040181954 Follo et al. Sep 2004 A1
20050000100 Coffin Jan 2005 A1
20070251106 Gladstone Nov 2007 A1
20100205808 King Aug 2010 A1
20110016724 Murgida Jan 2011 A1
20120096718 Howell et al. Apr 2012 A1
20120096723 Howell et al. Apr 2012 A1
20120233868 Bridges et al. Sep 2012 A1
20130047449 Zakuskin Feb 2013 A1
20130081291 Wain et al. Apr 2013 A1
20140101947 Samuels et al. Apr 2014 A1
20140116211 Griffin et al. May 2014 A1
20140230256 Christie et al. Aug 2014 A1
20140331500 Ren Nov 2014 A1
20150183119 Contaldi Jul 2015 A1
20150217468 Dryfhout Aug 2015 A1
20160288349 Barrett et al. Oct 2016 A1
Foreign Referenced Citations (1)
Number Date Country
9529798 Nov 1995 WO
Non-Patent Literature Citations (2)
Entry
International Search Report and Written Opinion in Application No. PCT/US2016/058696 dated May 9, 2017, 16 pages.
Invitation to Pay Additional Fees in PCT Application No. PCT/US2016/058696 dated Feb. 22, 2017, 7 pages.
Related Publications (1)
Number Date Country
20180111279 A1 Apr 2018 US