This invention relates to the field of stereoscopic viewing and in particular to the use of single cell liquid crystal shutter glasses.
Typical Liquid Crystal (LC) shutter glasses are composed of two separate liquid crystal shutters that open and closed in an alternating pattern that is synchronized to the command of an image display system. Further, current systems use LC cells that are constructed from glass substrates that are non-flexible and limit the range of designs achievable for the glasses. The present invention offers a new approach to the construction of LC shutter glasses by using a single flexible LC cell as the active element. The advantages of the present invention over prior art include a simpler drive scheme requiring only two wires, lower cost due to a single larger LC cell, a flexible substrate allowing simple curvature of the shutter for a broader range of design, and lighter weight due to the elimination of the glass substrates. Previous patents and applications by, Faris, Lazzaro, Divelbiss, Swift, Guralnick, Lipton, and Tettington have fixed field of view LC filters. The time-multiplexed technique for viewing electronic stereoscopic images is now a standard viewing modality for computer graphics and video. During the past decade, electro-stereoscopic displays have become a well-established means for viewing images.
All of these systems use liquid crystal (“LC”) shuttering eyewear for viewing stereoscopic images are described in the following patents and patent applications: U.S. Pat. No. 4,884,876 entitled “Achromatic Liquid Crystal Shutter For Stereoscopic And Other Applications;” U.S. Pat. No. 4,967,268entitled “Liquid Crystal Shutter System For Stereoscopic And Other Applications;” U.S. Pat. No. 5,117,302 entitled “High Dynamic Range Electro-Optical Shutter For Stereoscopic And Other Applications;” U.S. Pat. No. 5,181,133 entitled “Drive Method For Twisted Nematic Liquid Crystal Shutters For Stereoscopic And Other Applications; U.S. Pat. No. 5,463,428 entitled “Wireless Active Eyewear For Stereoscopic Applications;” ; High Dynamic Range Electro-optical Shutter For Stereoscopic And Other Applications; U.S. Pat. No. 5,572,250 entitled “Universal Electronic Stereoscopic Display and WO 98/54614 entitled “Electrostereocopic Eyewear.” Additional patents describing LC shutter glasses include: U.S. Pat. No. 5,821,989 entitled “Stereoscopic 3-D View System and Glasses Having Electro-optical Shutters Controlled By Control Signals produced by Using Horizontal Pulse Detection Within the Vertical Synchronization Pulse Period of Computer Generated Video Signals”; U. S. Pat. No. 6,295,065 entitled Method and Apparatus To Alternate Stereoscopic Images In a Video Display Device”; U.S. Pat. No. 6,088,052 entitled “3D Stereoscopic Video Display System”; U.S. Pat. No. 6,278,501 entitled Three Dimensional Liquid Shutter Glasses”; U.S. Pat. No. 6,359,664 entitled Electro-optical Display System For Visually Displaying Polarized Spatially Multiplexed Images of 3-D Objects for Use In Stereoscopically Viewing The Same With High Quality and High Resolution; and WO 01/25836 entitled 3D Shutter Glass and Line Blanker System. All of the above patents and patent applications are hereby incorporated by reference.
LC shuttering eyewear for the mass consumer market must be manufactured at the lowest possible cost of goods in order to compete in what is essentially a commodity marketplace. Therefore, there is a need for a shutter glass system that has lower cost, simplicity of design and a flexible substrate that allows for broader range of glasses designs.
The invention is a stereoscopic shutter system having a single liquid crystal (LC) cell. The system may have flexible substrates or non-flexible substrates. The system requires only two electrical conductors to shutter both eyes. The system uses twisted nematic liquid crystal, ferro-electric liquid crystal, pi-cell technology, or other similar shuttering technologies. The system includes only one LC cell, a single large laminated linearly polarizing filter P1, and two smaller linear polarizing analyzers oriented in the P1 and P2 states. The shutters may be bent into a one-dimensional curved shape about the vertical or horizontal axis.
Most LC shutter glass systems require separate control lines for each eye path since each eye path has a separate switching element. The present invention only requires the switching of a single LC cell. Therefore a simplified control system is utilized and that requires only a single pair of wires from the control system (not shown). The switching is controlled by electronics of the display system and is well known in the art. Several such systems are described in the disclosures discussed above.
One of the benefits of a single cell using a single drive system is that the user can easily determine if the glasses are not enabled because one of the elements will be dark (either the left element or the right element). In dual cell systems, when no power is applied, both cells are typically clear which can be easily confused with the active shuttering mode that also looks mostly clear.
It is also possible to achieve a mostly clear state for both elements (useful for viewing non 3D stereoscopic data) by shuttering the LC cell at a high frequency so that no flicker is perceived.
The present invention has been described with reference to the above illustrative embodiments. It us understood, however, modifications to the illustrative embodiments will readily occur to persons with ordinary skill in the art. All of such modifications and variations are deemed to be within the scope and spirit of present invention as defined by the accompanying claims.
This application claims the benefit of provisional application No. 60/289,095, filed May 07, 2001.
Number | Name | Date | Kind |
---|---|---|---|
4884876 | Lipton et al. | Dec 1989 | A |
4967268 | Lipton et al. | Oct 1990 | A |
5117302 | Lipton | May 1992 | A |
5181133 | Lipton | Jan 1993 | A |
5402191 | Dean et al. | Mar 1995 | A |
5572250 | Lipton et al. | Nov 1996 | A |
5821989 | Lazzaro et al. | Oct 1998 | A |
6061043 | Bonnett et al. | May 2000 | A |
6088052 | Guralnick | Jul 2000 | A |
6278501 | Lin | Aug 2001 | B1 |
6295065 | Tettington | Sep 2001 | B1 |
6359664 | Faris | Mar 2002 | B1 |
Number | Date | Country |
---|---|---|
0892563 | Jan 1999 | EP |
2000284224 | Oct 2000 | JP |
WO 9854614 | Dec 1998 | WO |
WO 0125836 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20020163600 A1 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
60289095 | May 2001 | US |