The present invention relates generally to electromagnet switching devices and, more particularly, to a single coil solenoid having a permanent magnet with bi-directional assist.
Electromagnet switching devices such as solenoids are commonly used in a number of applications such as shutoff devices for fuel or other types of fluid pumps. Solenoids are frequently used in engine applications in the throttle, choke, valve, clutch, and overspeed protection assemblies. As such, solenoids are typically found in engine driven products such as boats, lawn equipment, automobiles, generators, and the like.
Solenoids are designed to convert electrical energy into mechanical work. Typically, a movable armature or plunger reciprocates linearly from a first to a second position when current is induced in coil(s) in which the armature sits. The current induced in the coil(s) creates a magnetic field about the armature that induces movement in the actuator along one direction. In this regard, the armature may be connected to a device or piece of equipment such that when current is induced in the coil(s), the armature is caused to turn ON, turn OFF, open, or close the device.
Typically, solenoids include either a single coil of copper wire or a pair of coils of copper wire. In a single coil solenoid, when electric current is introduced, a magnetic field forms which causes movement of a plunger or armature. Typically, the magnetic field draws the plunger inward to a retracted or energized position. In a single coil solenoid, the current induced to create the magnetic field to cause movement of the armature or plunger must not only be sufficient to pull or push the plunger but also be sufficient to maintain the plunger in the energized position. A drawback of a single coil solenoid, however, is that when the coil is energized for long periods of time, the coil may overheat thereby rendering the solenoid inoperable. To overcome this drawback, dual coil solenoids are typically used for applications in which the plunger or armature may need to be maintained in an energized position for long periods of time.
A typical dual coil solenoid is shown in
As illustrated in
The pull coil, as described above, is designed to carry a very high current generate relatively high forces on the plunger or armature initially. Typically, this high amount of force is for a short period of time at which point the current is switched off to prevent the coil from overheating. The hold coil usually operates with a much lower current and takes advantage of the fact that the plunger requires much less energy to maintain the “pull” force exerted on the plunger or armature. Typically, the pull coils are switched off in different ways but two of the most common ways are either mechanically or electronically. That is, the mechanical switching method usually implements the plunger to interrupt the circuit at or near a zero stroke by opening a set of switch contacts that is a part of the solenoid. The placement of these contacts is critical as is their ability to handle high currents. Switch design has its own unique requirements that must be considered in the overall solenoid design further complicating the solenoid as well as adding cost and potential reliability concerns. On the other hand, electronically controlled solenoids may use relays or solid state switching devices to accommodate switching functionality. These electronic components, however, add costs to the solenoid. Another switching method that uses electronics implements a single coil of wound wire which is similar to a pull coil in that it uses high current to create a high initial force. The electronics therefore supply full power to the coil initially. When the plunger has reached full stroke, typically after a specified time period, the electronics start switching the current on and off at a relatively high frequency to reduce the effective current. This process is typically referred to as pulse width modulation and makes the single high current pull coil effectively also the low current hold coil. However, electronics not only add to the manufacturing cost of the solenoid but also increase the complexity of the solenoid.
It would therefore be desirable to design a solenoid having a single coil of wire that achieves both push/pull and hold functions without the additional cost and complexity of mechanical or electronic switch assemblies.
The present invention is directed to a single coil solenoid having a permanent magnet with bi-directional assist overcoming the aforementioned drawbacks.
The solenoid includes a single coil of wound copper wire and a plunger or armature disposed in a bore therein. The plunger is designed to move linearly within the bore of the solenoid when current is induced in the single coil. In a de-energized condition, the plunger is positioned against a spacer comprised of non-magnetic material that is positioned between the plunger and a permanent magnet. When the single coil is not energized, the plunger is attracted to the permanent magnet thereby creating an attractive force between the plunger and the permanent magnet to hold the plunger against the non-magnetic spacer. When the current is induced in the single coil, an electromagnetic condition is created that causes the plunger to have a magnetic polarity that matches the polarity of the permanent magnet. As a result, a repelling force is created or generated between the plunger and the permanent magnet causing the plunger to linearly move away from the spacer. The solenoid further includes an end plate having an attracting stud that when current is induced in the single coil, the polarity of the plunger is attracted to the attracting stud. That is, the attracting stud has a polarity opposite that of the energized plunger. Optionally, the solenoid may include a return spring that biases the plunger against the spacer during de-energization of the single coil. In this regard, the amount of current induced in the single coil must be sufficient to not only reverse the polarity of the plunger, but must also be sufficient to create a force upon the plunger that overcomes the bias of the return spring.
Therefore, in accordance with one aspect of the present invention, a solenoid has a magnetically conductive shell having a single coil of wound wire. The solenoid also has a movable magnetic object disposed within a bore of the single coil, the object configured to receive a magnetic force when current is induced in the single coil. The solenoid also includes a permanent magnet having a fixed polarity that repels the moveable magnetic object when current is induced in the single coil and attracts an end of the movable magnetic object when no current is induced in the single coil.
According to another aspect of the present invention, an electromagnetic switching apparatus includes a bobbin having a single coil of wire wrapped therearound. A movable armature is disposed within the single coil as is a permanent magnet. The permanent magnet is separated from the actuator by a non-magnetic spacer such that the permanent magnet attracts the actuator when the single coil is de-energized and repels the actuator when the single coil is energized.
In accordance with yet another aspect of the present invention, a method of manufacturing a single coil solenoid with permanent magnet bi-directional assist includes the steps of wrapping a single electro-conductive wire around a bobbin and securing a plunger within a bore of the bobbin. The manufacturing process further includes the step of disposing a spacer and a permanent magnet at one end of the plunger and biasing the plunger in a first position against the spacer. An end plate having an attracting stud at an end of the bobbin opposite to that of the permanent magnet is also put in place.
In accordance with a further aspect of the present invention, a single coil solenoid includes a first magnetic circuit between a plunger and a permanent magnet spaced from the plunger at a first electromagnetic condition created when a single coil wire is not energized as well as a second magnetic circuit between a plunger and an attracting member at a second electromagnetic condition created when the single coil of wire is energized.
In accordance with a further aspect of the present invention, a solenoid kit includes a bobbin configured to receive a single coil of wire wrapped therearound as well as a permanent magnet having a fixed polarity. The kit also includes an armature configured to move linearly through a bore of the bobbin as well as a non-magnetic spacer to be disposed between the permanent magnet and the armature.
Various other features, objects and advantages of the present invention will be made apparent from the following detailed description and the drawings.
The drawings illustrate one preferred embodiment presently contemplated for carrying out the invention.
In the drawings:
Referring now to
The internal components of solenoid 32 are housed within a relatively rigid and durable housing 50. Connected at an end 52 of the housing opposite that of the permanent magnet 38 is an end plate 54. Connected to end plate 54 is an attracting stud 56. When current is not induced in the single coil 36, the attracting stud 56 and the armature 44 have no real magnetic polarity. That is, the attracting stud 56 and the end of the armature proximate of the attracting stud have no attractive force between them. In this regard, the attracting force of the magnet and the spring force is generated therebetween such that the armature is pushed away from attracting stud 56. Accordingly, the permanent magnet 38, the armature 44, shunt components 40, and solenoid housing 50 create a complete and efficient magnetic circuit that has a relatively high attractive force on the plunger caused by the permanent magnet 38. The influence of magnet 38 on armature 44 adds to the force of return spring 46 which ensures a relatively high return force to the de-energized position against spacer 42.
Solenoid 32 includes shunt components 40 which assist in creating a relatively high holding force on the armature during de-energization of the single coil 36. Absent these components, the magnetic path would be less efficient and, as such, much of the magnetic flux would be forced to travel through the armature 44 and “jump” a relatively large air gap between the armature and attracting stud 56. In addition, the length of the magnetic path would be much greater thereby requiring more coercive force from permanent magnet 38. The result would therefore be a much lower operating point of the permanent magnet 38 thus reducing the holding force of the armature against the permanent magnet. The effectiveness of shunt components 40 may be varied by changing the air gap between the shunt components 40 and housing 50. This gap not only influences the hold force placed on the armature when de-energized, but also affects the amount of energy required to release the armature when current is induced in the single coil 36. Additionally, the axial location of shunt components 40 relative to magnet 38 also influences the hold force placed on the armature 44 and the amount of energy required to release the armature from a hold position upon energization of the single coil 36. That is, as the distance of the shunt components 40 from the permanent magnet 38 increases, the hold force between the armature 44 and the permanent magnet 38 decreases. Accordingly, placement of the shunt components relative to the permanent magnet, the solenoid housing, and the armature increases the efficiency of the magnetic circuit thereby resulting in an increased hold force in the de-energized position and a reduced energy requirement to release the armature upon energization of the single coil.
As stated above, when zero or little current is induced in the single coil of wire wrapped around the bobbin, the solenoid is considered to be in a de-energized state or position. In this position, the polarity of the armature takes on the polarity of the permanent magnet. The permanent magnet creates an attractive force between the armature and itself. The force of the magnet coupled with the bias of the return spring create the relatively large holding force on the armature 44 that, as illustrated in
Referring now to
A second magnetic circuit is created by housing 50, end plate 54, attracting stud 56, plunger 44, and shunt components 40 when current is induced in the single coil 36. The electromagnetic condition causes the armature 44 to become a magnet with poles opposing the poles of permanent magnet 38 thereby creating a repulsive force therebetween. This repulsive force in combination with the attractive force created between attracting stud 56 and armature 44, minus the mechanical or biasing force of spring 46, produces or creates a higher net pulling force on armature 44 than is possible from the electro-magnetic coil alone. Upon de-energization of the coil, return spring 46 returns armature 44 until the armature abuts spacer 42. Since there is no longer an electromagnetic field, as the armature 44 approaches magnet 38, the magnet 38 attracts the armature 44 thereby adding to the force of return spring 46 exerted on the armature 44. Thus, the energy stored in the permanent magnet is utilized to increase the operating force of the armature 44 in both directions of armature stroke.
In an alternate embodiment, a second permanent magnet may be placed with proper orientation between the attracting stud 56 and end plate 54. Placement of a second permanent magnet assists in the magnetic tuning to achieve the desired net forces that are exerted on armature 44. That is, the second permanent magnet may be oriented such that it enhances the force placed on armature 44 by attracting stud 56. Additionally, secondary shunt components may be placed within the coil windings to assist in magnetic tuning to also achieve the desired net forces exerted on armature 44.
Therefore, in accordance with one embodiment of the present invention, a solenoid has a magnetically conductive shell having a single coil of wound wire. The solenoid also has a movable magnetic object disposed within a bore of the single coil, the object configured to receive a magnetic force when current is induced in the single coil. The solenoid also includes a permanent magnet having a fixed polarity that repels the moveable magnetic object when current is induced in the single coil and attracts the end of the movable magnetic object when no current is induced in the single coil.
According to another embodiment of the present invention, an electromagnetic switching apparatus includes a bobbin having a single coil of wire wrapped therearound. A movable armature is disposed within the single coil as is a permanent magnet. The permanent magnet is separated from the armature by a non-magnetic spacer such that the permanent magnet attracts the armature when the single coil is de-energized and repels the armature when the single coil is energized.
In accordance with yet another embodiment of the present invention, a method of manufacturing a single coil solenoid with permanent magnet bi-directional assist includes the steps of wrapping a single electro-conductive wire around a bobbin and securing a plunger within a bore of the bobbin. The manufacturing process further includes the step of disposing a spacer and a permanent magnet at one end of the plunger and biasing the plunger in a first position against the spacer. An end plate having an attracting stud at an end of the bobbin opposite to that of the permanent magnet is also put in place.
In accordance with a further embodiment of the present invention, a single coil solenoid includes a first magnetic circuit between a plunger and a permanent magnet spaced from the plunger at a first electromagnetic condition created when a single coil winding is not energized as well as a second magnetic circuit between a plunger and an attracting member at a second electromagnetic condition created when the single coil winding is energized.
In accordance with a further embodiment of the present invention, a solenoid kit includes a bobbin configured to receive a single coil of wire wrapped therearound as well as a permanent magnet having a fixed polarity. The kit also includes an armature configured to move linearly through a bore of the bobbin as well as a non-magnetic spacer to be disposed between the permanent magnet and the armature.
The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Number | Name | Date | Kind |
---|---|---|---|
3755766 | Read, Jr. | Aug 1973 | A |
4127835 | Knutson | Nov 1978 | A |
4419643 | Ojima et al. | Dec 1983 | A |
4438419 | Helinski | Mar 1984 | A |
4442418 | Myers | Apr 1984 | A |
4470030 | Myers | Sep 1984 | A |
4845392 | Mumbower | Jul 1989 | A |
6057750 | Sheng | May 2000 | A |
6199587 | Shlomi et al. | Mar 2001 | B1 |
6218921 | Eberts et al. | Apr 2001 | B1 |
6229421 | Floyd et al. | May 2001 | B1 |
6244298 | Sugita et al. | Jun 2001 | B1 |
20020093408 | Morita et al. | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
395271 | Jul 1965 | CH |
536281 | Dec 1938 | GB |
2099223 | Dec 1982 | GB |
2349746 | Nov 2000 | GB |
2357375 | Jun 2001 | GB |
59013307 | Jan 1984 | JP |
59-182510 | Oct 1984 | JP |
2001081459 | Aug 2001 | KR |
Number | Date | Country | |
---|---|---|---|
20050024174 A1 | Feb 2005 | US |