The present disclosure relates generally to lighting solutions, and more particularly to a single control for light dimming and color temperature adjustment.
Some lighting fixtures are controllable to adjust both Correlated Color Temperature (CCT) and intensity level of a light emitted by the light emitting diode (LED) light source of the lighting fixtures. For example, CCT and intensity level adjustments can produce a desired light that is appropriate for particular times of a day and situation. Adjusting both CCT and intensity level of the light emitted by an LED light source often requires two separate controls. However, installing separate controls can be relatively expensive and may be inconvenient to users. In retrofit installations, structural limitations may make installing additional controls challenging. For example, installing a new CCT control in addition to an existing dimming control may be challenging because of structural constraints. Thus, the ability to control both the CCT and the intensity of a light using a dimmer control can be advantageous. Further, providing an illumination light more closely matches natural lighting when the illumination light has a cool CCT may be desirable.
The present disclosure relates generally to lighting solutions, and more particularly to a single control for light dimming and color temperature adjustment. In an example embodiment, a lighting device includes a light source that emits an illumination light. The light source includes a first group of light emitting diodes (LEDs) to emit a first light, a second group of LEDs to emit a second light, and a third group of LEDs to emit a third light. The second light is warmer light than the first light, and the third light is cooler light than the first light. The lighting device further includes a first difference amplifier that controls a first current flow through the second group of LEDs at least based on a magnitude of the current flowing through the light source. The lighting device also includes a second difference amplifier that controls a second current flow through the third group of LEDs at least based on the magnitude of the current flowing through the light source.
In another example embodiment, a lighting device includes a light source that emits an illumination light. The light source includes a first group of light emitting diodes (LEDs) to emit a first light, a second group of LEDs to emit a second light, and a third group of LEDs to emit a third light. The second light is warmer light than the first light, and the third light is cooler light than the first light. The lighting device further includes a first difference amplifier that regulates a first current flow through the second group of LEDs at least based on a magnitude of a current flowing through the light source and the first current flow through the second group of LEDs. The lighting device also includes a second difference amplifier that regulates a second current flow through the third group of LEDs at least based on the magnitude of the current flowing through the light source and the second current flow through the third group of LEDs.
In another example embodiment, a lighting device includes a light source that emits an illumination light. The light source includes a first group of light emitting diodes (LEDs) to emit a first light, a second group of LEDs to emit a second light, and a third group of LEDs to emit a third light. The second light is warmer light than the first light, and the third light is cooler light than the first light. The third light includes a combination of green and blue lights having a combined CCT of approximately 6500 K. The lighting device further includes a first operational amplifier that regulates a first current flow through the second group of LEDs at least based on a magnitude of a current flowing through the light source. The lighting device also includes a second operational amplifier that regulates a second current flow through the third group of LEDs at least based on the magnitude of the current flowing through the light source.
These and other aspects, objects, features, and embodiments will be apparent from the following description and the appended claims.
Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The drawings illustrate only example embodiments and are therefore not to be considered limiting in scope. The elements and features shown in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the example embodiments. Additionally, certain dimensions or placements may be exaggerated to help visually convey such principles. In the drawings, the same reference numerals that are used in different drawings designate like or corresponding, but not necessarily identical elements.
In the following paragraphs, example embodiments will be described in further detail with reference to the figures. In the description, well known components, methods, and/or processing techniques are omitted or briefly described. Furthermore, reference to various feature(s) of the embodiments is not to suggest that all embodiments must include the referenced feature(s).
In some example embodiments, the first group of LEDs 104 includes LEDs 126 that emit a first light, the second group of LEDs 106 includes LEDs 128 that emit a second light, and the third group of LEDs 108 includes LEDs 130 that emit a third light. The first, second, and third lights together result in the illumination light provided by the lighting device 100. In some example embodiments, the LEDs 126, 128, 130 of the first, second, and third groups of LEDs 104, 106, 108 may be phosphor-converted LEDs, Direct Emission LEDs, and/or Organic LEDs.
In some example embodiments, the lighting device 100 may also include an LED driver 132 that provides, for example, a current to the light source 102. For example, the LED driver 132 may be a constant current LED driver that is controllable via a dimmer input to adjust the current provided by the LED driver 132. To illustrate, the dimmer input of the driver 132 may be coupled to a dimmer 134 (e.g., a wall-mounted dimmer, wall station, 0-10V, or phase-cut dimmer). The current provided to the light source 102 may be distributed to one or more of the first, second, and third groups of LEDs 104, 106, 108 of the light source 102. As described in more detail below, the second group of LEDs 106 and the third group of LEDs 108 may each be continuously varied between fully ON and fully OFF, inclusive, depending on the amount (i.e., magnitude) of current provided to the light source 102 by the driver 132, where the amount of current provided to the light source 102 is adjustable based on the dimming input provided to the driver 132 via the dimmer input.
In some example embodiments, the lighting device 100 includes a transistor 110 (e.g., a MOSFET) and a transistor 112 (e.g., a MOSFET). The transistor 110 may be coupled in series with the second group of LEDs 106, and the transistor 112 may be coupled in series with the third group of LEDs 108. The lighting device 100 also includes a first difference amplifier 114 and a second difference amplifier 116. For example, the first difference amplifier 114 and the second difference amplifier 116 may each be an instrumentation amplifier. The output of the difference amplifier 114 is coupled to the gate terminal of the transistor 110. The difference amplifier 114 can control current flow through the second group of LEDs 106 by controlling the resistance (thus, the transconductance) of the transistor 110. The output of the difference amplifier 116 is coupled to the gate terminal of the transistor 112, and the difference amplifier 116 can control current flow through the third group of LEDs 108 by controlling the resistance (transconductance) of the transistor 112. For example, the amount of current flowing through the transistor 110 can be increased and decreased as well as cut off by controlling the resistance (transconductance) of the transistor 110. The amount of current flowing through the transistor 112 can be increased and decreased as well as cut off by controlling the resistance (transconductance) of the transistor 112.
In some example embodiments, the lighting device 100 includes a current sensor 118 that is coupled to a LED driver 132 and senses the current provided by the LED driver 132. The output of the current sensor 118 is coupled to an input of each of the difference amplifiers 114, 116. The current sensor 118 outputs a signal having a voltage level proportional to the amount of the current provided by the LED driver 132. To illustrate, when the LED driver 132 adjusts the amount of output current as a result of dim level adjustments provided to the LED driver 132 via the dimmer input, the voltage level of the output signal from the current sensor 118 changes proportionally.
In some example embodiments, the lighting device 100 includes a voltage regulator 124 that is coupled to the output of the LED driver 132. The lighting device 100 may also include potentiometers 120, 122. The voltage regulator 124 can generate an output signal that is used to provide a first reference signal to the first difference amplifier 114 and a second reference signal to the second difference amplifier 116. To illustrate, the potentiometer 120 is coupled between the regulator 124 and the first difference amplifier 114, and the potentiometer 122 coupled between the regulator 124 and the second difference amplifier 116.
In some example embodiments, the first reference signal having a first reference voltage level is provided to the first difference amplifier 114 by the potentiometer 120 via a connection 138 (e.g., an electrical wire or trace). The first reference voltage of the first reference signal provided to the first difference amplifier 114 is dependent on the setting of the potentiometer 120. As described above, the output signal from the current sensor 118, which has a voltage level that corresponds to the amount of current provided to the light source 102 by the LED driver 132, is provided to the first difference amplifier 114. Because current flow through the second group of LEDs 106 depends on the resistance of the transistor 110, which is controlled by the output control signal from the first difference amplifier 114, the current flow through the second group of LEDs 106 is dependent on the first reference voltage of the first reference signal provided to the first difference amplifier 114.
By adjusting the potentiometer 120, the first reference voltage of the first reference signal provided to the first difference amplifier 114 may be adjusted to change a first threshold corresponding to a first amount of current from the LED driver 132 at which the transistor 110 is turned off and on. For example, current flow through the second group of LEDs 106 may be turned off when the amount of current provided by the driver 132 is at or below the first threshold. Because the amount of current provided by the driver 132 is controlled by the dimmer 134 and correlates to a brightness level of the illumination light from the lighting device 100, a threshold with respect to the current provided by the driver 132 corresponds to a threshold with respect to the brightness level of the illumination light.
In some example embodiments, the second reference signal having a second reference voltage level is provided to the second difference amplifier 116 by the potentiometer 122 via a connection 136 (e.g., an electrical wire or trace), where the second reference voltage is dependent on the setting of the potentiometer 122. Because current flow through the third group of LEDs 108 depends on the resistance of the transistor 112, which is controlled by the output control signal from the second difference amplifier 116, the current flow through the third group of LEDs 108 is dependent on the second reference voltage of the second reference signal provided to the second difference amplifier 116. By adjusting the potentiometer 122, the second reference voltage of the second reference signal may be adjusted to change a second threshold corresponding to a second amount of the current from the LED driver 132 at which the transistor 112 is turned off and on. For example, current flow through the third group of LEDs 108 may be turned on when the amount of current provided by the driver 132 is at or above the second threshold amount. The potentiometers 120, 122 may be set such that the first amount of current from the LED driver 132 corresponding to the first threshold is lower than the second amount of current from the LED driver 132 corresponding to the second threshold.
In some example embodiments, the second light emitted by the second group of LEDs 106 is warmer light than the first light emitted by the first group of LEDs 104, and the third light emitted by the third group of LEDs 108 is cooler light than the first light. For example, the first light may have a CCT of approximately 3000 K, the second light may have a combined CCT of approximately 1800 K, and the third light may have a combined CCT of approximately 6500 K. In some example embodiments, the third light emitted by the third group of LEDs 108 may include a combination of two or more of 465 nm-475 nm blue light, a cyan light, a phosphor converted (PC) green light, a PC Yellow light, a PC Red light, and Direct Emission 665 nm red light lights resulting in a combined CCT of, for example, approximately 6500 K. For example, the third light emitted by the third group of LEDs 108 may include a blue light in the range of 465 nm-475 nm, a cyan light at around 490 nm, a PC green light, and another other color LED light that enable the illumination light to more closely match daylight. By using a combination of green and blue lights, the illumination light from the light source 102 of the lighting device 100 may have a desired CCT that reasonably replicates daylight and may also have a higher intensity at around 475 nm than ordinarily provided by standard LED light.
In some example embodiments, the second group of LEDs 106 emits a light that influences the illumination light from the lighting device 100 to have a CCT that is closer to a warm white light (e.g., 1700 K, 1800 K, etc.) on the black-body curve, and the third group of LEDs 108 emits a light that influences the illumination light to have a CCT that is closer to a cool white light (e.g., 6000 K, 6500 K, etc.) on the black-body curve. By adjusting the first threshold amount of current provided to the light source 102 at which the transistor 110 is turned off or on, the contribution of the second light emitted by the second group of LEDs 106 to the CCT and dim level of the illumination light may be controlled. By adjusting the second threshold amount of current provided to the light source 102 at which the transistor 112 is turned off or on, the contribution of the third light emitted by the third group of LEDs 108 to the CCT and dim level of the illumination light may be controlled. The CCT and dim level of the illumination light both are thus adjustable using a dim level input of the driver 132.
In some example embodiments, the forward voltage required to turn on the first group of LEDs 104 is higher than the forward voltage required to turn on the second group of LEDs 106 and/or the forward voltage required to turn on the third group of LEDs 108. To illustrate, the forward voltage across the first group of LEDs 104 may be higher than the forward voltage across the second group of LEDs 106 by an equivalent of a forward voltage required to turn on one or more LEDs. To illustrate, as the current provided by the LED driver 132 is reduced due to dimming (e.g., by changing dim level setting provided via the dimmer input of the LED driver 132), the second light from the second group of LEDs 106 may remain on while the first light from the first group of LEDs 104 is turned off because of the higher forward voltage requirement of the first group of LEDs.
In some example embodiments, the LED driver 132 may serve as a voltage source instead of a current source without departing from the scope of this disclosure. For example, a voltage to current converter may be provided at the output of a constant voltage driver. Although the transistors 110, 112 are shown as MOSFETs, in alternative embodiments, the transistors 110, 112 may be another type of transistor without departing from the scope of this disclosure. In some alternative embodiments, the transistors 110, 112 may be coupled on the high side of the lighting device 100 without departing from the scope of this disclosure. In some alternative embodiments, the current sensor 118 may be coupled on the low side of the lighting device 100 without departing from the scope of this disclosure. In some example embodiments, the light source 102 may include other groups of LEDs without departing from the scope of this disclosure. In some alternative embodiments, each group of LEDs of the light source 102 may include more or fewer LEDs than shown without departing from the scope of this disclosure. In some alternative embodiments, the light source 103 may include non-LED light sources without departing from the scope of this disclosure. In some example embodiments, the lighting device 100 may include other components, and some components of the lighting device 100 may be omitted and/or integrated into a single component without departing from the scope of this disclosure. In some example embodiments, the lighting device 100 may be a lighting fixture that is coupled to a dimmer or that has an integrated dimmer.
Because the current, Itotal, is distributed among one or more of the first group of LEDs 104, the second group of LEDs 106, and the third group of LEDs 108, the current, Itotal, is a sum of the current, I3000, through the first group of LEDs 104, the current, I1800, through the second group of LEDs 106, and the current, Igreen-blue, through the third group of LEDs 108. For example, the light emitted by the first group of LEDs 104 may have a CCT of approximately 3000 K, the light emitted by the second group of LEDs 106 may have a CCT of approximately 1800 K, and the light emitted by the third group of LEDs 108 may include a combination of green-blue lights resulting in a CCT of approximately 6500 K.
As described above with respect to
As illustrated in
Moving from right to left on the graph 200, as the current, Itotal, provided by the driver 132 is reduced down to the threshold, THcool, and the brightness level of the illumination light is correspondingly reduced, the current, Igreen-blue, through the third group of LEDs 108 reaches zero, where the current, Itotal, matches the current, I3000, flowing through the first group of LEDs 104. Thus, the illumination light provided by the light source 102 becomes less cool when the amount of current, Itotal, is decreased toward the threshold, THcool (i.e., as the illumination light less brighter).
As the current, Itotal, is decreased further to the threshold, THwarm, the second group of LEDs 106 and the third group of LEDs 108 remain off and do not contribute to the CCT of the illumination light provided by the light source 102. Thus, between the threshold, THwarm, and the threshold, THcool, the current, Itotal, matches the current, I3000, as the difference amplifiers 114, 116 respectively keep the transistors 110, 112 turned off. As the current, Itotal, is decreased further to below the threshold, THwarm, the current, Itotal, is split into the current, I3000, and the current, I1800, provided to the third group of LEDs 108. As the resistance (thus, the transconductance) of the transistor 110 is reduced further as a result of the current, Itotal, decreasing below the threshold, THwarm, the illumination light provided by the light source 102 becomes warmer.
By changing the setting of the potentiometer 120, the threshold, THwarm, may be changed higher or lower. The threshold, THcool, may also be changed higher or lower by changing the setting of the potentiometer 122. The range of the current, Itotal, that is between the threshold, THwarm, and the threshold, THcool, may thus be changed by changing one or both of the threshold, THwarm, and the threshold, THcool.
The threshold, THwarm, and the threshold, THcool, values shown in
In some example embodiments, the lighting device 400 also includes operational amplifiers (Op Amps) 402, 404, and current sensors 406, 408. In contrast to the lighting device 100, the output of the difference amplifier 114 is coupled to an input of the operational amplifier 402 instead of to the gate terminal of the transistor 110, and the output of the difference amplifier 116 is coupled to an input of the operational amplifier 404 instead of the gate terminal of the transistor 112. The difference amplifier 114 and the operational amplifier 402 function as a current regulator for the current flowing through the second group of LEDs 106, thereby compensating for drifts due to, for example, temperature. The difference amplifier 116 and the operational amplifier 404 function as a current regulator for the current flowing through the third group of LEDs 108, thereby compensating for drifts due to, for example, temperature. The output of the current sensor 406 is coupled to the other input of the operational amplifier 402, and the output of the current sensor 408 is coupled to the other input of the operational amplifier 404. The gate terminal of the transistor 110 is coupled to the output of the operational amplifier 402, and the gate terminal of the transistor 112 is coupled to the output of the operational amplifier 404. The current sensor 406 is coupled the second group of LEDs 106 such that an output signal of the current sensor 406 provided to the operational amplifier 402 has a voltage level that corresponds to the current provided to the second group of LEDs 106. Because the output signal of the operational amplifier 402 provided to the gate terminal of the transistor 110 depends on the output signal of the current sensor 406, the operational amplifier 402 accounts for changes in the second group of LEDs 106 (e.g., changes due to temperature) that affect current flow through the second group of LEDs 106. Because the output signal of the operational amplifier 402 provided to the gate terminal of the transistor 110 also depends on the amount of current provided by the driver 132, the threshold amount of current provided by the driver 132 and at which the transistor 110 is turned off and on depends on the setting of the potentiometer 120 as described with respect to the lighting device 100 and
The current sensor 408 is coupled the third group of LEDs 108 such that an output signal of the current sensor 408 provided to the operational amplifier 404 has a voltage level that corresponds to the current provided to the third group of LEDs 108. Because the output signal of the operational amplifier 402 provided to the gate terminal of the transistor 112 depends on the output signal of the current sensor 408, the operational amplifier 404 accounts for changes in the third group of LEDs 108 (e.g., changes due to temperatures of the first and/or third groups of LEDs 104, 108) that affect current flow through the third group of LEDs 108. Because the output signal of the operational amplifier 404 provided to the gate terminal of the transistor 112 also depends on the amount of current provided by the driver 132, the threshold amount of current provided by the driver 132 and at which the transistor 112 is turned off and on depends on the setting of the potentiometer 122 as described with respect to the lighting device 100 and
By adjusting the threshold amount of the current provided to the light source 102 at which the transistor 110 is turned off and on, the contribution of the second light emitted by the second group of LEDs 106 to the CCT and dim level of the illumination light may be controlled. By adjusting the threshold amount of the current provided to the light source 102 at which the transistor 112 is turned off and on, the contribution of the third light emitted by the third group of LEDs 108 to the CCT and dim level of the illumination light may be controlled. The CCT and dim level of the illumination light both are thus adjustable using a dim level input of the driver 132.
In some example embodiments, the LED driver 132 may serve as a voltage source instead of a current source without departing from the scope of this disclosure. For example, a voltage to current converter may be provided at the output of a constant voltage driver. Although the transistors 110, 112 are shown as MOSFETs, in alternative embodiments, the transistors 110, 112 may be another type of transistor without departing from the scope of this disclosure. In some alternative embodiments, the transistors 110, 112 may be coupled on the high side of the lighting device 100 without departing from the scope of this disclosure. In some alternative embodiments, the current sensor 118 may be coupled on the low side of the lighting device 100 without departing from the scope of this disclosure.
In some alternative embodiments, one or both the current sensors 406, 408 may be coupled on the low side of the lighting device 100 without departing from the scope of this disclosure. In some example embodiments, the light source 102 may include other groups of LEDs without departing from the scope of this disclosure. In some alternative embodiments, each group of LEDs of the light source 102 may include more or fewer LEDs than shown without departing from the scope of this disclosure. In some alternative embodiments, the light source 102 may include non-LED light sources without departing from the scope of this disclosure. In some example embodiments, the lighting device 100 may include other components, and some components of the lighting device 100 may be omitted and/or integrated into a single component without departing from the scope of this disclosure.
Although particular embodiments have been described herein in detail, the descriptions are by way of example. The features of the example embodiments described herein are representative and, in alternative embodiments, certain features, elements, and/or steps may be added or omitted. Additionally, modifications to aspects of the example embodiments described herein may be made by those skilled in the art without departing from the spirit and scope of the following claims, the scope of which are to be accorded the broadest interpretation so as to encompass modifications and equivalent structures.
The present application is a continuation of and claims priority to U.S. patent application Ser. No. 15/727,248, filed Oct. 6, 2017, and titled “Single Control LED Dimming And White Tuning,” which claims priority under 35 U.S.C. Section 119(e) to U.S. Provisional Patent Application No. 62/405,718, filed Oct. 7, 2016, and titled “Single Control LED Dimming And White Tuning.” The entire contents of all of the preceding applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62405718 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15727248 | Oct 2017 | US |
Child | 16450378 | US |