The present disclosure relates generally to communication services and, more specifically, to a system and method for deploying and managing Ethernet services.
Communication companies using systems that incorporate Ethernet face a number of difficulties in managing their systems. These difficulties are generally caused by a lack of features in Ethernet standards and devices that would enable Ethernet services to be deployed in carrier-class fashion. For example, Ethernet generally requires multi-pair copper wire (e.g., Category 5 (CAT 5) cable) for 10/100 Base-T interfaces. However, copper-based Ethernet interfaces have distance limitations (approximately 100 meters over CAT 5 cabling) and there is generally no ability to diagnose cable faults for copper-based Ethernet links. In addition, there are limited carrier-class performance monitoring and diagnostic capabilities on Ethernet links. Existing monitoring and diagnostic procedures frequently utilize complex provisioning commands via non-standard-based command line interfaces or graphical user interfaces (GUIs) and require the human user to follow a sequence of manual trouble shooting steps. In addition, a Simple Network Management Protocol (SNMP) operations support system (OSS) overlay is needed to monitor Ethernet performance.
Diagnosis of problems frequently requires an operator or technician to log in to both sides of an Ethernet link, which not only adds complexity to trouble shooting, but may be difficult or impossible if the opposite end comprises a customer's equipment. As end-to-end diagnosis of Ethernet connections is not generally possible from a single end, fault isolation frequently entails sending a technician down a “chain” of designated points in a network until the location of the fault is isolated. This is both time consuming and costly.
Accordingly, what is needed is a system and method for single-ended provisioning, monitoring, and testing of Ethernet services. In addition, it is desirable to provide carrier-class services over a plurality of media types.
A technical advance is provided by a method and system for detecting and diagnosing a fault in an Ethernet service interface. The fault is detected and diagnosed from a first point in a communications link, where the communications link includes the Ethernet service interface and terminates at a second point. The method comprises monitoring the link from the first point to detect an occurrence of the fault, where the fault occurs between the first and second points. At least one fault attribute is identified when the fault is detected, where the fault attribute is identified from the first point, and one or more potential causes for the fault are categorized based on the identified fault attribute.
The present disclosure relates generally to communication services and, more specifically, to a system and method for deploying and managing Ethernet services. It is understood, however, that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Referring to
In step 12, an initial state is established. This may include, for example, establishing a link, checking a status of the link, verifying service, testing cable length, obtaining service parameters, and similar actions. In step 14, a determination is made as to whether the link status meets certain predefined performance criteria. If the link status fails, the method 10 jumps to step 24, where an attempt is made to isolate the fault. The method 10 then continues to step 26, where the fault is corrected. The type of correction may depend on the fault, and may range from the activation of automatic correction procedures to initiating a truck roll to send a technician to a location where the fault was diagnosed. The method 10 then returns to step 14.
If the link status passes step 14, the method 10 continues to step 16 where an auto-negotiation process occurs. If the auto-negotiation process fails, as determined in step 18, the method 10 jumps to steps 24 and 26 to isolate and correct the fault. If the auto-negotiation is successful, the method 10 continues to step 20, where it monitors the link for faults, service degradation, and other problems. The monitoring may include comparing current service conditions (e.g., packet loss) to a predefined set of parameters. If a fault occurs, as determined in step 22, the method 10 continues to steps 24 and 26 to isolate and correct the fault. Accordingly, the method enables a problem in an Ethernet connection to be identified and isolated from a single end of the Ethernet connection (e.g., from a service provider's end).
Referring now to
In the present example, the device 38 includes a plurality of 10/100BaseT Ethernet ports (not shown), which are provided as a module. These Ethernet ports enable the subscriber devices 34 to connect directly to the device 38 via a standard Ethernet cable (10BaseTX, 100BaseTX). In this direct-connect mode, commonly available Ethernet physical layers (PHYs) associated with the device 38 Ethernet ports may provide enhanced visibility of link conditions and performance monitoring on the Ethernet ports. The Ethernet ports are modeled as client ports.
Referring now to
Beginning in step 52, a link is established and link parameters are determined. This may include provisioning the Ethernet module (e.g., by using an ENT-EQPT command) and provisioning the Ethernet service interface (e.g., by using an ENT-E100 command), with port parameters defaulting to predetermined values. An Ethernet service is created by connecting one of the interfaces to a transport facility (e.g., the device 36). Other capabilities may be defined, such as control of over-subscription (e.g., where the bandwidth needed by services/subscribers exceeds the capacity of the network) and port parameters (e.g., a port rate limit).
Before the Ethernet interface is placed in-service, the method 50 determines a current link status (e.g., good or bad) in step 54. If the link status is bad, the method 50 enters a fault isolation stage, which will be described later with respect to
Although not shown, prior to placing the Ethernet interface in service, other steps may be executed. For example, if the Ethernet interface supports remote fault indication during auto-negotiation, then the method 50 may check for such an indicator. Furthermore, the present method 50 incorporates Automatic IN-Service (AINS), which allows an operator to place an Ethernet port in the in-service state prior to a physical cable being attached to the port. Any alarms on the port will be squelched until the method 50 has detected a valid signal on the port for some predefined period of time (e.g., ten seconds). Once the period of time has elapsed, the port will revert to normal operating mode and will report alarms.
Once the Ethernet interface is placed in service, the method 50 continues to steps 62, 64 and performs monitoring operations. The monitoring may check for link failure, loss of carrier and/or signal, low light conditions (for fiber optic interfaces), restart of auto-negotiation, remote fault indication, and faults, such as those generated by incorrect link parameters (e.g., cable status and length). The monitoring may also check for other faults and service degradation issues, as well as collect statistics for trend analysis. If a fault is detected in step 64, the method transitions to an out-of-service autonomous state (OOS-AU) and continues to step 66 of
It is understood that some tests may occur while the Ethernet interface is in service, while other tests may require that the interface be removed from service (e.g., disruptive testing). For example, in the present example, in-service testing may occur for testing cable length during regular operation in 100/1000 Mbps modes. Out-of-service testing may allow the testing of the device 38 and its associated ports, and cables leading to the device 38. Furthermore, out-of-service testing may test equipment output transmitters and input receivers via internal loopback, as well as perform both terminated and non-terminated Ethernet cable problem analysis. Non-terminated analysis includes, for example, fault isolation along a cable and, for each cable connected to a port, identifying open circuits, short circuits, and impedance mismatches. Estimation of cable length on a properly terminated cable can be used to identify the location of a subsequent fault.
Referring now to
If the local loopback test passes, then the fault is not in the local equipment and the method 50 continues to step 72, where a cable status check is made. The cable status may be determined using, for example, Ethernet PHYs with integrated TDR capability or standalone TDRs as described with respect to
Accordingly, the method 50 of
Referring now to
The device 102 includes an interface (e.g., a modem) for communicating via digital subscriber line (e.g., DSL, SHDSL, VDSL; which are herein referred to collectively as DSL) with the device 96, and an Ethernet interface for providing Ethernet services to the subscriber devices 94 via Ethernet compatible cabling 104. The device 102 presents the subscriber devices 94 with 10/100BaseT interface ports and may use DSL technologies on a wide area network (WAN) interface to extend the reach of an Ethernet link up to several thousand feet. If a WAN interface is provided, the device 102 provides enhanced visibility of loop conditions and performance monitoring on the device's subscriber Ethernet ports, as well as enhanced WAN link management via DSL loop management techniques and embedded management channels. In this manner, problems associated with the WAN extension may be diagnosed and single ended management features may be implemented on the client interface.
In the present example, both the Ethernet and DSL interfaces provide their respective ports through modules. The Ethernet ports are modeled as client ports and, to activate the ports, the Ethernet module is first provisioned (either manually or automatically). The Ethernet ports on the module may then be provisioned.
In the present example, each of the Ethernet ports may be associated with AINS, which enables the Ethernet port to be preprovisioned in a ready state prior to a physical cable being attached to the port. Any alarms on the Ethernet port will be squelched until a valid signal has been detected on the port for a predetermined period of time (e.g., ten seconds). Once the period of time has elapsed, the Ethernet port will revert to normal operating mode and will report alarms.
The device 102 may also conduct automatic Ethernet fault isolation upon detection of a failure using cable and equipment diagnostic features, which will be described in greater detail in the following text. For example, when a link fault is detected between the subscriber equipment and device 102, automatic isolation diagnostics may attempt an equipment port loopback at device 102 to check transmitter and receiver functions. If no transmitter or receiver faults are detected, a loop fault would be reported. In addition, the device 102 may extend Ethernet services to carrier serving area ranges and hide details of DSL link management from an operator. Accordingly, due to the system automatically provisioning the DSL link, there is no need to manually provision the DSL link when creating “remote” Ethernet ports.
The Ethernet ports may raise alarms on detecting predefined conditions or events. For example, an alarm may be raised on the basis of a link fault, a jabber (e.g., a condition where a station transmits for a period of time longer than the permissible packet length) receive, or a remote fault. These alarms are reported from the device 102 to the device 96 which reports them to the operator 92.
A DSL link and port implemented via the device 102's DSL interface (and module) may also be the source of faults. For example, the device 102 may monitor the DSL interface for alarm conditions such as loss of signal, loss of synchronization, and loop attenuation defects (e.g., where a loop attenuation threshold is exceeded). DSL port and equipment failures may raise alarms associated with network termination, loss of power, modem fault, port module removal (e.g., the module terminating the port is removed), and mismatched provisioning (e.g., there is a module provisioning mismatch with the physical module present in a slot).
Performance monitoring may occur at two points. Firstly, EtherStat performance monitoring may be conducted on the Ethernet ports at device 102 to allow the service provider to monitor the subscriber device's incoming traffic conditions at a predefined demarcation point. Secondly, the DSL link may be monitored at both the device 96 and the device 102 to provide information relating to the condition and performance of the digital local loop between the service provider 96 and the subscriber devices 102. Statistical data may be collected as previously described. For example, periodic reports may be generated that detail the status of both the DSL and Ethernet links over time.
Performance of the DSL link is monitored for both upstream and downstream directions. In the downstream direction, the modem associated with the device 102 collects performance counts which are forwarded to the device 96. In the upstream direction, the DSL link is monitored at the termination point on the DSL module. Performance monitoring may collect a variety of different statistics, as are disclosed in previously incorporated U.S. Provisional Patent Application Ser. No. (Attorney Docket No. 31873.18).
When delivering Ethernet services over DSL media, the DSL loop may be non-terminated (e.g., the device 102 is not present or not physically connected) or the device 102 may be present and physically connected. The loop may be non-terminated in cases where an operator connects a non-terminated loop to a port to perform single-ended loop qualification diagnostics. In this case, an operator may issue a diagnose command against the device 96, which enables the operator to characterize/test the DSL loop during pre-service activation. If the device 102 is physically connected and provisioned (e.g., a service is or has been running and a diagnostic is required to isolate a fault condition), the operator issues the diagnose command against the device 102 (to diagnose an Ethernet port problem) or against the Ethernet service connected to the device 102 (to diagnose a DSL line problem).
As previously described, some diagnostic tests may be executed while a connection is in-service, while others require that the connection be placed out-of-service. In-service diagnostics on the Ethernet ports of the device 102 are restricted to testing the Ethernet interface. In the present example, there are no in-service diagnostics available on the DSL loop other than performance monitoring.
Out-of-service testing (e.g., disruptive testing) may be accomplished using diagnostics associated with the device 102. The device 102 and the Ethernet service associated with the device should be out-of-service at the time of testing. This testing enables an operator to test and isolate faults on the Ethernet port and cable associated with a subscriber device 94, as well as faults associated with the DSL port and DSL physical link. If the device 102 is in-service during the test, only cable length (e.g., non-disruptive) testing may be done.
A number of out-of-service tests may be performed on the device 102. These include a port transmitter and receiver check on the Ethernet ports, which use internal loopback to enable detection of output transmitter or receiver input failures. Ethernet cable problem analysis may be performed for either non-terminated (TDR testing) or terminated cables. DSL equipment port transmitter and receiver diagnostics may be executed using internal loopback to enable detection of output transmitter or receiver input failures.
DSL link diagnostics may be executed from device 96 using single-ended loop diagnostics to determine certain characteristics of an non-terminated DSL Digital Local Loop (DLL), such as loop length, loop termination (e.g., whether the loop is an open or short circuit), loop gauge, upstream and downstream capacity (in bps), ideal upstream and downstream capacity (in bps) (e.g., capacity without considering effects of implementation loss), and dual ended loop testing.
It is understood that the method 10 of
Referring now to
Beginning in step 108, a link is established and link parameters are determined. Before the Ethernet interface is placed in-service, the method 106 determines a current DSL link status (e.g., good or bad) in step 110. If the link status is bad, the method 106 enters a fault isolation stage, which will be described later with respect to
The method 106 then continues to steps 118, 120 and performs monitoring operations. The monitoring may check for link failure, loss of carrier and/or signal, low light conditions (for fiber optic interfaces), restart of auto-negotiation, remote fault indication, and a change in link parameters, such as cable status and length. The monitoring may also check for other faults and service degradation issues, as well as collect statistics for trend analysis. If a fault is detected in step 120, the method transitions to an out-of-service autonomous state (OOS-AU) and continues to step 122 of
Referring now to
If it is determined in step 126 that the test passed, then the method 106 conducts a cable test and determines whether the test passed or failed in steps 130, 132. If it is determined in step 132 that the test failed, then the fault is likely due to a cable problem, as indicated in step 134. The method 106 then returns to step 114. If it is determined in step 132 that the test passed, then the method continues to step 136, where it initiates an auto-negotiation procedure.
In step 138, a determination is made as to whether the auto-negotiation procedure succeeded or failed. If the auto-negotiation procedure failed, the fault is likely due to a remote equipment problem, as indicated in step 140. However, if the auto-negotiation procedure succeeded, the method returns to step 114 and checks the Ethernet link status as previously described.
Returning to step 122 of
If it is determined in step 144 that the test passed, then the method 106 conducts a cable test and determines whether the test passed or failed in steps 146, 148. If it is determined in step 148 that the test failed, then the fault is likely due to a cable problem, as indicated in step 150. The method 106 then returns to step 114. If it is determined in step 148 that the test passed, then the method continues to step 152, where it initiates a DSL link handshake. In step 154, a determination is made as to whether the handshake succeeded or failed. If the handshake failed, the fault is likely due to a remote equipment problem, as indicated in step 156. However, if the handshake succeeded, the method returns to step 110 and checks the DSL link status as previously described.
Accordingly, the method 106 of
Referring now to
Referring particularly to
In the present example, the modem 164 also includes a circuit 168, which is accessible to both the analog front end 170 and processor 176. The circuit 168 includes a relay 178 that connects two switches 180, 182 and the processor 176.
In addition to DSL traffic, the line 166 may include an out-of-band control channel (e.g., an embedded operation channel or EOC) that enables the equipment 160 to monitor and control the modem 164 via EOC messaging. In the present example, the EOC messaging may be used with the circuit 168 to enable the equipment 160 to disconnect the DSL line termination as follows.
To disconnect the line, the service provider would send a command via the EOC of line 166 to the modem 164, instructing the modem 164 to disconnect itself for an amount of time ‘t’. The time t may, for example, be predefined or may be included as a parameter in the command. Upon receiving the message, the modem 164 begins a timer and energizes the relay 178 to open the switches 180, 182. This results in a non-terminated line for a period of time defined by time t. During this time, the service provider may run diagnostics to characterize the line. When the timer expires, the processor 176 de-energizes the relay 178, which closes the switches 180, 182 and reestablishes the line. Accordingly, the effectiveness of a TDR associated with a DSL line may be enhanced by remotely affecting the line's termination.
Referring now particularly to
In addition to various components known in the art (e.g., a processor, memory, bus, I/O device, network interface, etc., none of which are shown), the computer 188 may include a circuit 192 as illustrated in
The circuit 192 includes a control unit 194 that is connected to a data path indicated by lines 196, 198. The control unit 194 is also connected to a control register 200 and a timer register 202 via a line 204. The registers 200, 202 feed into a gate 206 that contains a relay 208. The relay 208 is used to disconnect line 196 from its normal termination circuitry by register 200 for the duration programmed into register 202.
To disconnect the line, the service provider may send a command via an inband signaling mechanism to the NIC and associated circuit 192. The command includes an instruction that the NIC take itself offline and an amount of time that the NIC should remain offline. Upon receiving the command, the control unit 194 loads the control and timer registers 200, 202 with appropriate values to activate the relay and place the NIC offline. This may be accomplished, for example, by altering the line impedance to appear as terminated (impedance) or not terminated (no impedance). When the period of time associated with the timer register 202 elapses, the circuit 192 de-energizes the relay 208 and places the NIC online. Accordingly, the effectiveness of a TDR associated with an Ethernet connection may be enhanced by remotely affecting the line's termination.
While the invention has been particularly shown and described with reference to the preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention. For example, if in-band, loopback request functionality is desired, such functionality may be obtained by combining cable testing technology with anomaly monitoring technologies to derive whether a piece of equipment is working properly. Therefore, the claims should be interpreted in a broad manner, consistent with the present invention.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/431,912, filed on Dec. 9, 2002.
Number | Date | Country | |
---|---|---|---|
60431912 | Dec 2002 | US |