The invention pertains to optical fiber transmission systems, and is particularly relevant to optical transport systems employing optical amplifiers. In particular the invention teaches an apparatus and method that allows cost effective co-directional operation of an optical amplifier to support full duplex traffic.
A goal of many modern long haul optical transport systems is to provide for the efficient transmission of large volumes of voice traffic and data traffic over trans-continental distances at low costs. Various methods of achieving these goals include time division multiplexing (TDM) and wavelength division multiplexing (WDM). In time division multiplexed systems, data streams comprised of short pulses of light are interleaved in the time domain to achieve high spectral efficiency, high data rate transport. In wavelength division multiplexed systems, data streams comprised of short pulses of light of different carrier frequencies, or equivalently wavelength, are co-propagate in the same fiber to achieve high spectral efficiency, high data rate transport.
The transmission medium of these systems is typically optical fiber. In addition there is a transmitter and a receiver. The transmitter typically includes a semiconductor diode laser, and supporting electronics. The laser may be directly modulated with a data train with an advantage of low cost, and a disadvantage of low reach and capacity performance. An external modulation device may also be used with an advantage of higher performance, and a disadvantage of high cost. After binary modulation, a high bit may be transmitted as an optical signal level with more power than the optical signal level in a low bit. Often, the optical signal level in a low bit is engineered to be equal to, or approximately equal to zero optical power. In addition to binary modulation, the data can be transmitted with multiple levels, although in current optical transport systems, a two level binary modulation scheme is predominantly employed.
Typical long haul optical transport dense wavelength division multiplexed (DWDM) systems transmit 40 to 80 10 Gbps (gigabit per second) channels across distances of 1000 to 3000 kilometers (km) in a single 35 nanometer (nm) band of optical spectrum. A duplex optical transport system is one in which traffic is both transmitted and received between parties at opposite end of the link. In current DWDM long haul transport systems transmitters, different channels operating at distinct carrier frequencies are multiplexed onto one fiber using a multiplexer. Such multiplexers may be implemented using array waveguide (AWG) technology or thin film technology, or a variety of other technologies. After multiplexing, the optical signals are coupled into the transport fiber for transmission to the receiving end of the link.
At the receiving end of the link, the optical channels are de-multiplexed using a de-multiplexer. Such de-multiplexers may be implemented using array waveguide (AWG) technology or thin film technology, or a variety of other technologies. Each channel is then optically coupled to separate optical receivers. The optical receiver is typically comprised of a semiconductor photodetector and accompanying electronics.
The total link distance in today's optical transport systems may be two different cities separated by continental distances, from 1000 km to 6000 km, for example. To successfully bridge these distances with sufficient optical signal power relative to noise, the total fiber distance is separated into fiber spans, and the optical signal is periodically amplified using an in-line optical amplifier after each fiber span. Typical fiber span distances between optical amplifiers are 50-100 km. Thus, for example, thirty 100 km spans would be used to transmit optical signals between points 3000 km apart. Examples of in-line optical amplifiers include erbium doped fiber amplifiers (EDFAs), lumped Raman amplifiers and semiconductor optical amplifiers (SOAs).
A duplex optical transport system is one in which voice and data traffic are transmitted and received between parties at opposite ends of the link. There are several architectures that support duplex operation in fiber optical transport systems. Each suffers from limitations.
For example, it is known in the art to use a pair of fiber strands to support duplex operation. One fiber strand of the fiber pair supports traffic flow from a first city to a second city while the second strand of the fiber pair supports traffic flow from a second city to a first city. Each strand is comprised of separate optical amplifiers. At low channel counts, this configuration suffers from a limitation in that the system still demands a large number of optical amplifiers that could potentially be twice the amount needed.
In a conventional two-fiber optical transport system, data is sent from location A to location Z and vice versa using two different fibers. This requires in-line optical amplifiers, dispersion compensation modules (DCMs), dynamic gain equalizers (DGE) and other equipment for each transmission direction.
A conventional single-fiber transport system carries the two directions of data traffic in both directions over the same fiber, using different wavelengths for the two directions. However, the signals from different directions are separated at amplifier sites and amplified by separate amplifiers. Also, dispersion compensation and power equalization are performed separately for each direction. While the transmission capacity of this one-fiber system is reduced by a factor of one half as compared to the two-fiber system, only the required amount of fiber is reduced, while the amount of transmission equipment stays the same or is even increased due to the required splitting and combining modules.
In a conventional single-fiber system, signals in both traffic directions share one fiber, as opposed to traveling on a fiber pair in a two-fiber system. At the in-line amplifier (ILA) sites, the different traffic directions are typically separated and independently amplified. An additional feature of the single-fiber transport system of this disclosure is the use of a single optical amplifier and DCM for both traffic directions. Additionally, the dynamic gain equalizers (DGEs) can be shared between the traffic directions. This enables cost savings on the equipment side, as the amount of modules (EDFAs, DCMs, DGEs) is virtually reduced by a factor of 2. These cost savings are realized for the first installed channel. In addition, the use of a single fiber provides operational cost savings.
In U.S. Pat. Nos. 5,742,416 and 5,812,306 Mizrahi teaches a single fiber bidirectional WDM optical communication system with bi-directional optical amplifiers, where the two traffic directions travel in opposite directions through the optical amplifier. The use of a bi-directional optical amplifier, for example, a bi-directional EDFA to support duplex operation using a single strand of optical fiber potentially saves the cost of one amplifier at each ILA site. A limitation of this prior art implementation is that the bidirectional EDFA may begin to lase in addition to providing amplification. These oscillations and instabilities defeat the goal of data transmission. Keeping the bi-directional EDFA from lasing typically carries additional engineering and financial costs, and ultimately limits the reach and capacity of the transport system. It is desirable to use a single amplifier to support duplex operation without the penalties of a bi-directional EDFA.
In U.S. Pat. No. 5,452,124, Baker teaches a device which uses a four-port wavelength division multiplexing filter and a single erbium doped optical amplifier to implement a dual wavelength bidirectional optical amplifier module. However, the limitation of this prior art implementation is that there is no power balance between incoming and outgoing signals, no provision for optical add/drop multiplexers and no implementation or tuning of dispersion compensation modules.
In the present invention, a single fiber duplex transmission system is described, in which most of the intermediary components, for examples, optical amplifiers, dispersion compensation modules, and gain equalizers are shared between the transmission directions. This architecture reduces the amount of equipment by half, and therefore implies a reduction of cost and space and power requirements by about 50%. The improvements reduce the number of optical amplifiers in a duplex optical transport system without suffering the penalties present in bi-directional optical amplifiers. The improvements also include a power balance for incoming and outgoing signals of different strengths.
In one aspect of the invention, a multiplexing and de-multiplexing architecture to achieve duplex operation in a single fiber optical transport system through co-directional operation of each optical amplifier is taught.
In another aspect of the invention, an optical add/drop multiplexer architecture to achieve duplex operation in a single fiber optical transport system through co-directional operation of each optical amplifier is taught.
In another aspect of the invention, a module for signal combination and separation in in-line amplifier and optical add/drop multiplexer sites to achieve duplex operation in a single fiber optical transport system through co-directional operation of each optical amplifier is taught.
In another aspect of the invention, a method for power equalization to achieve duplex operation in a single fiber optical transport system through co-directional operation of each optical amplifier is taught.
In another aspect of the invention, a method and strategy for shared dispersion compensation to achieve duplex operation in a single fiber optical transport system through co-directional operation of each optical amplifier is taught.
In another aspect of the invention, a method for full-duplex optical supervisory channel (OSC) over single fiber to achieve duplex operation in a single fiber optical transport system through co-directional operation of each optical amplifier is taught.
In another aspect of the invention, a method of automatically tuning the system operating conditions and power equalization to achieve duplex operation in a single fiber optical transport system through co-directional operation of each optical amplifier is taught.
In another aspect of the invention, a method adding higher capacity to the system to achieve duplex operation in a single fiber optical transport system through co-directional operation of each optical amplifier is taught.
In another aspect of the invention, a simplified add/drop architecture to achieve duplex operation in a single fiber optical transport system through co-directional operation of each optical amplifier is taught.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
a) and 3(b) are schematic illustrations of two alternative optical amplifier implementations using either (a) a single dispersion compensator module for both A-Z and Z-A
traffic or (b) separate dispersion compensation modules for A-Z and Z-A traffic to support the full duplex single fiber system in accordance with the invention.
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments described herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
In
Single fiber spans 101 may be realized by fiber optic strands, wherein the optical fiber is single-mode silica glass fiber such as SMF-28, LEAF or other fiber types. This fiber is typically jacketed and cabled for protection and mechanical ruggedness. In-line amplifier stations 102 will be discussed in more detail below in conjunction with
Optical signals 110 and 111 are typically comprised optical energy that is encoded with the data or information to be transmitted between geographic locations A and Z. The optical energy is typically generated by semiconductor diode lasers of precise frequencies as specified by the International Telecommunications Union recommendation (G.692 (ITU grid). All possible wavelength ranges are contemplated by the invention; however the preferred embodiments specifically include wavelength ranges in the “C” and “L” bands. At terminals 120 and 122, these different frequencies are multiplexed together before transmission and de-multiplexed apart at the receiving terminal. Optical signals 110 and 111 may be wavelength division multiplexed (WDM) signals.
In
Also shown in
Also shown in
Also shown in
Also shown in
As shown in
Optical coupler 202 is also functionally connected to optical coupler 204 Optical coupler 204 couples incoming traffic from fiber span 101 to optical attenuator 212, and outgoing traffic from optical coupler 203 to fiber span 101 via optical coupler 202. In a preferred embodiment the discrimination of this coupling is accomplished by wavelength discrimination and optical coupler 202 and 204 are wavelength-selective optical couplers.
Optical coupler 208 is also functionally connected to optical coupler 206. Optical coupler 206 couples incoming traffic from fiber span 101 to optical attenuator 210, and outgoing traffic from optical coupler 203 to fiber span 101 via optical coupler 208. In a preferred embodiment the discrimination of this coupling is accomplished by spectral discrimination and optical couplers 206 and 208 are wavelength selective optical couplers.
Optical attenuators 210 and 212 are functionally connected to optical coupler 201. Optical coupler 201 combines the traffic from the A direction with the traffic from the Z direction so that amplification, dispersion compensation and other functions such as dynamic gain equalization are accomplished on the optical signals using the same components in a co-directional, or co-propagating manner. Thus the output of optical coupler 201 is the input to optical amplifier stage 220. The output of optical amplifier stage 220 is routed to a variable optical attenuator 221. The output of variable optical attenuator 221 is the input of dispersion compensator 225. In this preferred embodiment, the output of dispersion compensator 225 is the input of optical amplifier stage 222. Optical amplifier stage 222, in this embodiment, acts as the second stage of a two-stage optical amplifier. The variable optical attenuator 221 can be adjusted to control the overall gain of the two-stage optical amplifier. The output of optical amplifier stage 222 is the input to optical coupler 203. Optical coupler 203 separates the signals that must propagate in the Z-A direction from the optical signals that must propagate in the A-Z direction. In a preferred embodiment, the discrimination of this coupling is accomplished by spectral discrimination, and optical couplers 202 and 204 are wavelength selective optical couplers.
Since the incoming optical signals 110 and 111 input to optical attenuator 210 and optical attenuator 212 come from spans that may be of different lengths (and therefore have different amounts of attenuation), the incoming optical signals may be at significantly different power levels. The preferred method of correcting for this power variation is to use optical attenuator 210 and optical attenuator 212 to attenuate the higher power signal to the level of the lower power signal. This counterintuitive approach to engineering uneven span lengths provides an optimum equalization scheme. The variable optical attenuators 210 and 212 together with variable optical attenuator 221 within the two-stage optical amplifier comprised of stages 220 and 222 are adjusted to provide the optimal optical power levels at the inputs to fiber spans 101.
In practice, the attenuation values of variable optical attenuators 210 and 212 should be as small as possible to minimize the impact on system noise accumulation. These separate variable optical attenuators allow the single optical amplifier to be treated as two separate amplifiers. At system startup, beginning at one system endpoint, using endpoint A as an example, the variable optical attenuators at each optical amplifier site in sequence can be optimized to launch the correct optical power level into the outgoing fiber span for the A-Z optical signals by adjusting variable optical attenuators 212 and 221. When all optical amplifiers have been adjusted for the A-Z optical signals, the optical amplifiers beginning at the Z endpoint can in sequence be tuned for the Z-A optical signals by adjusting variable optical attenuator 210. If there is a case where variable optical attenuator 210 has been reduced to zero and the attenuation for the Z-A optical signals must still be decreased to achieve the desired output power at a certain optical amplifier site, the attenuation setting of variable optical attenuator 221 within the optical amplifier can be reduced, increasing the attenuation of variable optical attenuator 212 by an equal amount to maintain the same total attenuation for the A-Z optical signals.
Additional elements may be deployed between optical coupler 201 and optical coupler 203 in a manner that optical signals 110 and 111 share the same element at significant cost and size advantage.
Separate dispersion compensators 303 and 304 are employed in each direction at sites with dynamic gain equalizers, optical add/drop capability or at other sites where more accurate dispersion compensation is required or where there is a change in fiber type such as SMF to NZDSF.
ILA-2 may also have additional optical elements 305 deployed between the optical amplifier 220 and the optical coupler 203. An additional optical amplifier 306 may be deployed between the additional optical element 305 and the optical coupler 203. The position of element 305 is for illustrative purposes and does not preclude alternative placement of this element at any point between optical coupler 201 and 203.
For example, a dynamic gain equalizer may be deployed between optical coupler 201 and optical coupler 203 in order to equalize the power in the individual WDM channels. An optimal placement for this dynamic gain equalizer is shown in
Another example additional optical element 305 is an optical add/drop multiplexer that may be deployed between optical coupler 201 and optical coupler 203 in order to add and drop channels at the in-line amplifier location. An optimal placement for this dynamic gain equalizer is shown in
The dispersion management for a single-fiber system needs to take into account the propagation quality for both directions for random sets of fiber span lengths. Likewise, installation feasibility and dispersion compensator cost need to be considered.
The accumulated dispersion for the signal at a particular point in the transmission line is the sum of the dispersion values of the passed through fiber spans and dispersion compensation modules, also referred to as the “dispersion map”. In a preferred embodiment, the dispersion map for both A-Z and Z-A directions can be optimized by requiring that the accumulated dispersion values at the input to all segments be approximately 0 ps/nm. With this approach, the accumulated dispersion at the segment endpoints are tightly controlled, while the accumulated dispersion at the intermediate ILA sites can be maintained within a wider acceptable range. This is especially important for terminal and add-drop sites where the individual wavelength channels are connected to equipment outside this system and should be at a known dispersion state.
To facilitate the generation of this optimized dispersion map, the transmission system is divided into segments and spans, as illustrated in
In some systems, like that described in U.S. patent application Ser. No. 10/147,397, incorporated herein by reference, the dispersion compensation modules used to correct for the dispersion of each span are fabricated with discrete values. These discrete values are known as dispersion compensator “granularity.” The dispersion compensator granularity, for example, could be equivalent to 10 km of the fiber dispersion. The advantage of this approach is that it allows a finite set of dispersion compensator part numbers to be maintained rather than obtaining modules to precisely match the required values for each fiber span, which can simplify inventory and reduce cost. The disadvantage is that the set of discrete values of compensation make it unlikely to closely match the required amount of dispersion for a given fiber span. Therefore, in practice, a DCM module is chosen which most nearly approximates the amount of compensation required for a given span.
In all systems certain optical non-linearity's in the fiber need to be accounted for in each span. The non-linearity's are accounted for in the invention by allowing for a predetermined optical amount of uncompensated dispersion. The uncompensated dispersion is referred to as “under-compensation.” Under-compensation is a design specification for the system. Typical values for under-compensation in each span range from 0 ps/nm to 100 ps/nm.
A method is described for determining the optimal DCMs and “under-compensation” at each ILA and ILA-2 site considering the granularity of the available DCMs for a single-fiber full-duplex optical transmission system to yield an optimum average accumulated dispersion for the whole system.
Consider a segment with N spans as depicted in
The magnitude of the target dispersion compensator value for each span is the dispersion of the previous fiber span minus the specified amount of per-span under-compensation plus a “carry over” value from the previous span. For example, a fiber span that is 100 km in length consisting of standard single-mode fiber (SSMF) with dispersion of +17 ps/nm-km at 1550 nm, and a system design calling for a 30 ps/nm per-span under-compensation value, the target magnitude of dispersion compensation would be (100 km×17 ps/nm-km−30 ps/nm) or 1670 ps/nm. Note that the dispersion of the fiber and the dispersion compensator are by definition opposite in sign, so the target DCM should have a dispersion value of −1670 ps/nm.
A DCM is then chosen which most nearly approximates this target value, considering the specified granularity of the available DCM units. Assuming a DCM granularity equal to 10 km of SSMF fiber, the granularity is (10 km×−17 ps/nm) or −170 ps/nm, and the inventory of DCMs would thus consist of modules with dispersion values equal to integer multiples of −170 ps/nm. With this granularity and the target dispersion compensation from above of −1670 ps/nm, the closest actual DCM value would be (10×−170 ps/nm) or −1700 ps/nm. The resulting error between the required dispersion compensation value for a span and the actual value of the available dispersion compensator with finite granularity is defined as the “carry-over” dispersion value. The “carry over” dispersion value is added to the dispersion of the next span to determine the required dispersion compensator 225 at the next ILA site. In this example, the carry-over dispersion value is ((−1670 ps/nm)−(−1700 ps/nm)) equals −30 ps/nm. To be clear, the “per-span under-compensation” value is a system specification designed for optimum optical transmission performance, while the “carry-over dispersion of each span is a measure of the imperfection of a dispersion map based on DCM units with finite granularity.
Referring again to
where Dcomp, is the dispersion value to be compensated, Di is the dispersion of the i-th fiber span in the segment, and N is the number of fiber spans in the segment. This procedure minimizes the average dispersion error in each segment for both directions of propagation. This dispersion value is then also corrected for the carry-over dispersion from the previous span and the required under-compensation. The carry-over from this site is also calculated differently, as the sum of the dispersion of the previous span plus the value of the chosen dispersion compensator 225 minus the required under-compensation.
At the “Z-facing” ILA-2, the dispersion compensator 303 for the A-Z installation direction is determined based on the dispersion value of the last span before the Z-facing ILA-2 site, the under-compensation specification, and the carry-over value from the previous ILA. The resulting carry-over value is used as a carry-over value for the first ILA of the next segment. Finally, the DCM 304 for the Z-A direction at the “A-facing” ILA-2 site is determined. The sum of all installed ILA dispersion compensators 225 (DCMi) in the segment is subtracted from the sum of the required dispersion values of all fiber spans of the segment (Di) including the under-compensation (Duc) to determine the Z-A dispersion compensator 304 for the “A-Facing” ILA-2 of this segment. In this procedure, the resulting carry-over dispersion value from the DCM selection for dispersion compensator 304 is not carried over to another span in equation form:
where Dcomp is the dispersion value to be compensated, DCMi is the value of the ith dispersions compensator, Di is the dispersion value of the ith span and Duc is the specified under-compensation for the span.
In summary, when working in the A-Z direction, this process yields for one segment the dispersion compensator 225 values for all ILA sites, the Z-A dispersion compensator 304 for the beginning ILA-2 of the segment, and the A-Z dispersion compensator 303 for the ending ILA-2
of the segment. This procedure is repeated for all segments of the system. In an alternative embodiment that provides higher accuracy, the DCM 304 values for all segments can be determined after the other DCM elements of all segments in a system have been determined. In this embodiment, after determining the DCM values in the A-Z direction, the procedure for determining the DCM 304 units begins at the Z Terminal, working back towards the A terminal. The DCM 304 is determined as above, with the addition that the carry-over value from each DCM 304 (Dco) is added to the DCM 304 value at the following ILA-2 site moving in the Z-A direction.
While this invention has been described in reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This application is a division of U.S. application Ser. No. 10/737,136, filed Dec. 15, 2003, which claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/433,305, filed Dec. 13, 2002, the disclosures of which are hereby incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4229831 | Lacher | Oct 1980 | A |
4535459 | Hogge | Aug 1985 | A |
4636589 | Lee | Jan 1987 | A |
4710022 | Soeda et al. | Dec 1987 | A |
5218662 | Dugan | Jun 1993 | A |
5224183 | Dugan | Jun 1993 | A |
5225922 | Chraplyvy et al. | Jul 1993 | A |
5267071 | Little et al. | Nov 1993 | A |
5299048 | Suyama | Mar 1994 | A |
5321541 | Cohen | Jun 1994 | A |
5351146 | Chan et al. | Sep 1994 | A |
5452124 | Baker | Sep 1995 | A |
5455703 | Duncan et al. | Oct 1995 | A |
5528582 | Bodeep et al. | Jun 1996 | A |
5559625 | Smith et al. | Sep 1996 | A |
5600468 | Barber | Feb 1997 | A |
5608562 | Delavaux et al. | Mar 1997 | A |
5613210 | Van Driel et al. | Mar 1997 | A |
5726784 | Alexander et al. | Mar 1998 | A |
5737118 | Sugaya et al. | Apr 1998 | A |
5740289 | Glance | Apr 1998 | A |
5742416 | Mizrahi | Apr 1998 | A |
5778116 | Tomich | Jul 1998 | A |
5808785 | Nakabayashi | Sep 1998 | A |
5812290 | Maeno et al. | Sep 1998 | A |
5812306 | Mizrahi | Sep 1998 | A |
5825949 | Choy et al. | Oct 1998 | A |
5877881 | Miyauchi et al. | Mar 1999 | A |
5886801 | Van Deventer et al. | Mar 1999 | A |
5903613 | Ishida | May 1999 | A |
5914794 | Fee et al. | Jun 1999 | A |
5914799 | Tan | Jun 1999 | A |
5936753 | Ishikawa | Aug 1999 | A |
5940209 | Nguyen | Aug 1999 | A |
5940456 | Chen et al. | Aug 1999 | A |
5963350 | Hill | Oct 1999 | A |
5963361 | Taylor et al. | Oct 1999 | A |
5995259 | Meli et al. | Nov 1999 | A |
5995694 | Akasaka et al. | Nov 1999 | A |
6005402 | Grasso | Dec 1999 | A |
6005991 | Knasel | Dec 1999 | A |
6005997 | Robinson et al. | Dec 1999 | A |
6021245 | Berger et al. | Feb 2000 | A |
6038062 | Kosaka | Mar 2000 | A |
6075634 | Casper et al. | Jun 2000 | A |
6078414 | Iwano | Jun 2000 | A |
6081359 | Takehana et al. | Jun 2000 | A |
6081360 | Ishikawa et al. | Jun 2000 | A |
6084695 | Martin et al. | Jul 2000 | A |
6088152 | Berger et al. | Jul 2000 | A |
6108074 | Bloom | Aug 2000 | A |
6111675 | Mao et al. | Aug 2000 | A |
6122095 | Fatehi | Sep 2000 | A |
6151334 | Kim et al. | Nov 2000 | A |
6157477 | Robinson | Dec 2000 | A |
6160614 | Unno | Dec 2000 | A |
6163392 | Condict et al. | Dec 2000 | A |
6163636 | Stentz et al. | Dec 2000 | A |
6172802 | D'Auria et al. | Jan 2001 | B1 |
6173094 | Bowerman et al. | Jan 2001 | B1 |
6177985 | Bloom | Jan 2001 | B1 |
6198559 | Gehlot | Mar 2001 | B1 |
6229599 | Galtarossa | May 2001 | B1 |
6236481 | Laor | May 2001 | B1 |
6236499 | Berg et al. | May 2001 | B1 |
6246510 | BuAbbud et al. | Jun 2001 | B1 |
6259553 | Kinoshita | Jul 2001 | B1 |
6259554 | Shigematsu et al. | Jul 2001 | B1 |
6259693 | Ganmukhi et al. | Jul 2001 | B1 |
6259845 | Sardesai | Jul 2001 | B1 |
6272185 | Brown | Aug 2001 | B1 |
6275315 | Park et al. | Aug 2001 | B1 |
6288811 | Jiang et al. | Sep 2001 | B1 |
6288813 | Kirkpatrick et al. | Sep 2001 | B1 |
6301340 | Sansom et al. | Oct 2001 | B1 |
6307656 | Terahara | Oct 2001 | B2 |
6317231 | Al-Salameh et al. | Nov 2001 | B1 |
6317255 | Fatehi et al. | Nov 2001 | B1 |
6320687 | Ishikawa | Nov 2001 | B1 |
6323950 | Kim et al. | Nov 2001 | B1 |
6327060 | Otani et al. | Dec 2001 | B1 |
6327062 | King et al. | Dec 2001 | B1 |
6330381 | Lu et al. | Dec 2001 | B1 |
6356384 | Islam | Mar 2002 | B1 |
6359729 | Amuroso | Mar 2002 | B1 |
6388801 | Sugaya et al. | May 2002 | B1 |
6393188 | Jeong et al. | May 2002 | B1 |
6396853 | Humphrey et al. | May 2002 | B1 |
6411407 | Maxham | Jun 2002 | B1 |
6417961 | Sun et al. | Jul 2002 | B1 |
6438286 | Duerksen et al. | Aug 2002 | B1 |
6480312 | Okuno et al. | Nov 2002 | B1 |
6493117 | Milton et al. | Dec 2002 | B1 |
6519060 | Liu | Feb 2003 | B1 |
6519082 | Ghera et al. | Feb 2003 | B2 |
6724482 | Wu | Apr 2004 | B2 |
6757098 | Berg et al. | Jun 2004 | B2 |
6888671 | Joo et al. | May 2005 | B2 |
6965738 | Eiselt et al. | Nov 2005 | B2 |
7034994 | McNicol | Apr 2006 | B2 |
7054555 | Maeno | May 2006 | B2 |
7292790 | Sardesai | Nov 2007 | B1 |
7394993 | Sekiya et al. | Jul 2008 | B2 |
7471858 | Guo et al. | Dec 2008 | B2 |
7512343 | Sridhar et al. | Mar 2009 | B2 |
20010005271 | Leclerc et al. | Jun 2001 | A1 |
20010007605 | Inagaki et al. | Jul 2001 | A1 |
20010009468 | Fee | Jul 2001 | A1 |
20010014104 | Bottorff et al. | Aug 2001 | A1 |
20010048799 | King et al. | Dec 2001 | A1 |
20010053161 | Tomizawa et al. | Dec 2001 | A1 |
20020008913 | Yin et al. | Jan 2002 | A1 |
20020009060 | Gross | Jan 2002 | A1 |
20020012152 | Agazzi et al. | Jan 2002 | A1 |
20020015220 | Papernyl et al. | Feb 2002 | A1 |
20020027703 | Kinoshita et al. | Mar 2002 | A1 |
20020034197 | Tornetta et al. | Mar 2002 | A1 |
20020044317 | Gentner et al. | Apr 2002 | A1 |
20020044324 | Hoshida et al. | Apr 2002 | A1 |
20020048287 | Silvers | Apr 2002 | A1 |
20020051468 | Ofek et al. | May 2002 | A1 |
20020063948 | Islam et al. | May 2002 | A1 |
20020064181 | Ofek et al. | May 2002 | A1 |
20020075903 | Hind | Jun 2002 | A1 |
20020080809 | Nicholson et al. | Jun 2002 | A1 |
20020118446 | Lee et al. | Aug 2002 | A1 |
20020141048 | Spock et al. | Oct 2002 | A1 |
20020181037 | Lauder et al. | Dec 2002 | A1 |
20030002776 | Graves et al. | Jan 2003 | A1 |
20030016705 | Bellato et al. | Jan 2003 | A1 |
20030026533 | Danziger et al. | Feb 2003 | A1 |
20030055998 | Saha et al. | Mar 2003 | A1 |
20030067655 | Pedersen et al. | Apr 2003 | A1 |
20040001715 | Katagiri et al. | Jan 2004 | A1 |
20040037568 | Evangelides, Jr. | Feb 2004 | A1 |
20060093369 | Nagarajan | May 2006 | A1 |
20060127099 | Eiselt et al. | Jun 2006 | A1 |
20070122158 | Eiselt et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
01115230 | May 1989 | JP |
02238736 | Sep 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20080285982 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60433305 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10737136 | Dec 2003 | US |
Child | 12183695 | US |